An Introduction to (Global) Function Fields

PIMS Summer School Inclusive Paths to Number Theory August 23-27, 2021, Calgary (Canada)

Practice Problems

Renate Scheidler

August 27, 2021

Most of these problems are facts stated (but not proved) during the lectures. Problems with one or more asterisks (*) reinforce the material covered in the lectures. The number of asterisks indicates the importance of a problem to the material in the lectures, with a larger number of asterisks indicating a higher degree of importance. Note that the level of difficulty of a problem has no bearing on its number of asterisks.

Valuations and Places

1. ****** (Simple properties of valuations)

Prove the following properties of a valuation v on a field F:

- (a) v(1) = 0, v(-1) = 0, v(a) = v(-a) for all $a \in F$, $v(a^{-1}) = -v(a)$ for all $a \in F^*$.
- (b) (Strict triangle inequality): if $v(a) \neq v(b)$, then $v(a+b) = \min\{v(a), v(b)\}$.
- (c) Suppose that v is discrete. Prove that v is normalized if and only if it is surjective.
- 2. *** (Examples of valuations)
 - (a) Let F be any field. For any $a \in F$, define $v(a) = \infty$ when a = 0 and v(a) = 0 otherwise. Prove that v is a valuation on F. Determine O_v , P_v and F_v .
 - (b) Let $p \in \mathbb{N}$ be a fixed prime. For $r \in \mathbb{Q}^*$, write $r = p^n a/b$ with $a, b, n \in \mathbb{Z}$, $b \neq 0$ and $p \nmid ab$. Define $v_p(r) = n$. Prove that v_p is a discrete valuation on \mathbb{Q} with uniformizer p, discrete valuation ring

$$O_{v_p} = \{r \in \mathbb{Q} \mid r = a/b \text{ with } \gcd(a, b) = 1 \text{ and } p \nmid b\},\$$

corresponding place

$$P_{v_p} = \{r \in \mathbb{Q} \mid r = a/b \text{ with } \gcd(a, b) = 1, \ p \mid a, \ p \nmid b\} \ ,$$

and residue field $F_{v_p} = \mathbb{F}_p$.

(c) Let K be a field and $p(x) \in K[x]$ a fixed monic irreducible polynomial. For $r(x) \in K(x)$ non-zero, write $r(x) = p(x)^n a(x)/b(x)$ with $a(x), b(x) \in K[x]$, $b(x) \neq 0$ and $p(x) \nmid a(x)b(x)$. Define $v_{p(x)}(r(x)) = n$. Prove that $v_{p(x)}$ is a valuation on K(x) with uniformizer p(x), discrete valuation ring

$$O_{v_{p(x)}} = \{r(x) \in K(x) \mid r(x) = a(x)/b(x) \text{ with } gcd(a,b) = 1 \text{ and } p(x) \nmid b(x) \}$$

corresponding place

$$P_{v_{p(x)}} = \{ r(x) \in K(x) \mid (x) = a(x)/b(x) \text{ with } gcd(a,b) = 1, p(x) \mid f(x), \text{ and } p(x) \nmid g(x) \},\$$

and residue field $F_{v_{p(x)}} = K[x]/(p(x))$, where (p(x)) is the K[x]-ideal generated by p(x).

(d) Let K be a field. For $r(x) = a(x)/b(x) \in K(x)^*$ with $a(x), b(x) \in K[x]$ and $b(x) \neq 0$, define $v_{\infty}(r(x)) = \deg(b) - \deg(a)$ Prove that v_{∞} is a valuation on K(x) with uniformizer x^{-1} , discrete valuation ring

$$O_{v_{\infty}} = \{r(x) \in K(x) \mid r(x) = a(x)/b(x) \text{ with } \deg(a) \le \deg(b)\},\$$

corresponding place

$$P_{v_{\infty}} = \{r(x) \in K(x) \mid (x) = a(x)/b(x) \text{ with } \deg(a) < \deg(b)\},\$$

and residue field $F_{v_{\infty}} = K$.

3. (Properties of valuation rings)

Let v be a discrete normalized valuation on some field F. Prove the following properties:

- (a) O_v is an integral domain.
- (b) O_v is a discrete valuation ring, i.e. $O_v \subsetneq F$ and for $a \in F^*$, we have $a \in O_v$ or $a^{-1} \in O_v$.
- (c) O_v^* is the unit group of O_v , i.e. the set of invertible elements in O_v .
- (d) P_v is the unique maximal ideal of O_v .
- 4. ****** (Uniformizers of rational function fields)

Let K(x) be a rational function field, and let $v = v_{p(x)}$ with $p(x) \in K[x]$ monic and irreducible, or $v = v_{\infty}$. In the former case, set u = p(x); in the latter case, put $u = x^{-1}$. Prove the following properties:

- (a) Every non-zero $a \in K(x)$ has a unique representation $a = \epsilon u^n$ with $\epsilon \in O_v^*$ and $n = v(a) \in \mathbb{Z}$.
- (b) P_v is a principal ideal generated by u.
- (c) O_v is a principal ideal domain whose ideals are generated by the non-negative powers of u.
- 5. * (More properties of valuation rings of \mathbb{Q} and K(x))
 - (a) For any prime $p \in \mathbb{N}$, let v_p denote the corresponding *p*-adic valuation on \mathbb{Q} . Prove that $\bigcap_p O_{v_p} = \mathbb{Z}, \ \bigcap_p O_{v_p}^* = \{\pm 1\}, \text{ and } \bigcap_p P_{v_p} = \{0\}.$

(b) Let K(x) be a rational function field.

i. Prove that
$$\bigcap_{p(x)} O_{v_{p(x)}} = K[x]$$
 and $\bigcap_{p(x)} O_{v_{p(x)}} \cap O_{v_{\infty}} = K$.

ii. Conclude that
$$\sum_{P \in \mathbb{P}(K(x))} v_P(z) = 0$$
 for all non-zero $z \in K(x)$

6. (Correspondence of valuations and places)

Recall that a discrete valuation ring in a field F is a proper sub-ring O of K such that $a \in O$ or $a^{-1} \in O$ for all $a \in F^*$. Prove the Correspondence Theorem:

There is a one-to-one correspondence between the set of normalized discrete valuations on F and the set $\mathbb{P}(F)$ of places of F, as follows:

- If v is a normalized discrete valuation on F, then $P_v \in \mathbb{P}(F)$ is the unique maximal ideal in the discrete valuation ring O_v .
- If P is a place of F, i.e. the unique maximal ideal in some discrete valuation ring $O \subset K$, then P defines a discrete normalized valuation on F as follows: if u is any generator of P, then every element $a \in F^*$ has a unique representation $a = \epsilon u^n$ with $n \in \mathbb{Z}$ and ϵ a unit in O, and we define v(a) = n and $v(0) = \infty$. Note that u is a uniformizer for v.

Constant Fields

7. (Exact constant fields)

Let F/K be a function field with exact constant field \tilde{K} . Show that $K \subseteq \tilde{K} \subsetneqq F$, and every element in $F \setminus \tilde{K}$ is transcendental over K.

8. ** (Examples of geometric extensions)

Let K be a field.

- (a) Show that every rational function field K(x) is geometric.
- (b) Show that if K is algebraically closed, then then every function field F/K is geometric.
- (c) Show that a function field K(x, y) is geometric if and only if the minimal polynomial of y over K(x) is absolutely irreducible, i.e. irreducible over $\overline{K}(x)$ where \overline{K} is the algebraic closure of K.
- 9. * (An example of a non-geometric extension)

Suppose Let $F = \mathbb{R}(x, y)$ where $x^2 + y^4 = 0$. Prove that $\tilde{\mathbb{R}} = \mathbb{R}(i)$ where $i \notin \mathbb{R}$ is a square root of -1. So F/\mathbb{R} is not geometric.

10. * (All places contain the exact constant field)

Let F/K be a function field and P a place of F, i.e. P is the unique maximal ideal in a discrete valuation ring $O = O_P$ in F. Prove that $\tilde{K} \subsetneq O_P$.

Hint: Let $z \in \tilde{K}$. Then $z \in O_P$ or $z^{-1} \in O_P$. In the latter case, show that $z \in O_P[z^{-1}] \subset O_P$.

11. (Extensions and constant fields)

Let F/K and F'/K' be geometric function fields with $F \subseteq F'$ and $K \subseteq K'$. Prove that K'/K is algebraic, $F \cap K' = K$, and F'/K' is a finite geometric extension of the composite field FK'/K'.

Divisors and Class Groups

12. * (Rational function fields have class number one)

Let F = K(x) be a rational function field. In this problem, you will show that K(x) has class number 1 without resorting to the Hasse-Weil bounds and the fact that K(x) has genue 0.

- (a) Let $p(x) \in K[x]$ be monic and irreducible. Prove that the zero divisor of div(p(x)) is $P_{p(x)}$ (the place of K(x) with uniformizer p(x)) and the pole divisor of div(p(x)) is P_{∞} (the infinite place of K(x)). In other words, div $(p(x)) = P_{p(x)} \deg(p(x))P_{\infty}$.
- (b) Let $f(x) \in K[x] \setminus K$, and let $f(x) = ap_1(x)^{n_1}p_2(x)^{n_2}\cdots p_r(x)^{n_r}$ be the factorization of f(x) into distinct powers of monic irreducible polynomials $p_i(x) \in K[x]$ (with $a \in K^*$). Prove that

$$\operatorname{div}(f(x)) = \sum_{i=1}^{r} n_i P_{p_i(x)} - \left(\sum_{i=1}^{r} n_i \operatorname{deg}(p_i(x))\right) P_{\infty}$$

- (c) Prove that every divisor of K(x) is principal; in other words, K(x) has class number one.
- 13. ** (Effective divisors of degree 0 and 1)

Let F/K be a function field. A divisor $D \in \text{Div}(F)$ is effective if $v_P(D) \ge 0$ for all $P \in \mathbb{P}(F)$.

- (a) Characterize all effective degree zero divisors of F.
- (b) Characterize all effective degree one divisors of F.
- 14. * (Properties of principal divisors)

Let F/K be a function field.

- (a) Let $z \in F^*$. Show that $\operatorname{div}(z) = 0$ if and only if $z \in K^*$.
- (b) Conclude that $\bigcap_{P \in \mathbb{P}(F)} O_P = K.$
- (c) Prove that the map div : $F^* \to Prin(F)$ via $z \mapsto div(z)$ is a surjective homomorphism with kernel K^* .
- 15. ****** (Linear equivalence)

Show that linear equivalence is an equivalence relation on the set of divisors of a function field.

16. *** (Embedding degree one places into the class group)

Let F/K be a non-rational function field that has a rational place, denoted Q.

- (a) Prove that the map $\Phi_Q : \mathbb{P}_1(F) \to \operatorname{Cl}^0(F)$ via $P \mapsto [P Q]$ is injective. Here, [D] denotes the divisor class of D in $\operatorname{Cl}(F)$. *Hint:* Use that fact that $[F : K(x)] = \operatorname{deg}(\operatorname{div}(x)_0)$ for all $x \in F \setminus K$.
- (b) Explain how the injection Φ_Q can be used to impose a group structure on $\mathbb{P}_1(F)$. What is the group identity? (Note that this group structure is *not* canonical as it depends on the choice of Q.)

Decomposition of Places

Throughout, let K be a perfect field.

17. ** (Degree, norm and co-norm)

Let F/K be a geometric function field and let $x \in F \setminus K$, so F/K(x) is a finite algebraic extension of degree n = [F : K(x)]. Prove the following:

- (a) $\deg(P') = f(P'|P) \deg(P)$ for all $P \in \mathbb{P}(K(x) \text{ and } P' \in \mathbb{P}(F)$ with P'|P.
- (b) $\deg(coN(D)) = n \deg(D)$ for all $D \in \text{Div}(F)$.
- (c) N(coN(D)) = nD for all $D \in Div(F)$.
- 18. * (Finite places as prime ideals)

Let F/K be a geometric function field, and write F = K(x, y) where $x \in F \setminus K$ (so x is transcendental over K) and $y \in F$ is integral over K[x], i.e. the minimal polynomial of y has coefficients in K[x]. A place P' of F is *finite* if it lies above a finite place of K(x).

- (a) Prove that $v_{P'}(y) > 0$ for all finite places P' of F.
- (b) Conclude that $\bigcap_{P' \in \mathbb{P}(F) \text{ finite}} O_{P'}$ contains K[x, y].
- (c) (This one requires a bit of thought.) Give an example of a geometric function field F/K such that the containment in part (b) is strict, i.e. equality does not hold.
- (d) Let $P' \in \mathbb{P}(F)$ be finite and set $\mathfrak{p} = P' \cap K[x, y]$. Prove that \mathfrak{p} is a prime ideal of K[x, y].

Quadratic Extensions

Throughout, let K be a perfect field.

19. ** (Genus and different degree)

Let F/K have characteristic $\neq 2$, and let $x \in F$ with [F : K(x)] = 2. Write F = K(x, y) where $y^2 = f(x)$ with $f(x) \in K[x] \setminus K$ square-free.

- (a) Prove that $\deg(\text{Diff}(F)) = \deg(f(x)) + \delta$ where $\delta \in \{0, 1\}$ is the parit of $\deg(f(x))$, i.e. $\delta = 0$ if $\deg(f(x))$ is even and $\delta = 1$ if $\deg(f(x))$ is odd.
- (b) Conclude that F has genus $g = \lfloor (\deg(f) 1)/2 \rfloor$.
- (c) Conclude that $\deg(f) = 2g + 1$ or 2g + 2, so $\deg(\operatorname{Diff}(F) = 2g + 2$.

20. (An example of a non-rational genus 0 function field)

Let $F = \mathbb{R}(x, y)$ where x and y are transcendental over \mathbb{R} with $x^2 + y^2 = -1$.

- (a) Prove that F is a quadratic extension of $\mathbb{R}(x)$. Conclude that F has genus 0.
- (b) Prove that F/\mathbb{R} is geometric (i.e. has full constant field \mathbb{R}).
- (c) Prove that every place of $\mathbb{R}(x)$ is inert in F.
- (d) Conclude that no place of F is rational, and hence F/\mathbb{R} is not rational.

21. (An example of a non-elliptic genus 1 function field)

- Let $F = \mathbb{R}(x, y)$ where x and y are transcendental over \mathbb{R} with $x^4 + y^2 = -1$.
- (a) Prove that F is a quadratic extension of $\mathbb{R}(x)$. Conclude that F has genus 1.
- (b) Prove that F/\mathbb{R} is geometric (i.e. has full constant field \mathbb{R}).
- (c) Prove that every place of $\mathbb{R}(x)$ is inert in F.
- (d) Conclude that no place of F is rational, and hence F/\mathbb{R} is not elliptic.
- 22. ** (Bijection between rational points and finite rational places) Let K be a field of characteristic different from 2, and let F = K(x, y) where $x \in F$ is transcendental over K and $C: y^2 = f(x)$ with $f(x) \in K[x]$ square-free.
 - (a) Let (x₀, y₀) ∈ K×K be a point on C. Let P_{x-x₀} ∈ P₁(K(x)) be the place corresponding to x x₀, and P' a place of F lying above P_{x-x₀}.
 Suppose first that y₀ = 0.
 - i. Show that P_{x-x_0} ramifies as 2P' in F.
 - ii. Show that $v_{P'}(y) = 1$.
 - iii. Prove that $P' \in \mathbb{P}_1(F)$ is the unique place Q' of F with $v_{Q'}(x x_0) > 0$ and $v_{Q'}(y y_0) = v_{Q'}(y) > 0$.

Suppose now that $y_0 \neq 0$.

- i. Show that P_{x-x_0} splits in F.
- ii. Prove that there exists again a unique finite place $Q' \in \mathbb{P}_1(F)$ with $v_{Q'}(x-x_0) > 0$ and $v_{Q'}(y-y_0) > 0$, namely P' or the other place of F lying above P_{x-x_0} .
- (b) Conversely, let P' be any rational finite place of F.
 - i. Show that $P' \cap K(x)$ is a finite rational place of K(x), so $P' \cap K(x) = P_{x-x_0}$ for some $x_0 \in K$.
 - ii. If $f(x_0) = 0$, show that $(x_0, 0)$ is a point on C and $v_{P'}(y) = 1$.
 - iii. Suppose $f(x_0) \neq 0$. Prove that there is a unique $y_0 \in K^*$ such that $v_{P'}(y y_0) > 0$.
 - iv. Let y_0 be as in part iii. Prove that (x_0, y_0) is a point on C.
- (c) Prove that the above correspondence is a bijection between the points $(x_0, y_0) \in K \times K$ on C and the finite rational places of F.

23. *** (Semi-reduced divisors)

Let F/K be a function field, and let $x \in F$ be such that [F : K(x)] is algebraic. A divisor of F is *finite* if all the places in its support are finite (see Exercise ??). A divisor of F is *semi*reduced if is is finite, effective (see Exercise ??) and co-norm-free, i.e. it cannot be written as coN(D) + E' where $D \in Div(K(x))$ and $E' \in Div(F)$. Assume that [F : K(x)] = 2.

- (a) Let D' be a finite effective divisor of F. Prove that D' is semi-reduced if and only if for all finite places P' of F, the following hold:
 - If $P' \cap K(x)$ is inert in F, then $v_{P'}(D') = 0$.
 - If $P' \cap K(x)$ is ramified in F, then $v_{P'}(D') = 1$.
 - If $P' \cap K(x)$ splits in F, say as P' + Q', then $v_{P'}(D') = 0$ or $v_{Q'}(D') = 0$.
- (b) Recall from Problem ?? that every finite place $P_{p(x)}$ of K(x) is equivalent to $\deg(p)P_{\infty}$. Suppose the infinite place of K(x) ramifies in F, i.e. $coN(P_{\infty}) = 2\infty$. Let P' be a placer of F. Use the fact that the co-norm map preserves principality of divisors to prove the following:
 - If $P' \cap K(x)$ is inert in F, then $P' 2\infty$ is principal.
 - If $P' \cap K(x)$ is ramified in F, then $2P' 2\infty$ is principal.
 - If $P' \cap K(x)$ splits in F, say as P' + Q', then $P' + \infty$ is equivalent to $-(Q' + \infty)$.
- (c) Assume again that the infinite place of K(x) ramifies in F. Prove that every degree divisor $D' \in \text{Div}^0(F)$ is equivalent to a degree zero divisor of F of the form $D'_0 \deg(D'_0)\infty$ where D_0 is semi-reduced.

Models of Quadratic Extensions

Throughout, let K be a perfect field.

24. *** (Defining curves in characteristic $\neq 2$)

Let K have characteristic different from 2, F/K a function field, and $x \in F$ such that [F:K(x)] = 2.

- (a) Prove that there exists a square-free polynomial $f(x) \in K[x]$ such that F = K(x, y) with $y^2 = f(x)$.
- (b) Prove that F/K(x) is geometric if and only if the polynomial f(x) of part (a) is nonconstant.
- (c) If f(x) is constant, what is \tilde{K} ?
- 25. ** (From ramified to split models and vice versa)

Let F/K be a function field of characteristic $\neq 2$. and let $x \in F$ with [F : K(x)] = 2. Write F = K(x, y) where $y^2 = f(x)$ with $f(x) \in [x]$ square-free and non-constant.

- (a) Suppose first that $\deg(f) = 2g + 1$ is odd, so the infinite place of K(x) ramifies in F.
 - i. Show that there exist a *monic* square-free non-constant polynomial $h(x) \in K[x]$ of degree 2g + 1 such that F = K(x, z) with $z^2 = h(x)$.

- ii. Let $a \in K$ with $f(a) \neq 0$ and put $t = (x a)^{-1}$ and $w = z(x a)^{-(g+1)}$. Prove that F = (t, w) where $w^2 = m(t)$ with $m(t) \in K[t]$ square-free, non-constant and of degree 2g + 2, and the infinite place of F/K(w) splits in F.
- (b) Suppose first that $\deg(f) = 2g + 2$ is even, so the infinite place of K(x) is unramified in F. Suppose there exists $a \in K$ with f(a) = 0 (note that this is a much stronger assumption than that of part (a) (ii)).
 - i. Show that $f'(a) \neq 0$ where f'(x) is the formal derivative with respect to x.
 - ii. Put $t = (x a)^{-1}$ and $w = z(x a)^{-(g+1)}$. Prove that F = (t, w) where $w^2 = m(t)$ with $m(t) \in K[t]$ square-free, non-constant and of degree 2g + 1 (so the infinite place of F/K(w) is ramified in F).
- 26. * (Inert models become split over quadratic constant field extensions)

Let F/K be a function field of characteristic $\neq 2$, and let $x \in F$ with [F : K(x)] = 2. Write F = K(x, y) where $y^2 = f(x)$ with $f(x) \in [x]$ square-free and non-constant. Assume that the infinite place of K(x) is inert in F, so deg(f) is even and the leading coefficient sgn(f) of f(x) is a non-square in K^* .

Let $a \notin K$ be a square root of $\operatorname{sgn}(f)$ in some algebraic closure of K. Put L = K(a) and E = FL = F(a). Prove that [E : L(x) = 2], E = L(x, y), and the infinite place of L(x) splits in E.

Divisor Arithmetic in Quadratic Extensions

Throughout, let K be a perfect field.

27. *** (Mumford representation)

Let K be a field of characteristic $\neq 2$, and let F = K(x, y) where $x \in F$ is transcendental over K and $y^2 = f(x)$ with $f(x) \in K[x] \setminus K^2$ square-free.

- (a) Let $D = \sum_{i=1}^{r} n_i P_i$ be a semi-reduced divisor of F. For each P_i , let $P_{p_i(x)}$ denote the place of K(x) lying below P_i , and set $u(x) = p_1(x)^{n_1} p_2(x)^{n_2} \cdots p_r(x)^{n_r} \in K[x]$.
 - i. Let $i \in \{1, 2, ..., r\}$. Prove that there exists a unique polynomial $v_i(x) \in K[x]$ such that $v_{P_i}(v_i + y) > 0$.

Hint: f(x) is a square (possibly zero) modulo $p_i(x)$. Now pick a suitable square root.

ii. Prove that there exists a polynomial $v(x) \in K[x]$, unique modulo u(x), such that u(x) divides $f(x) - v(x)^2$ and $v_{P_i}(v_i(x) + y) > 0$ for $1 \le i \le r$.

The pair $(u(x), v(x) \pmod{u(x)})$ us called the *Mumford representation* of D.

- (b) Conversely, let u(x), v(x) ∈ F_q[x] with u(x) monic, non-zero, and dividing f(x) v(x)². Let u(x) = p₁(x)^{n₁}p₂(x)^{n₂} ··· p_r(x)^{n_r} be the factorization of u(x) into monic irreducible polynomials in F_q[x], and let P_{p_i(x)} be the place of K(x) corresponding to p_i(x).
 - i. Prove that no $p_i(x)$ is inert.
 - ii. Prove that for every *i*, there is a unique place $P_i \in \mathbb{P}(F)$ lying above $P_{p_i(x)}$ such that $v_{P_i}(v+y) > 0$.

- iii. Put $D = \sum_{i=1}^{r} n_i P_i$ where the P_i are the unique places determined in part (b) ii. Prove that D is a semi-reduced divisor of F with Mumford representation (u(x), v(x)).
- 28. *** (Semi-reduced divisors and K[x, y]-ideals)

Let K be a field of characteristic different from 2, and let F = K(x, y) where $x \in F$ is transcendental over K and $y^2 = f(x)$ with $f(x) \in K[x]$ square-free. Let $u(x), v(x) \in K[x]$ with u(x) monic, and consider the K[x]-module $M \subseteq K[x, y]$ of rank 2 generated by u(x) and v(x) + y.

- (a) Prove that M is an ideal in K[x, y] if and only if u(x) divides $v(x)^2 f(x)$. Hint: Convince yourself that M is an ideal if and only if $(v(x) + y)y \in M$.
- (b) Prove that the K[x, y]-ideals M of the form described above are in one-to-one correspondence with the semi-reduced divisors of F.¹
- 29. *** (Divisor addition)

Let K be a field of characteristic different from 2, and let F = K(x, y) where $x \in F$ is transcendental over K and $y^2 = f(x)$ with $f(x) \in K[x]$ square-free.

- (a) Let $D_1 = (u_1, v_1)$ and $D_2 = (u_2, v_2)$ be two semi-reduced divisors of F in Mumford representation. Prove that $D_1 + D_2$ is semi-reduced if and only if $gcd(u_1, u_2, v_1 + v_2) = 1$.
- (b) Under the assumption of part (a), prove that the Mumford representation of $D_1 + D_2$ is (u, v) where

$$u = u_1 u_2$$
 and $v \equiv \begin{cases} v_1 \pmod{u_1} \\ v_2 \pmod{u_2} \end{cases}$.

30. *** (Divisor reduction)

Let K be a field of characteristic different from 2, and let F = K(x, y) have where $x \in F$ is transcendental over K and $y^2 = f(x)$ with $f(x) \in K[x]$ square-free. Let g be the genus of F. Let D = (u, v) be a semi-reduced divisor in Mumford representation. Put

$$u' = \frac{f + hv - v^2}{u} , \qquad v \equiv h - v \pmod{u'} .$$

Prove the following:

- (a) D' = (u', v') is a semi-reduced divisor in Mumford representation.
- (b) D' is equivalent to D.
- (c) If $\deg(u) \ge g + 2$, then $\deg(u') \le \deg(u) 2$.
- (d) If $\deg(u) = g + 1$, then $\deg(D) \le g$.
- (e) Starting with D = (u, v), the above substitution $(u, v) \rightarrow (u', v')$ applied at most $\lceil (\deg(u) g)/2 \rceil$ times yields the unique reduced divisor equivalent to D.

¹In fact, this correspondence extends to a group isomorphism from the ideal class group of K[x, y] onto the degree zero class group of F. More generally, these two groups are isomorphic for any function field F/K for which there exists $x \in F$ transcendental over K such that F = K(x, y) and the infinite place of K(x) is totally ramified in F.

Miscellaneous

31. (2-torsion of the class group over an algebraically closed field)

This problem is tangential to the material in the lectures.

Let F be a function field over an an algebraically closed field K, and let $x \in F$ such that [F:K(x)] = 2. Write F = K(x, y) where $y^2 = f(x)$ with $f(x) \in \mathbb{F}_q[x]$ square-free and of odd degree, so f(x) splits into an odd number of distinct linear factors. Recall that the ramified places of K(x) are the infinite place P_{∞} and the places P_i , $1 \leq i \leq \deg(f)$, that correspond to the linear factors of f(x). Write $coN(P_{\infty}) = 2P'_{\infty}$, $coN(P_i) = 2P'_i$, and put $D'_i = P'_i - P'_{\infty}$ for $1 \leq i \leq \deg(f)$. For $D' \in \text{Div}^0(F)$, let [D'] denote the class of D' in $\text{Cl}^0(F)$.

- (a) Show that $[D'_i] \neq 0$ and $2[D'_i] = [0]$ for $1 \leq i \leq \deg(f)$.
- (b) Show that $[D'_1] + [D'_2] + \dots + [D'_{\deg(f)}] = [0].$
- (c) Let G be the subgroup of $\text{Div}^0(F)$ generated by $[D'_1], [D'_2], \ldots, [D'_{\deg(f)}]$. Prove that G is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{\deg(f)-1}$.
- (d) Let $\operatorname{Cl}^0(F)[2]$ denote the 2-torsion of $\operatorname{Cl}^0(F)$, i.e. the collection of divisor classes of order dividing 2. Prove that $\operatorname{Cl}^0(F)[2] = G$, so the number of 2-torsion elements of $\operatorname{Cl}^0(F)$ is $2^{\operatorname{deg}(f)-1}$.