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Valuation Theory



Absolute Values
Throughout, let F be a field.

Definition
An absolute value on F is a map | · | : F → R such that for all a, b ∈ F :
|a| ≥ 0, with equality if and only if a = 0
|ab| = |a||b|
|a + b| ≤ |a|+ |b| (archimedian) or
|a + b| ≤ max{|a|, |b|} (non-archimedian)

Examples
The well-known absolute value on Q (or on R or on C) is an
archimedian absolute value in the sense of the above definition.
The trivial absolute value on any field F , defined via |a| = 0 when
a = 0 and |a| = 1 otherwise, is a non-archimedian absolute value.
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p-Adic Absolute Values on Q

Let p be a prime number, and define a map | · |p on Q as follows:

For r ∈ Q∗, write r = pn a
b with n ∈ Z and p - ab and set

|r |p = p−n.

Then | · |p is a non-archimedian absolute value on Q, called the p-adic
absolute value on Q.

Theorem (Ostrowski)
The p-adic absolute values, along with the trivial and the ordinary
absolute value, are the only valuations on Q.
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Rational Function Fields

Notation
For any field K :

K [x ] denotes the ring of polynomials in x with coefficients in K .

K (x) denotes the field of rational functions in x with coefficients in K :

K (x) =
{ f (x)

g(x) | f (x), g(x) ∈ K [x ] with g(x) 6= 0
}
.

Note that F = K (x) is our first example of an algebraic function field.
More formally:

Definition
A rational function field F/K is a field F of the form F = K (x) where
x ∈ F is transcendental over K .
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Absolute Values on K (x)

Fix a constant c ∈ R, c > 1, and let r(x) ∈ K (x) be nonzero.

p-adic absolute values on K (x):
Let p(x) be any monic irreducible polynomial in K [x ], and write
r(x) = p(x)na(x)/b(x) with n ∈ Z and p(x) - a(x)b(x). Define

|r(x)|p(x) = c−n.

Then | · |p(x) is a non-archimedian absolute value on K (x).

Infinite absolute value on K (x):
Write r(x) = f (x)/g(x) and define

|r(x)|∞ = cdeg(f )−deg(g).

Then | · |∞ is a non-archimedian absolute value on K (x).
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Remarks on Absolute Values on K (x)

These, plus the trivial absolute value, are essentially all the absolute
values on K (x)

, up to trivial modifications such as
I using a different constant c ,
I using a different normalization on the irreducible polynomials

p(x).

All absolute values on K (x) are non-archimedian (different from Q!)

When K = Fq is a finite field of order q, one usually chooses c = q.

When K is a field of characteristic 0, one usually chooses
c = e = 2.71828 . . ..
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Valuations

Definition
A valuation on F is a map v : F → R ∪ {∞} such that for all a, b ∈ F :

v(a) =∞ if and only if a = 0
v(ab) = v(a) + v(b)
v(a + b) ≥ min{v(a), v(b)}

The pair (F , v) is called a valued field.

(Here, ∞ ≥∞ ≥ n and ∞+∞ =∞+ n =∞ for all n ∈ Z.)

Remark
Let c > 1 be any constant. Then v is a valuation on F if and only if
| · | := c−v(·) is a non-archimedian absolute value on F (with c−∞ := 0).
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Examples

Trivial valuation: for any a ∈ F , define v(a) =∞ when a = 0 and
v(a) = 0 otherwise. Then v is a valuation on F .

p-adic valuations on Q: for any prime p and r = pna/b ∈ Q∗,
define vp(r) = n. Then vp is a valuation on Q.

p-adic valuations on K (x): for any monic irreducible polynomial
p(x) ∈ K [x ] and r(x) = p(x)na(x)/b(x) ∈ K (x)∗, define
vp(x)(r(x)) = n. Then vp(x) is a valuation on K (x).

Infinite valuation on K (x): for r(x) = f (x)/g(x) ∈ K (x)∗, define
v∞(r(x)) = deg(g)− deg(f ). Then v∞ is a valuation on K (x).
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More on Valuations

Definition
A valuation v is discrete if it takes on values in Z ∪ {∞}

and normalized if
there exists an element u ∈ F with v(u) = 1. Such an element u is a
uniformizer (or prime element) for v .

Remarks
All four valuations from the previous slide are discrete.
Every p-adic valuation on Q is normalized with uniformizer p.
Every p-adic valuation on K (x) is normalized with uniformizer p(x).
The infinite valuation on K (x) is normalized with uniformizer 1/x .
The p-adic and infinite valuations on K (x) all satisfy v(a) = 0 for all
a ∈ K ∗. They constitute all the valuations on K (x) with that
property.

Remark
A discrete valuation is normalized if and only if it is surjective.
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Valuation Rings
For a discretely valued field (F , v), define the following subsets of F :

Ov = {a ∈ F | v(a) ≥ 0},
O∗v = {a ∈ F | v(a) = 0},
Pv = {a ∈ F | v(a) > 0} = Ov \ O∗v .
Fv = Ov/Pv .

Properties:
Ov is an integral domain and a discrete valuation ring, i.e. Ov $ F
and for a ∈ F ∗, we have a ∈ Ov or a−1 ∈ Ov .
O∗v is the unit group of Ov .
Pv is the unique maximal ideal of Ov ; in particular, Fv is a field called
the residue field of v .
Every a ∈ F ∗ has a unique representation a = εun with ε ∈ O∗v and
n = v(a) ∈ Z.
Ov is principal ideal domain whose ideals are generated by the
non-negative powers of u; in particular, u is a generator of Pv .
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Example: p-Adic Valuations
For any p-adic valuation vp on Q:

Ovp = {r ∈ Q | r = a/b with gcd(a, b) = 1 and p - b}
O∗vp = {r ∈ Q | r = a/b with gcd(a, b) = 1 and p - ab}
Pvp = {r ∈ Q | r = a/b with gcd(a, b) = 1, p | a, p - b}
Fvp = Fp.

Similarly, for any p-adic valuation vp(x) on K (x):

Ovp(x) = {r(x) ∈ K (x) | r(x) = a(x)/b(x) with gcd(a, b) = 1, p(x) - b(x)}
O∗vp(x)

= {r(x) ∈ K (x) | r(x) = a(x)/b(x) with gcd(a, b) = 1,

p(x) - a(x)b(x)}
Pvp(x) = {r(x) ∈ K (x) | (x) = a(x)/b(x) with gcd(a, b) = 1,

p(x) | a(x), p(x) - b(x)}
Fvp(x) = K [x ]/(p(x)) where (p(x)) is the K [x ]-ideal generated by p(x)
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Example: Infinite Valuation on K (x)

For the infinite valuation v∞ on K (x):

Ov∞ = {r(x) ∈ K (x) | r(x) = f (x)/g(x) with deg(f ) ≤ deg(g)}
O∗v∞ = {r(x) ∈ K (x) | r(x) = f (x)/g(x) with deg(f ) = deg(g)}
Pv∞ = {r(x) ∈ K (x) | (x) = f (x)/g(x) with deg(f ) < deg(g)}
Fv∞ = K

We will henceforth write O∞, P∞, F∞ for brevity.

Example

v∞
( x − 7

2x3 + 3x

)
= 2 and x − 7

2x3 + 3x =
(1

x

)2
· x3 − 7x2

2x3 + 3︸ ︷︷ ︸
∈O∗∞

.
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Places

Definition
A place of F is the unique maximal ideal of a discrete valuation ring in F .
The set of places of F is denoted P(F ).

Theorem
There is a one-to-one correspondence between the set of normalized
discrete valuations on F and the set P(F ) of places of F as follows:

If v is a normalized discrete valuation on F , then Pv ∈ P(F ) is the
unique maximal ideal in the discrete valuation ring Ov .
If P is a place of F , then the discrete valuation ring O ⊂ F
containing P as its unique maximal ideal is determined, and P defines
a discrete normalized valuation on F as follows: if u is any generator
of P, then every element a ∈ F ∗ has a unique representation a = εun

with n ∈ Z and ε a unit in O, and we define v(a) = n and v(0) =∞.
Note that u is a uniformizer for v .
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Examples of Places
For any prime number p, the set

P = {r ∈ Q | r = a/b with gcd(a, b) = 1, p | a, p - b} = Pvp

is a place of Q with corresponding valuation vp.

The set P(K (x)) consists of the finite places of K (x) of the form
Pp(x) = Pvp(x) where p(x) is a monic irreducible polynomial in K [x ] and
the infinite place of K (x) of the form P∞ = Pv∞ .

Let F/Q be a number field with ring of integers OF (the integral closure
of Z in F ). Then every prime ideal in OF is a place of F .

Let F be a finite algebraic extension of Fq(x) and let OF be the integral
closure of the polynomial ring Fq[x ] in F . Then every prime ideal in OF is
a place of K . Note that there are other places of F that do not arise in
this way (more on this later).
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Function Fields



Function Fields

Definition
Let K be a field. An algebraic function field F/K in one variable over K is
a field extension F ⊇ K such that F is finite algebraic extension of K (x)
for some x ∈ F that is transcendental over K .

F/K is global if K is finite.

We will shorten this terminology to just “function field”.

In other words, a function field is of the form F = K (x , y) where
x ∈ F is transcendental over K ,
y ∈ F is algebraic over K (x), so there exists a monic irreducible
polynomial φ(Y ) ∈ K (x)[Y ] of degree n = [F : K (x)] with φ(y) = 0.

Remark
It is important to note that there are many choices for x , and the degree
[F : K (x)] may change with the choice of x . This is different from number
fields where the degree over Q is fixed.
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Examples of Function Fields
A function field is rational if F = K (x) for some element x ∈ F that is
transcendental over K .

The meromorphic functions on a compact Riemann surface form a
function field over C (the complex numbers).

Let E : y2 = x3 + Ax + B be an elliptic curve defined over a field K of
characteristic different from 2 and 3. Then F = K (x , y) is a function field
over K . Note that [F : K (x)] = 2 and [F : K (y)] = 3.

More generally, consider the curve y2 = f (x) where f (x) ∈ K [x ] is a
square-free polynomial and K has characteristic different from 2. Then
F = K (x , y) is a function field over K whose elements are of the form

F = { a(x) + b(x)y | a(x), b(x) ∈ K (x) }.

Note that [F : K (x)] = 2 and [F : K (y)] = deg(f ).
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Function Fields of Curves

Definition
A plane affine irreducible algebraic curve over a field K is the zero locus of
an irreducible polynomial Φ(x ,Y ) in two variables with coefficients in K .

We will shorten this terminology to just “curve”.

Definition
The coordinate ring of a curve C : Φ(x , y) = 0 over a field K is the ring
K [x ,Y ]/(Φ(x ,Y )) where (Φ(x ,Y )) is the principal K [x ,Y ]-ideal
generated by Φ(x ,Y ).
The function field of C is the field of fractions of its coordinate ring.

Remark: The function field of a curve is a function field as defined
previously. Conversely, every function field F/K is the function field of the
curve given by a minimal polynomial of F/K (x).
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More on Function Fields and Curves

General form of a function field F/K :

F = K (x , y) with Φ(x , y) = 0 ,

where Φ(x ,Y ) is a polynomial in Y with coefficients in K (x) that is
irreducible over K (x) and has a root y ∈ F .

Note that a function field has many defining curves!

Example: Let A,B ∈ K and consider the two curves

C1 : y2 = x3 + Ax + B ,

C2 : v2 = Bu4 + Au3 + u .

Then K (x , y) = K (u, v).
Dividing C1 by x4 and putting u = x−1, v = yx−2 yields C2.
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Constant Fields

Definition
The constant field of a function field F/K is the algebraic closure of K in
F , i.e. the field

K̃ = {z ∈ F | z is algebraic over K} .

F/K is a geometric function field if K̃ = K .

Sometimes K̃ is called the “full” or the “exact” field of constants of F/K .

Remark
K ⊆ K̃ $ F , and every element in F \ K̃ is transcendental over K .

Remark
Write F = K (x , y). Then F/K is a geometric function field if and only if
the minimal polynomial of y over K (x) is absolutely irreducible, i.e.
irreducible over K (x) where K is the algebraic closure of K .
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Examples

K (x)/K is always geometric.

If K is algebraically closed (e.g. K = C), then any F/K is geometric.

Let F = K (x , y) where y2 = f (x) with f (x) ∈ K [x ] square-free.
Then F/K (x) is geometric if and only if f (x) is non-constant
(otherwise K̃ = K (y) and F = K̃ (x)).

Suppose −1 is not a square in K
(e.g. K = R or K = Fq with q ≡ 3 (mod 4)).
Let F = K (x , y) where x2 + y4 = 0. Then [F : K (x)] = 4.
Let i /∈ K be a square root of −1. Then i2 + 1 = 0, so i is algebraic
over K . Thus i ∈ K̃ \K . In fact, K̃ = K (i), so F/K is not geometric.
Over K̃ , we have x ± iy2 = 0.
Note that [K̃ : K ] = [K̃ (x) : K (x)] = 2 and [F : K̃ (x)] = 2.
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Residue Fields and Degrees

Recall that a place P of a field F is the unique maximal ideal of some
discrete valuation ring OP of F , and its residue field is FP = OP/P.

Remark: K̃ ⊂ OP for all P ∈ P(F ).

Definition
Let F/K be a geometric function field and P a place of F . Then the
degree of P is the field extension degree deg(P) := [FP : K ]. Places of
degree one are called rational. The set of rational places of F is denoted
P1(F ).

Remark
deg(P) ≤ [F : K (x)] for any x ∈ P, so deg(P) is always finite.

Renate Scheidler (Calgary) Function Fields PIMS NT Summer School 24 / 95



Residue Fields and Degrees

Recall that a place P of a field F is the unique maximal ideal of some
discrete valuation ring OP of F , and its residue field is FP = OP/P.

Remark: K̃ ⊂ OP for all P ∈ P(F ).

Definition
Let F/K be a geometric function field and P a place of F . Then the
degree of P is the field extension degree deg(P) := [FP : K ]. Places of
degree one are called rational. The set of rational places of F is denoted
P1(F ).

Remark
deg(P) ≤ [F : K (x)] for any x ∈ P, so deg(P) is always finite.

Renate Scheidler (Calgary) Function Fields PIMS NT Summer School 24 / 95



Residue Fields and Degrees

Recall that a place P of a field F is the unique maximal ideal of some
discrete valuation ring OP of F , and its residue field is FP = OP/P.

Remark: K̃ ⊂ OP for all P ∈ P(F ).

Definition
Let F/K be a geometric function field and P a place of F . Then the
degree of P is the field extension degree deg(P) := [FP : K ].

Places of
degree one are called rational. The set of rational places of F is denoted
P1(F ).

Remark
deg(P) ≤ [F : K (x)] for any x ∈ P, so deg(P) is always finite.

Renate Scheidler (Calgary) Function Fields PIMS NT Summer School 24 / 95



Residue Fields and Degrees

Recall that a place P of a field F is the unique maximal ideal of some
discrete valuation ring OP of F , and its residue field is FP = OP/P.

Remark: K̃ ⊂ OP for all P ∈ P(F ).

Definition
Let F/K be a geometric function field and P a place of F . Then the
degree of P is the field extension degree deg(P) := [FP : K ]. Places of
degree one are called rational. The set of rational places of F is denoted
P1(F ).

Remark
deg(P) ≤ [F : K (x)] for any x ∈ P, so deg(P) is always finite.

Renate Scheidler (Calgary) Function Fields PIMS NT Summer School 24 / 95



Residue Fields and Degrees

Recall that a place P of a field F is the unique maximal ideal of some
discrete valuation ring OP of F , and its residue field is FP = OP/P.

Remark: K̃ ⊂ OP for all P ∈ P(F ).

Definition
Let F/K be a geometric function field and P a place of F . Then the
degree of P is the field extension degree deg(P) := [FP : K ]. Places of
degree one are called rational. The set of rational places of F is denoted
P1(F ).

Remark
deg(P) ≤ [F : K (x)] for any x ∈ P, so deg(P) is always finite.

Renate Scheidler (Calgary) Function Fields PIMS NT Summer School 24 / 95



Example: Residue Fields of Places of K (x)

For any finite place Pp(x) of K (x), a K−basis of FP is
{1, x , . . . , xdeg(p)−1}, so deg(Pp(x)) = deg(p).

For the infinite place P∞ of K (x), we have FP = K and hence
deg(P∞) = 1.

K is algebraically closed if and only if the finite places of K (x)
correspond exactly the linear polynomials x +α with α ∈ K , i.e. if and
only if all the places of K (x) are rational, so P(K (x)) = P1(K (x)).
In this case, there is a one-to-one correspondence between P1(K (x))
and the points on the projective line P1(K ) := K ∪ {∞} via

P1(K (x)) ←→ P1(K ) via x + α ←→ α , 1/x ←→ ∞ .

Hence the name ‘infinite place” — think of this as “substituting
x = 0” into the uniformizer.
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Divisors and Class Groups



Recollection: Ideals in Number Fields

Recall that in a number field:
Every ideal in the ring of integers has a unique factorization into
prime ideals.
By allowing negative exponents, this extends to fractional ideals. So
the prime ideals generate the group of fractional ideals.
Two non-zero fractional ideals are equivalent if they differ by a factor
that is a principal ideal.
The ideal class group is the group of non-zero fractional ideals modulo
(principal) equivalence whose order is class number of the field. It is a
finite abelian group that is an important invariant of the field.

We now consider analogous notions in function fields, with prime ideals
replaced by places, and multiplication (products) replaced by addition
(sums).

Assume henceforth that F/K is a geometric function field.
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Divisors

Definition
The Divisor group of F/K , denoted Div(F ), is the free group generated by
the places of F/K . Its elements, called divisors of F , are formal finite
sums of places.

Let

D =
∑

P∈P(F )
nPP with nP ∈ Z and nP = 0 for almost all P ∈ P(F ).

Then
the value of D at P is vP(D) := nP for any P ∈ P(F ).
the support of D is supp(D) := {P ∈ P(F ) | vP(D) 6= 0}.
the degree of D is deg(D) :=

∑
P∈P(F ) nP deg(P).

D is a prime divisor if it is of the form D = P for some P ∈ P(F ).
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More on Divisors

Remarks
Every divisor is a unique sum of finitely many prime divisors (note that
some prime divisors in the support may have negative coefficients).

The notions of value and degree are compatible with their previous
definitions. In particular:

I For any place P of F , the normalized discrete valuation on F
associated to P extends to a surjective group homomorphism
vP : Div(F )→ Z ∪ {∞}.

I The degree map defined on places of F extends to a group
homomorphism deg : Div(F )→ Z ∪ {∞} whose kernel is the
subgroup Div0(F ) of Div(F ) consisting of all degree zero divisors.

F. K. Schmidt proved that every function field F over a finite field
K = Fq has a divisor of degree one, so in this case, the degree
homomorphism on Div(F ) is surjective.
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Principal Divisors

Definition
A divisor D ∈ Div(F ) is principal if it is of the form

D =
∑

P∈P(F )
vP(z)P

for some z ∈ F ∗.

Write D = div(z).

Definition
The zero divisor and pole divisor of a principal divisor div(z) are the
respective divisors

div(z)0 =
∑

vP (z)>0
vP(z)P , div(z)∞ = −

∑
vP (z)<0

vP(z)P .

So div(z) = div(z)0 − div(z)∞.

Example: In F = K (x), we have div(x)0 = Px and div(x)∞ = P∞.
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The zero divisor and pole divisor of a principal divisor div(z) are the
respective divisors

div(z)0 =
∑

vP (z)>0
vP(z)P , div(z)∞ = −

∑
vP (z)<0

vP(z)P .

So div(z) = div(z)0 − div(z)∞.

Example: In F = K (x), we have div(x)0 = Px and div(x)∞ = P∞.
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More on Principal Divisors

Theorem
Let x ∈ F \ K. Then deg(div(x)0) = deg(div(x)∞) = [F : K (x)].

It follows that deg(div(z)) = 0, so the principal divisors form a subgroup
of Div0(F ), denoted Prin(F ).

Definition
Two divisors D1,D2 ∈ Div(F ) are (linearly) equivalent, denoted D1 ∼ D2,
if D1 − D2 ∈ Prin(F ).

Remark and Notation
Linear equivalence is an equivalence relation. The class of a divisor D
under linear equivalence is denoted [D].
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Class Group and Zero Class Group

Definition
The factor groups

Cl(F ) = Div(F )/Prin(F ) and Cl0(F ) = Div0(F )/Prin(F )

are the divisor class group and the degree zero divisor class group of F/K ,
respectively.

(Usually the latter is referred to as just the class group of
F/K .)

Remarks and Definition
Both Cl(F ) and Cl0(F ) are abelian groups.
Cl(F ) is always infinite, but Cl0(F ) may or may not be infinite. It it is
finite, then the order hF is called the class number of F/K .
hF is always finite for a function field F/K over a finite field K .
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Rational Places and the Class Group

Theorem
Let F/K be a non-rational function field that has a rational place,
denoted P∞. Then the map

Φ : P1(F )→ Cl0(F ) via P 7→ [P − P∞]

is injective.

The above embedding imposes an abelian group structure on P1(F ). Note
that this group structure is non-canonical (depends on the choice of P∞).

The class group and class number are important invariants of any function
field. Unfortunately, they are not easy to compute . . . /
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Effective Divisors

Definition
Define a partial order ≥ on Div(F ) via

D1 ≥ D2 ⇔ vP(D1) ≥ vP(D2) for all P ∈ P(F ).

A divisor D ∈ Div(F ) is effective (or integral or positive) if D ≥ 0.

Examples
The trivial divisor D = 0 is effective.
Every prime divisor is effective.
The zero and pole divisors of a principal divisor are effective.
The sum of two effective divisors is effective. So the effective divisors
form a sub-monoid of Div(F ).
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Decomposition of Places



Recollection: Prime Ideals in Number Fields
Recall that in a number field F/Q:

A prime p ∈ Z need not remain a prime (ideal) when extended to OF .

Rather, it has a prime ideal factorization pOF = pe1
1 pe2

2 · · · per
r in OF .

Each pi is said to lie above p, written pi |p.
Finitely many prime ideals of OF lie above any prime p of Z.
p is said to lie below each pi .
A unique prime p ∈ Z lies below every prime ideal of OF .
ei is called the ramification index of pi |p.
The field extension degree fi = [OF/pi : Fp] is called the residue
degree of pi |p.
The norm of pi is N(pi ) = pfi .
The norm extends multiplicatively to all ideals of OF .

The fundamental identity
r∑

i=1
ei fi = [F : Q] holds.

Once again, we consider analogous notions in function field extensions,
with prime ideals replaced by places, and products replaced by sums.
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Function Field Extensions

Notation and Assumption
K is perfect, i.e. every irreducible polynomial in K [x ] has distinct
roots.

F/K is a geometric function field.
Fix any x ∈ F \ K and put n = [F : K (x)] (extension degree).

Remarks
Finite fields, algebraically closed fields, and characteristic 0 fields are
all perfect.
K = Fp(x) is not perfect:
E.g. let α be a root of φ(T ) = T p − x , so αp = x .
Then φ(T ) = (T p − αp) = (T − α)p, so α has multiplicity p.

Renate Scheidler (Calgary) Function Fields PIMS NT Summer School 37 / 95



Function Field Extensions

Notation and Assumption
K is perfect, i.e. every irreducible polynomial in K [x ] has distinct
roots.
F/K is a geometric function field.

Fix any x ∈ F \ K and put n = [F : K (x)] (extension degree).

Remarks
Finite fields, algebraically closed fields, and characteristic 0 fields are
all perfect.
K = Fp(x) is not perfect:
E.g. let α be a root of φ(T ) = T p − x , so αp = x .
Then φ(T ) = (T p − αp) = (T − α)p, so α has multiplicity p.

Renate Scheidler (Calgary) Function Fields PIMS NT Summer School 37 / 95



Function Field Extensions

Notation and Assumption
K is perfect, i.e. every irreducible polynomial in K [x ] has distinct
roots.
F/K is a geometric function field.
Fix any x ∈ F \ K and put n = [F : K (x)] (extension degree).

Remarks
Finite fields, algebraically closed fields, and characteristic 0 fields are
all perfect.
K = Fp(x) is not perfect:
E.g. let α be a root of φ(T ) = T p − x , so αp = x .
Then φ(T ) = (T p − αp) = (T − α)p, so α has multiplicity p.

Renate Scheidler (Calgary) Function Fields PIMS NT Summer School 37 / 95



Function Field Extensions

Notation and Assumption
K is perfect, i.e. every irreducible polynomial in K [x ] has distinct
roots.
F/K is a geometric function field.
Fix any x ∈ F \ K and put n = [F : K (x)] (extension degree).

Remarks
Finite fields, algebraically closed fields, and characteristic 0 fields are
all perfect.

K = Fp(x) is not perfect:
E.g. let α be a root of φ(T ) = T p − x , so αp = x .
Then φ(T ) = (T p − αp) = (T − α)p, so α has multiplicity p.
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Recap: the Places of K (x)

Finite places of K (x):
Pp(x), where p(x) ∈ K [x ] is monic and irreducible;
Uniformizer is p(x);
Residue field is FPp(x) = K [x ]/(p(x));
Degree of Pp(x) is deg(Pp(x)) = deg(p(x)).

Infinite place of K (x):
P∞, corresponding to the infinite valuation (denominator degree
minus numerator degree);
Uniformizer is x−1;
Residue field is FP∞ = K ;
Degree of P∞ is deg(P∞) = 1.
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Places in K (x) and F

For a place P ′ of F , the intersection P = P ′ ∩ K (x) is a place of K (x).

We write P ′|P and say that P ′ lies above P and P lies below P ′.

Theorem
Every place P ′ of F lies above a unique place P of K (x).
Every place P of K (x) lies below finitely many places P ′ of F .
P ′|P if and only if P = P ′ ∩ K (x) and OP = OP′ ∩ K (x);
In this case OP′ is an OP -module of rank n = [F : K (x)].

The “lift” P OP′ of P to F is no longer a place. Rather, it is a divisor of F
called the co-norm of P.
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Decomposition Data
Theorem and Definition

The co-norm of P ∈ P(K (x)) is the divisor

coN(P) =
∑
P′|P

e(P ′|P)P ′

of F ,

where e(P ′|P) is the ramification index of P ′|P, defined via
vP′(r) = e(P ′|P)vP(r) for all r(x) ∈ K (x).

For all P ′|P, the norm of P ′ is the divisor

N(P ′) = f (P ′|P)P

of F , where f (P ′|P) is called the residue (or relative degree) of P ′|P,
defined as the residue field extension degree f (P ′|P) = [FP′ : K (x)P ].

deg(P ′) = f (P ′|P) deg(P) for all P ′|P.

Fundamental identity:
∑
P′|P

e(P ′|P)f (P ′|P) = n for all P ∈ P(K (x)).
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Decomposition Terminology

Definition
Let P ∈ P(K (x)).

P is unramified in F if e(P ′|P) = 1 for all P ′|P and ramified
otherwise.
P is wildly ramified in F if char(K ) divides e(P ′|P) for some P ′|P,
and tamely ramified otherwise.
P is totally ramified in F if there is a unique P ′|P with e(P ′|P) = n.
P is inert in F in F if there is a unique P ′|P with f (P ′|P) = n.
P splits completely in F if e(P ′|P) = f (P ′|P) = 1 for all P ′|P.

Sufficient (but not necessary) conditions for a function field to be tamely
ramified are:

char(K ) = 0.
n < char(K ) when char(K ) is positive.
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Computing Ramification Data
Theorem (Kummer’s Theorem in function fields)

Let F = K (x , y), P ∈ P(K (x)), and let Φ(Y ) ∈ OP [Y ] be the minimal
polynomial of y over OP . Let

Φ(Y ) ≡ φ1(Y )ε1 φ2(Y )ε2 · · · φr (Y )εr (mod P)

be the factorization of Φ(Y ) (mod P) into powers of distinct monic
irreducible polynomials in OP(Y ). Then the following hold:

1 The number of places of F lying above P is at least r .
2 For the i-th place P ′i |P, we have f (P ′i |P) ≥ deg(φi ).
3 Under certain conditions, equality holds in items 1 and 2, and

e(P ′i |P) = εi .
Two sufficient conditions for item 3 are:

All εi = 1 (so Φ(Y ) is squarefree modulo P) or
{1, y , . . . , yn−1} is an OP -basis of

⋂r
i=1 OP′i .
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Example: Quadratic Fields, Part I
Let char(K ) 6= 2, F = K (x , y) where x ∈ F is transcendental over K and
y2 = f (x) with f (x) ∈ K [x ] square-free.

For a finite place P = Pp(x) of K (x):

Φ(Y ) = Y 2 − f (x) (mod p(x)) .

1 Case p(x) - f (x) and f (x) is a square modulo p(x):

f (x) ≡ h(x)2 (mod p(x))

with h(x) ∈ K [x ]/(p(x)) non-zero. Then

Φ(Y ) ≡
(
Y − h(x)

)(
Y + h(x)

)
(mod p(x)) .

So there are two places P ′1,P ′2 ∈ P(F ) with

e(P ′1|P) = e(P ′2|P) = f (P ′1|P) = f (P ′2|P) = 1 .

Hence P splits completely in F .
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Example: Quadratic Fields, Part II
2 Case p(x) - f (x) and f (x) is not a square modulo p(x):

Φ(Y ) ≡ Y 2 − f (x) (mod p(x)) irreducible over K [x ]/(p(x)) .

So there is one place P ′ ∈ P(F ) with
e(P ′|P) = 1 , f (P ′|P) = 2 .

Hence P is inert in F .

3 Case p(x) | f (x):
Φ(Y ) ≡ Y 2 − f (x) ≡ Y 2 (mod p(x)) .

Kummer’s Theorem is inconclusive. However, for any place P ′|P:
e(P ′|P) = e(P ′|P)vp(x)(f (x)) = vP′(f (x)) = vP′(y2) = 2vP′(y) ≥ 2 .
So there is one place P ′ ∈ P(F ) with

e(P ′|P) = 2 , f (P ′|P) = 1 .
Hence P is totally ramified in F .
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Example: Quadratic Fields, Part III

For the infinite place P = P∞, recall that
x−1 is a uniformizer of P∞,
O∞ = {f (x)/g(x) ∈ K (x) | deg(f (x)) ≤ deg(g(x))},
F∞ = O∞/P∞ = K .

Write f (x) = ax2m−δ+ terms of lower degree in x , with 0 6= a ∈ K and
δ ∈ {0, 1}, and put z = yx−m. Then

z2 = y2

x2m = f (x)
x2m = a

x δ + multiples of 1
x .

Note that F = K (x , z) and the minimal polynomial of z over O∞ is

Φ(Z ) = Z 2 −
( a

x δ + multiples of 1
x

)
≡ Z 2 − a

x δ
(

mod 1
x

)
.
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Example: Quadratic Fields, Part IV
1 Case deg(f (x)) even and a is a square in K , say a = b2 with b ∈ K ∗:

Φ(Z ) ≡ Z 2 − a ≡ Z 2 − b2 ≡ (Z − b)(Z + b)
(

mod 1
x

)
.

Then P∞ splits completely in F .
2 Case deg(f (x)) even and a is not a square in K :

Φ(Z ) ≡ Z 2 − a
(

mod 1
x

)
irreducible over K .

Then P∞ is inert in F .
3 Case deg(f (x)) is odd.

Φ(Z ) ≡ Z 2 − a
x ≡ Z 2

(
mod 1

x

)
.

Kummer’s Theorem is inconclusive. However, for any place P ′|P:
−e(P ′|P) deg(f (x)) = e(P ′|P)v∞(f (x)) = vP′(f (x)) = 2vP′(y) .

Hence, 2 divides e(P ′|P), so P is totally ramified in F .
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Explicit Example
Let F = F5(x , y) with y2 = x3 + x = x(x + 2)(x + 3) ∈ F5[x ].

The ramified places of F5(x) are Px , Px+2, Px+3 and P∞.
The place Px3+x2x+3 of F5(x) splits completely in F because
x3 + x = (x2 + 2)2 + (x + 2)(x3 + x2 + x + 3) ≡ (x2 + 2)2 (mod x3 + x2 + x + 3) .

Remark: When K = Fq, determining whether or not f (x) is a square
modulo p(x) can be done with the quadratic residue symbol

( f (x)
p(x)

)
=


1 if f (x) is a non-zero square (mod p(x)),
−1 if f (x) is a non-square (mod p(x)),
0 if p(x) divides f (x)

.

This function field version of the Legendre symbol can be computed via( f (x)
p(x)

)
≡ f (x)

|p(x)|−1
2 ≡ f (x)

qdeg(p(x))−1
2 (mod p(x)) .
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The Different
Assume that all places of K (x) are tamely ramified in F .

Definition
The different (or ramification divisor) of F/K (x) is

Diff(F ) =
∑

P∈P(K(x))

∑
P′|P

(e(P ′|P)− 1)P ′ ∈ Div(F ).

Example
Let F = K (x , y) with y2 = f (x) = p1(x) · · · pr (x) (prime factorization of
f (x)). Then

Diff(F ) = P ′p1(x) + · · ·+ P ′pr (x) + δP ′∞ where

P ′pi (x) is the unique place lying above Ppi (x);
P ′∞ is the unique place lying above P∞ when P∞ is ramified;
δ ∈ {0, 1} is the parity of deg(f ).

It follows that deg(Diff(F/K (x))) = deg(f ) + δ (an even integer).
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Genus and Different

Definition
The genus of F/K is the integer

g = 1
2 deg(Diff(F ))− n + 1

for any x ∈ F \ K , where n = [F : K (x)].

Examples:
Every rational function field K (x) has genus 0.

Let F = K (x , y) with char(K ) 6= 2; y2 = f (x) with f (x) ∈ K [x ]
square-free. Then

I g = b(deg(f )− 1)/2c (so deg(f ) = 2g + 1 or 2g + 2).
I deg(Diff(F/K (x)) = 2g + 2.
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Bounds on P1(F ) and Cl0(F ) for K finite

Theorem (Hasse-Weil)
Let F/Fq be a function field of genus g over a finite field of order q. Then

q + 1− 2g√q ≤ |P1(F )| ≤ q + 1 + 2g√q,

(√q − 1)2g ≤ |Cl0(F )| ≤ (√q + 1)2g .

Corollary
|P1(F )| ≈ q and |Cl0(F )| ≈ qg for q large and g fixed.

Corollary
Every rational function field K (x) has class number one.

Remark
There are 8 non-rational function fields F/Fq of class number one. All
have q ≤ 4, and defining curves for all of them are known.
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Genus 0 and 1 Function Fields



Genus 0 Function Fields

We continue to assume that K is perfect.

Theorem
Let F/K be a function field of genus 0. Then the following hold:

F/K is rational if and only if it has a rational (i.e. degree 1) place.
If F/K is not rational, then F has a place of degree 2, and there
exists x ∈ F with [F : K (x)] = 2.

Corollary
For K algebraically closed, F/K is rational if and only if F has genus 0.

Example
F = R(x , y) where x2 + y2 = −1 has genus 0 but is not rational.
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Genus 1 Function Fields

Definition
A function field F/K is elliptic if it has genus 1 and a rational place.

Corollary
For K algebraically closed, F/K is elliptic if and only if F has genus 1.

Example
F = R(x , y) where x4 + y2 = −1 has genus 1 but is not elliptic.

Theorem
If F/K is elliptic, then there exist x , y ∈ F such that F = K (x , y) and

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

for some a1, a2, a3, a4, a6 ∈ K. This equation defines an elliptic curve in
Weierstraß form. Note that [F : K (x)] = 2 and [F : K (y)] = 3.
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Short Weierstraß Form
Consider y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

If char(K ) 6= 2, then “completing the square for y”, i.e. substituting y
by y − (a1x + a3)/2 leaves F/K unchanged and produces an equation
of the form

y2 = x3 + b2x2 + b4x + b6 (b2, b4, b6 ∈ K ).

If in addition char(K ) 6= 3, then “completing the cube for x”, i.e.
substituting x by x − b2/3 leaves F/K unchanged and produces an
equation of the form

y2 = x3 + Ax + B (A,B ∈ K ).

This is an elliptic curve in short Weierstraß form.

Similarly, if char(K ) = 2, one can always convert a (long) Weierstraß
form to an equation of the form

y2 + y = cubic polynomial in x or y2 + xy = cubic polynomial in x .
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P1(F ) as an Abelian Group

Theorem
Let F/K be an elliptic function field, and fix a rational place P∞ ∈ P1(F ).
Then the injection Φ : P1(F )→ Cl0(F ) via P 7→ [P − P∞] is a bijection.

Corollary
Every degree zero divisor class of F/K has a unique representative of
the form [P − P∞] with P ∈ P1(F ).
The set P1(F ) becomes an abelian group (and Φ a group
isomorphism) under the addition law

P ⊕ Q =: R ⇐⇒ [P − P∞] + [Q − P∞] = [R − P∞].
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Points on an Elliptic Curve
Consider E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

Definition
The set of (K -)rational points on E is

E (K ) = { (x0, y0) ∈ K × K |
y2

0 + a1x0y0 + a3y0 = x3
0 + a2x2

0 + a4x0 + a6} ∪ {∞} .

The “point” ∞ arises from the homogenization of E :

EH : y2z + a1xyz + a3yz2 = x3 + a2x2z + a4xz2 + a6z3.

Points on EH : [x : y : z ] 6= [0 : 0 : 0] normalized to last non-zero entry = 1.

Points on E ←→ Points on EH
(x , y) −→ [x : y : 1]
(x/z , y/z) ←− [x : y : z ] when z 6= 0
∞ ←− [0 : 1 : 0]
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An Elliptic Curve and a Point

E : y2 = x3 − 5x over Q, p = (−1,−2) ∈ E (Q)
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Point Arithmetic — Cord & Tangent Law
Any line intersects E in three points.

Need to count multiplicities;
One of the points may be ∞.

Group Law on E (K ):
Identity: ∞.
Inverses: −p is defined as the third point of intersection of the line
through p and ∞ with E .
For short Weierstraß models, this line is “vertical”, so if p = (x0, y0),
then −p = (x0,−y0).
Addition:“Any three collinear points on E sum to zero (i.e. ∞).”

I If p 6= q, then −r is defined as the third point of intersection of
the secant line through p and q with r .

I If p = q, then −r is defined as the third point of intersection of
the tangent line at p to E .

I Must then invert −r to obtain r .
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Inverses on Elliptic Curves
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Addition on Elliptic Curves
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Doubling on Elliptic Curves
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Arithmetic on Short Weierstraß Form
Let

P1 = (x1, y1), P2 = (x2, y2) (P1 6=∞, P2 6=∞, P1 + P2 6=∞) .

Then

−P1 = (x1,−y1)

P1 + P2 = (λ2 − x1 − x2, −λ3 + λ(x1 + x2)− µ)

where

λ =


y2 − y1
x2 − x1

if P1 6= P2

3x2
1 + A
2y1

if P1 = P2

µ =


y1x2 − y2x1

x2 − x1
if P1 6= P2

−x3
1 + Ax1 + 2B

2y1
if P1 = P2
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Rational Points and Rational Places

Recall the addition law on P1(F ):

P ⊕ Q = R ⇔ [P − P∞] + [Q − P∞] = [R − P∞]

⇔ [P] + [Q]− [R] = [P∞]

Recall the addition law on E (K ): p + q − r =∞.

Theorem
Let (x0, y0) ∈ E (K ) \ {∞}. Then exists a unique P(x0,y0) ∈ P1(F )
such that supp(div(x − x0)) ∩ supp(div(y − y0)) = {P(x0,y0),P∞}.
The map Ψ : E (K )→ P1(K ) via (x0, y0) 7→ P(x0,y0) and ∞ 7→ P∞ is
a group isomorphism.

So we have group isomorphisms

(E (K ), point addition) Ψ←→ (P1(F ),⊕) Φ←→ (Cl0(F ), divisor addition)
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Hyperelliptic Function Fields



Hyperelliptic Function Fields

Definition
A function field F/K is hyperelliptic if it has genus at least 2 and there
exists x ∈ F such that [F : K (x)] = 2.

Remark
Every genus 2 function field is hyperelliptic.

Description: Write F = K (x , y) with [F : K (x)] = 2.
Then F/K (x) has a minimal polynomial of the form

y2 + h(x)y = f (x)

where h(x) and f (x) are polynomials (after we make everything integral)
and h(x) = 0 if K has characteristic 6= 2.
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Hyperelliptic Curves
A hyperelliptic function field of genus g is of the form F = K (x , y) where

C : y2 + h(x)y = f (x)

with the following properties:

f (x), h(x) ∈ K [x ];
C is irreducible over K (x);
C is non-singular (or smooth), i.e. there are no simultaneous solutions
to C and its partial derivatives with respect to x and y .
deg(f ) = 2g + 1 or 2g + 2;
If K has characteristic 6= 2, then h(x) = 0 ;
If K has characteristic 2, then deg(h) ≤ g when deg(f ) = 2g + 1, and
h(x) is monic of degree g + 1 when deg(f ) = 2g + 2;

C is a hyperelliptic curve of genus g over K .

Remark: The case g = 1 and deg(f ) odd also covers elliptic curves.
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Examples
Every hyperelliptic curve over a field K of characteristic 6= 2 has the
form y2 = f (x) with f (x) ∈ K [x ] squarefree.

y2 = x5 − 5x3 + 4x − 1 over Q, genus g = 2:

-10

-5

 0

 5

 10

-3 -2 -1  0  1  2  3

Note that the cord & tangent law no longer works when g ≥ 2. In
fact, any injection Φ : P1(F )→ Cl0(F ) is no longer surjective.
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Classification by to Splitting at Infinity
Let sgn(f ) denote the leading coefficient of f (x).

Case 1: deg(f ) = 2g + 1 (odd). Then the infinite place of K (x) ramifies
in F .

Case 2: deg(f ) = 2g + 2 (even) and
sgn(f ) is a square in K ∗ when char(K ) 6= 2;
sgn(f ) is of the form s2 + s for some s ∈ K when char(K ) = 2.

Then the infinite place of K (x) splits in F .

Case 3: deg(f ) = 2g + 2 (even) and
sgn(f ) is a non-square in K ∗ when char(K ) 6= 2;
sgn(f ) is not of the form s2 + s with s ∈ K when char(K ) = 2.

Then the infinite place of K (x) is inert in F .

The representation of F/K (x) by C is referred to as ramified, split, and
inert according to these three cases, or alternatively as imaginary, real, and
unusual.
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Model Properties

Ramified representations are the function field analogue of imaginary
quadratic number fields.

Split representations are the function field
analogue of real quadratic number fields. Inert representations have
no number field analogue.
The variable transformation x 7→ 1/(x − a) and y 7→ y/(x − a)g+1,
with f (a) 6= 0, converts a ramified representation of F/K (x) into a
split or inert representation of F/K (x) without changing the
underlying rational function field K (x).
The same variable transformation, with f (a) = 0, converts an inert or
split representation of F/K (x) into a ramified representation of
F (a)/K (a)(x); note that this may require an extension of the
constant field.
Inert models F/K (x) become split when considered over a quadratic
extension over K . They don’t exist over algebraically closed fields.
We will not discuss them here.
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Reduced Divisors

Theorem
Suppose F/K (x) is ramified, with infinite place P∞ ∈ P(F ). Then
every degree divisor class in Cl0(F ) contains a unique divisor of the
form

D = D0 − deg(D0)P∞ ,

where D0 is effective, deg(D0) ≤ g and P ′∞ /∈ supp(D0).

Suppose F/K (x) is split, with infinite places P∞,1,P∞,2 ∈ P(F ).
Then every degree divisor class in Cl0(F ) contains a unique divisor of
the form

D = D0 − deg(D0)P∞,2 + n(P∞,1 − P∞,2) ,

where D0 is effective, deg(D0) ≤ g, P∞,1,P∞,2 /∈ supp(D0) and
−dg/2e ≤ n ≤ bg/2c − deg(D0).
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Arithmetic in Cl0(F )
Remarks:

D is uniquely determined by D0 when F/K (x) is ramified and by the
pair (D0, n) when F/K (x) is split.
“Generically” (i.e. for almost all classes in Cl(F )), unless K is small,
we have deg(D0) = g and hence

D = D0 − gP∞ when F/K (x) is ramified;
D = D0 − dg/2eP∞,1 − bg/2cP∞,2 when F/K (x) is split.

Arithmetic in Cl0(F ) is conducted on reduced divisors:

[D1] + [D2] = [Reduced divisor in the class of D1 + D2] ,

where D1 and D2 are reduced.

Question: How to efficiently compute the reduced divisor in [D1 + D2]?
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Rational Points and Rational Places

Let (x0, y0) ∈ K × K be a rational point on C , i.e.

y2
0 + h(x0)y0 = g(x0) .

Then supp(div(x − x0)) ∩ supp(div(y − y0)) contains a unique finite
rational place P(x0,y0).

As before, we identity (x0, y0)↔ P(x0,y0), but this is no longer a group
isomorphism.

A divisor of the form

D =
r∑

i=1
Pi ∈ Div(F ) with Pi ∈ P1(F ) for all i

can thus be identified with a multiset of r rational points on C .
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Example, Genus 2, Ramified Model

D1 = P(−2,1) + P(0,1) , D2 = P(2,1) + P(3,−11)

−3 −2 −1 1 2 3

−10

−5

5

10
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Group Law, Genus 2, Ramified Models

Generic reduced divisors are determined by two finite points on C .

The sum of two generic divisors consists of 4 finite points.

Any 4 points on C determine a cubic y = v(x) with deg(v(x)) = 3.
This cubic intersects C in two more points (again need to account for
multiplicities)

Degree 2 divisor class addition:
Identity: [0] (D0) = 0).
Inverses: invert points as before; the inverse of a divisor D consists of
the inverses of the points in supp(D).
Addition: “Any three degree 2 divisors on C lying on a cubic sum to
zero.”
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Inverses in Genus 2, Ramified Models

−3 −2 −1 1 2 3

−10

−5

5

10

−(•+ •) = •+ •

Renate Scheidler (Calgary) Function Fields PIMS NT Summer School 79 / 95



Addition in Genus 2, Ramified Models

−3 −2 −1 1 2 3
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(•+ •) + (•+ •) = ?
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Addition Procedure

To add two divisors D = P1 + P2 and E = Q1 + Q2:

The four points corresponding to the placesP1, P2, Q1, Q2 lie on a
unique cubic y = v(x).

This cubic intersects C in two more points corresponding to two
places −R1 and −R2:

I The x -coordinates of these points can be obtained by finding the
remaining two roots of the sextic v(x)2 + h(x)v(x)− f (x).

I The y -coordinates of these points can be obtained by
substituting the x -coordinates into y = v(x).

[P1 + P2 − 2P∞] + [Q1 + Q2 − 2P∞] + [−R1 − R2 − 2P∞] = [0].

So [P1 + P2 − 2P∞] + [Q1 + Q2 − 2P∞] = [R1 + R2 − 2P∞].
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Addition Example
Consider C : y2 = f (x) with f (x) = x5 − 5x3 + 4x + 1 over Q.

To add [P(−2,1) + P(0,1) − 2P∞] and [P(2,1) + P(3,−11) − 2P∞]:
The unique cubic through (−2, 1), (0, 1), (2, 1) and (3,−11) is
y = v(x) with v(x) = −(4/5)x3 + (16/5)x + 1.
The equation v(x)2 = f (x) becomes

(x − (−2))(x − 0)(x − 2)(x − 3)(16x2 + 23x + 5) = 0 .

The roots of 16x2 + 23x + 5 are −23±
√

209
32 .

The corresponding y -coordinates are −1333± 115
√

209
2048 .

[P(−2,1) + P(0,1) − 2P∞] + [P(2,1) + P(3,−11) − 2P∞]
= [P(x+,y+) + P(x−,y−) − 2P∞] where

(x±, y±) =
(
−23±

√
209

32 ,
1333∓ 115

√
209

2048

)
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(x±, y±) =
(
−23±

√
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√
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Mumford Representation

Note that our final divisor D consisted of points with irrational coordinates
(though with lots of symmetries), whereas all our polynomials had rational
coefficients.

Avoid points altogether and work only with polynomials over K :

The Mumford representation of a divisor D = P(x1,y1) + P(x2,y2) on a
genus 2 ramified curve is the pair of polynomials (u(x), v(x)) where

u(x) = (x − x1)(x − x2).
y = v(x) is the line through (x1, y1) and (x2, y2)
(the tangent line to C at (x1, y1) if (x1, y1) = (x2, y2)).

Write D = [u, v ] .

Remark: u(x), v(x) have coefficients in K .
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Divisor Addition Via Mumford Reps
To add two disjoint divisors D1 = [u1, v1] and D2 = [u2, v2] on a genus 2
ramified curve

C : y2 + hy = f

1 Collect the four x -coordinates of the points in D1 and D2:
u = u1u2 .

2 Find the cubic y = v(x) determined by the points in D1 and D2:

v ≡
{

v1 (mod u1) ,
v2 (mod u2) .

3 Find the remaining two roots of v2 − hv − f :
u ← (f − vh − v2)/u .

4 Replace the intersection divisor of v and C by its opposite:
v ← (−v − h) (mod u) .

5 Output D1 + D2 = [u, v ].
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Mumford Arithmetic — Example

Consider again C : y2 = f (x) with f (x) = x5 − 5x3 + 4x + 1 over Q.

Compute D1 + D2 with D1 = P(−2,1) + P(0,1) and D2 = P(2,1) + P(3,−11):

Mumford representation of D1: u1(x) = x2 + 2x , v1(x) = 1.
Mumford representation of D2: u2(x) = x2 − 5x + 6, v2(x) = −12x + 25.

u(x) = u1(x)u2(x) = x4 − 3x3 − 4x2 + 12x ;

v(x) = −(4/5)x3 + (16/5)x + 1 ;

u(x)← (f (x)− v(x)2)/u(x) = 16x2 + 23x + 5 ;

v(x)← −v(x) (mod u(x)) = (16x − 23)/320 ;

Mumford rep of D1 + D2 = P(−23+
√

209
32 , 1333−115

√
209

2048

) + P(−23−
√

209
32 , 1333+115

√
209

2048

):

u(x) = 16x2 + 23x + 5, v(x) = (16x − 23)/320.
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General Arithmetic on Ramified Models

Generalization to ramified models of arbitrary genus g :

Reduced divisors correspond to multisets of up to g points.

Mumford representations [u, v ] uniquely determine a reduced divisor
and satisfy

deg(v) < deg(u) ≤ g .

Identity and Inverses as before.

Addition Motto: “Any three divisors on C lying on a function of
degree ≤ 2g − 1 sum to zero.”
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Addition on Genus g Ramified Models

Let D1 = P1 + · · ·+ Pr and D2 = Q1 + · · ·+ Qs (r , s ≤ g) be disjoint.

To add [D1 − rP∞] and [D2 − sP∞]:
1 Put D = P1 + · · ·+ Pr + Q1 + · · ·+ Qs // (deg(D) = r + s ≤ 2g).
2 Repeat until deg(D) ≤ g (up to dg/2e times):

1 Compute the unique function y = v(x) with
deg(v) = deg(D)− 1 through the points in supp(D).

2 The equation v2 + hv − f = 0 has 2 deg(D)− 2 roots.∗
deg(D) of these are the x -coordinates of the points in supp(D).
Denote the remaining roots by x1, . . . , xdeg(D)−2.

3 Substitute the xi into y = v(x), i.e. compute yi = v(xi ) and put
−Ri = P(xi ,yi ), for 1 ≤ i ≤ deg(D)− 2.

4 Put D = R1 + R2 + · · ·+ R|D|−2.
3 Output [D − deg(D)P∞].

∗If deg(D) = g + 1 in the last iteration, then the equation has 2g + 1 roots.
In this case, deg(D) decreases by 1 only, from g + 1 to g .
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Mumford Representations

Suppose supp(D) contains r places Pi = P(xi ,yi ) where where each point
(xi , yi ) occurs mi times.

Mumford representation: D = [u, v ] where

u(x) =
r∏

i=1
(x − xi )mi .

( d
dx

)j [
v(x)2 + v(x)h(x)− f (x)

]
x=xi

= 0 (0 ≤ j ≤ mi − 1).

Note: deg(v) < deg(u) ≤ g .

Example: if D = P(x0,y0) (a prime divisor), then u(x) = x − x0, v(x) = y0.
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Addition Via Mumford Representations
Let D1 = [u1, v1], D2 = [u2, v2] be disjoint divisors.

To compute the reduced divisor D = [u, v ] in the class [D1 + D2]:

1 Collect the x -coordinates of the points in D1 and D2:
u = u1u2 .

2 Find the function v determined by the points in D1 and D2:

v ≡
{

v1 (mod u1) ,
v2 (mod u2) .

3 while deg(u) > g do
1 Find the remaining roots of v2 − hv − f :

u ← (f − vh − v2)/u .

2 Replace the intersection divisor of v and C by its opposite:
v ← (−v − h) (mod u) .

4 Output D = [u, v ].
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Final Remarks

Adding non-disjoint divisors via their Mumford representation is slightly
more complicated, but can also be done with a simple polynomial
arithmetic and two gcd calculations.

Note that this includes the case of doubling a divisor.

Arithmetic on split models is very similar to that for ramified models,
except that one needs to keep track of the extra parameter n

However, unless K is small, we know that n = −dg/2e almost certainly, so
there is no need.
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𝒚𝟐=𝒙𝟔+𝒙𝟐+𝒙

The End

http://voltage.typepad.com/superconductor/2011/09/a-projective-imaginary-hyperelliptic-curve.html
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