An Introduction to (Global) Function Fields PIMS Summer School Inclusive Paths to Number Theory August 23-27, 2021, Calgary (Canada)
 Practice Problems

Renate Scheidler

August 27, 2021

Most of these problems are facts stated (but not proved) during the lectures. Problems with one or more asterisks $(*)$ reinforce the material covered in the lectures. The number of asterisks indicates the importance of a problem to the material in the lectures, with a larger number of asterisks indicating a higher degree of importance. Note that the level of difficulty of a problem has no bearing on its number of asterisks.

Valuations and Places

1. ** (Simple properties of valuations)

Prove the following properties of a valuation v on a field F :
(a) $v(1)=0, v(-1)=0, v(a)=v(-a)$ for all $a \in F, v\left(a^{-1}\right)=-v(a)$ for all $a \in F^{*}$.
(b) (Strict triangle inequality): if $v(a) \neq v(b)$, then $v(a+b)=\min \{v(a), v(b)\}$.
(c) Suppose that v is discrete. Prove that v is normalized if and only if it is surjective.
2. $* * *$ (Examples of valuations)
(a) Let F be any field. For any $a \in F$, define $v(a)=\infty$ when $a=0$ and $v(a)=0$ otherwise. Prove that v is a valuation on F. Determine O_{v}, P_{v} and F_{v}.
(b) Let $p \in \mathbb{N}$ be a fixed prime. For $r \in \mathbb{Q}^{*}$, write $r=p^{n} a / b$ with $a, b, n \in \mathbb{Z}, b \neq 0$ and $p \nmid a b$. Define $v_{p}(r)=n$. Prove that v_{p} is a discrete valuation on \mathbb{Q} with uniformizer p, discrete valuation ring

$$
O_{v_{p}}=\{r \in \mathbb{Q} \mid r=a / b \text { with } \operatorname{gcd}(a, b)=1 \text { and } p \nmid b\}
$$

corresponding place

$$
P_{v_{p}}=\{r \in \mathbb{Q} \mid r=a / b \text { with } \operatorname{gcd}(a, b)=1, p \mid a, p \nmid b\},
$$

and residue field $F_{v_{p}}=\mathbb{F}_{p}$.
(c) Let K be a field and $p(x) \in K[x]$ a fixed monic irreducible polynomial. For $r(x) \in$ $K(x)$ non-zero, write $r(x)=p(x)^{n} a(x) / b(x)$ with $a(x), b(x) \in K[x], b(x) \neq 0$ and $p(x) \nmid a(x) b(x)$. Define $v_{p(x)}(r(x))=n$. Prove that $v_{p(x)}$ is a valuation on $K(x)$ with uniformizer $p(x)$, discrete valuation ring

$$
O_{v_{p(x)}}=\{r(x) \in K(x) \mid r(x)=a(x) / b(x) \text { with } \operatorname{gcd}(a, b)=1 \text { and } p(x) \nmid b(x)\},
$$

corresponding place
$P_{v_{p(x)}}=\{r(x) \in K(x) \mid(x)=a(x) / b(x)$ with $\operatorname{gcd}(a, b)=1, p(x) \mid f(x)$, and $p(x) \nmid g(x)\}$, and residue field $F_{v_{p(x)}}=K[x] /(p(x))$, where $(p(x))$ is the $K[x]$-ideal generated by $p(x)$.
(d) Let K be a field. For $r(x)=a(x) / b(x) \in K(x)^{*}$ with $a(x), b(x) \in K[x]$ and $b(x) \neq 0$, define $v_{\infty}(r(x))=\operatorname{deg}(b)-\operatorname{deg}(a)$ Prove that v_{∞} is a valuation on $K(x)$ with uniformizer x^{-1}, discrete valuation ring

$$
O_{v_{\infty}}=\{r(x) \in K(x) \mid r(x)=a(x) / b(x) \text { with } \operatorname{deg}(a) \leq \operatorname{deg}(b)\},
$$

corresponding place

$$
P_{v_{\infty}}=\{r(x) \in K(x) \mid(x)=a(x) / b(x) \text { with } \operatorname{deg}(a)<\operatorname{deg}(b)\},
$$

and residue field $F_{v_{\infty}}=K$.
3. (Properties of valuation rings)

Let v be a discrete normalized valuation on some field F. Prove the following properties:
(a) O_{v} is an integral domain.
(b) O_{v} is a discrete valuation ring, i.e. $O_{v} \varsubsetneqq F$ and for $a \in F^{*}$, we have $a \in O_{v}$ or $a^{-1} \in O_{v}$.
(c) O_{v}^{*} is the unit group of O_{v}, i.e. the set of invertible elements in O_{v}.
(d) P_{v} is the unique maximal ideal of O_{v}.
4. $* *$ (Uniformizers of rational function fields)

Let $K(x)$ be a rational function field, and let $v=v_{p(x)}$ with $p(x) \in K[x]$ monic and irreducible, or $v=v_{\infty}$. In the former case, set $u=p(x)$; in the latter case, put $u=x^{-1}$. Prove the following properties:
(a) Every non-zero $a \in K(x)$ has a unique representation $a=\epsilon u^{n}$ with $\epsilon \in O_{v}^{*}$ and $n=$ $v(a) \in \mathbb{Z}$.
(b) P_{v} is a principal ideal generated by u.
(c) O_{v} is a principal ideal domain whose ideals are generated by the non-negative powers of u.
5. * (More properties of valuation rings of \mathbb{Q} and $K(x)$)
(a) For any prime $p \in \mathbb{N}$, let v_{p} denote the corresponding p-adic valuation on \mathbb{Q}. Prove that $\bigcap_{p} O_{v_{p}}=\mathbb{Z}, \bigcap_{p} O_{v_{p}}^{*}=\{ \pm 1\}$, and $\bigcap_{p} P_{v_{p}}=\{0\}$.
(b) Let $K(x)$ be a rational function field.
i. Prove that $\bigcap_{p(x)} O_{v_{p(x)}}=K[x]$ and $\bigcap_{p(x)} O_{v_{p(x)}} \cap O_{v_{\infty}}=K$.
ii. Conclude that $\sum_{P \in \mathbb{P}(K(x))} v_{P}(z)=0$ for all non-zero $z \in K(x)$.
6. (Correspondence of valuations and places)

Recall that a discrete valuation ring in a field F is a proper sub-ring O of K such that $a \in O$ or $a^{-1} \in O$ for all $a \in F^{*}$. Prove the Correspondence Theorem:

There is a one-to-one correspondence between the set of normalized discrete valuations on F and the set $\mathbb{P}(F)$ of places of F, as follows:

- If v is a normalized discrete valuation on F, then $P_{v} \in \mathbb{P}(F)$ is the unique maximal ideal in the discrete valuation ring O_{v}.
- If P is a place of F, i.e. the unique maximal ideal in some discrete valuation ring $O \subset K$, then P defines a discrete normalized valuation on F as follows: if u is any generator of P, then every element $a \in F^{*}$ has a unique representation $a=\epsilon u^{n}$ with $n \in \mathbb{Z}$ and ϵ a unit in O, and we define $v(a)=n$ and $v(0)=\infty$. Note that u is a uniformizer for v.

Constant Fields

7. (Exact constant fields)

Let F / K be a function field with exact constant field \tilde{K}. Show that $K \subseteq \tilde{K} \varsubsetneqq F$, and every element in $F \backslash \tilde{K}$ is transcendental over K.
8. $* *$ (Examples of geometric extensions)

Let K be a field.
(a) Show that every rational function field $K(x)$ is geometric.
(b) Show that if K is algebraically closed, then then every function field F / K is geometric.
(c) Show that a function field $K(x, y)$ is geometric if and only if the minimal polynomial of y over $K(x)$ is absolutely irreducible, i.e. irreducible over $\bar{K}(x)$ where \bar{K} is the algebraic closure of K.
9. * (An example of a non-geometric extension)

Suppose Let $F=\mathbb{R}(x, y)$ where $x^{2}+y^{4}=0$. Prove that $\tilde{\mathbb{R}}=\mathbb{R}(i)$ where $i \notin \mathbb{R}$ is a square root of -1 . So F / \mathbb{R} is not geometric.
10. * (All places contain the exact constant field)

Let F / K be a function field and P a place of F, i.e. P is the unique maximal ideal in a discrete valuation ring $O=O_{P}$ in F. Prove that $\tilde{K} \subsetneq O_{P}$.
Hint: Let $z \in \tilde{K}$. Then $z \in O_{P}$ or $z^{-1} \in O_{P}$. In the latter case, show that $z \in O_{P}\left[z^{-1}\right] \subset O_{P}$.
11. (Extensions and constant fields)

Let F / K and F^{\prime} / K^{\prime} be geometric function fields with $F \subseteq F^{\prime}$ and $K \subseteq K^{\prime}$. Prove that K^{\prime} / K is algebraic, $F \cap K^{\prime}=K$, and F^{\prime} / K^{\prime} is a finite geometric extension of the composite field $F K^{\prime} / K^{\prime}$.

Divisors and Class Groups

12. * (Rational function fields have class number one)

Let $F=K(x)$ be a rational function field. In this problem, you will show that $K(x)$ has class number 1 without resorting to the Hasse-Weil bounds and the fact that $K(x)$ has genus 0 .
(a) Let $p(x) \in K[x]$ be monic and irreducible. Prove that the zero divisor of $\operatorname{div}(p(x))$ is $P_{p(x)}$ (the place of $K(x)$ with uniformizer $\left.p(x)\right)$ and the pole divisor of $\operatorname{div}(p(x))$ is P_{∞} (the infinite place of $K(x))$. In other words, $\operatorname{div}(p(x))=P_{p(x)}-\operatorname{deg}(p(x)) P_{\infty}$.
(b) Let $f(x) \in K[x] \backslash K$, and let $f(x)=a p_{1}(x)^{n_{1}} p_{2}(x)^{n_{2}} \cdots p_{r}(x)^{n_{r}}$ be the factorization of $f(x)$ into distinct powers of monic irreducible polynomials $p_{i}(x) \in K[x]$ (with $a \in K^{*}$). Prove that

$$
\operatorname{div}(f(x))=\sum_{i=1}^{r} n_{i} P_{p_{i}(x)}-\left(\sum_{i=1}^{r} n_{i} \operatorname{deg}\left(p_{i}(x)\right)\right) P_{\infty}
$$

(c) Prove that every divisor of $K(x)$ is principal; in other words, $K(x)$ has class number one.
13. ** (Effective divisors of degree 0 and 1)

Let F / K be a function field. A divisor $D \in \operatorname{Div}(F)$ is effective if $v_{P}(D) \geq 0$ for all $P \in \mathbb{P}(F)$.
(a) Characterize all effective degree zero divisors of F.
(b) Characterize all effective degree one divisors of F.
14. * (Properties of principal divisors)

Let F / K be a function field.
(a) Let $z \in F^{*}$. Show that $\operatorname{div}(z)=0$ if and only if $z \in K^{*}$.
(b) Conclude that $\bigcap_{P \in \mathbb{P}(F)} O_{P}=K$.
(c) Prove that the map div : $F^{*} \rightarrow \operatorname{Prin}(F)$ via $z \mapsto \operatorname{div}(z)$ is a surjective homomorphism with kernel K^{*}.
15. $* *$ (Linear equivalence)

Show that linear equivalence is an equivalence relation on the set of divisors of a function field.
16. $* * *$ (Embedding degree one places into the class group)

Let F / K be a non-rational function field that has a rational place, denoted Q.
(a) Prove that the map $\Phi_{Q}: \mathbb{P}_{1}(F) \rightarrow \mathrm{Cl}^{0}(F)$ via $P \mapsto[P-Q]$ is injective. Here, $[D]$ denotes the divisor class of D in $\mathrm{Cl}(F)$.
Hint: Use that fact that $[F: K(x)]=\operatorname{deg}\left(\operatorname{div}(x)_{0}\right)$ for all $x \in F \backslash K$.
(b) Explain how the injection Φ_{Q} can be used to impose a group structure on $\mathbb{P}_{1}(F)$. What is the group identity? (Note that this group structure is not canonical as it depends on the choice of Q.)

Decomposition of Places

Throughout, let K be a perfect field.
17. $* *$ (Degree, norm and co-norm)

Let F / K be a geometric function field and let $x \in F \backslash K$, so $F / K(x)$ is a finite algebraic extension of degree $n=[F: K(x)]$. Prove the following:
(a) $\operatorname{deg}\left(P^{\prime}\right)=f\left(P^{\prime} \mid P\right) \operatorname{deg}(P)$ for all $P \in \mathbb{P}\left(K(x)\right.$ and $P^{\prime} \in \mathbb{P}(F)$ with $P^{\prime} \mid P$.
(b) $\operatorname{deg}(\operatorname{coN}(D))=n \operatorname{deg}(D)$ for all $D \in \operatorname{Div}(F)$.
(c) $N(\operatorname{coN}(D))=n D$ for all $D \in \operatorname{Div}(F)$.
18. $*$ (Finite places as prime ideals)

Let F / K be a geometric function field, and write $F=K(x, y)$ where $x \in F \backslash K$ (so x is transcendental over K) and $y \in F$ is integral over $K[x]$, i.e. the minimal polynomial of y has coefficients in $K[x]$. A place P^{\prime} of F is finite if it lies above a finite place of $K(x)$.
(a) Prove that $v_{P^{\prime}}(y)>0$ for all finite places P^{\prime} of F.
(b) Conclude that $\bigcap_{P^{\prime} \in \mathbb{P}(F) \text { finite }} O_{P^{\prime}}$ contains $K[x, y]$.
(c) (This one requires a bit of thought.) Give an example of a geometric function field F / K such that the containment in part (b) is strict, i.e. equality does not hold.
(d) Let $P^{\prime} \in \mathbb{P}(F)$ be finite and set $\mathfrak{p}=P^{\prime} \cap K[x, y]$. Prove that \mathfrak{p} is a prime ideal of $K[x, y]$.

Quadratic Extensions

Throughout, let K be a perfect field.
19. ** (Genus and different degree)

Let F / K have characteristic $\neq 2$, and let $x \in F$ with $[F: K(x)]=2$. Write $F=K(x, y)$ where $y^{2}=f(x)$ with $f(x) \in K[x] \backslash K$ square-free.
(a) Prove that $\operatorname{deg}(\operatorname{Diff}(F))=\operatorname{deg}(f(x))+\delta$ where $\delta \in\{0,1\}$ is the parit of $\operatorname{deg}(f(x))$, i.e. $\delta=0$ if $\operatorname{deg}(f(x))$ is even and $\delta=1$ if $\operatorname{deg}(f(x))$ is odd.
(b) Conclude that F has genus $g=\lfloor(\operatorname{deg}(f)-1) / 2\rfloor$.
(c) Conclude that $\operatorname{deg}(f)=2 g+1$ or $2 g+2$, so $\operatorname{deg}(\operatorname{Diff}(F)=2 g+2$.
20. (An example of a non-rational genus 0 function field)

Let $F=\mathbb{R}(x, y)$ where x and y are transcendental over \mathbb{R} with $x^{2}+y^{2}=-1$.
(a) Prove that F is a quadratic extension of $\mathbb{R}(x)$. Conclude that F has genus 0 .
(b) Prove that F / \mathbb{R} is geometric (i.e. has full constant field \mathbb{R}).
(c) Prove that every place of $\mathbb{R}(x)$ is inert in F.
(d) Conclude that no place of F is rational, and hence F / \mathbb{R} is not rational.
21. (An example of a non-elliptic genus 1 function field)

Let $F=\mathbb{R}(x, y)$ where x and y are transcendental over \mathbb{R} with $x^{4}+y^{2}=-1$.
(a) Prove that F is a quadratic extension of $\mathbb{R}(x)$. Conclude that F has genus 1 .
(b) Prove that F / \mathbb{R} is geometric (i.e. has full constant field \mathbb{R}).
(c) Prove that every place of $\mathbb{R}(x)$ is inert in F.
(d) Conclude that no place of F is rational, and hence F / \mathbb{R} is not elliptic.
22. $* *$ (Bijection between rational points and finite rational places)

Let K be a field of characteristic different from 2 , and let $F=K(x, y)$ where $x \in F$ is transcendental over K and $C: y^{2}=f(x)$ with $f(x) \in K[x]$ square-free.
(a) Let $\left(x_{0}, y_{0}\right) \in K \times K$ be a point on C. Let $P_{x-x_{0}} \in \mathbb{P}_{1}(K(x))$ be the place corresponding to $x-x_{0}$, and P^{\prime} a place of F lying above $P_{x-x_{0}}$.
Suppose first that $y_{0}=0$.
i. Show that $P_{x-x_{0}}$ ramifies as $2 P^{\prime}$ in F.
ii. Show that $v_{P^{\prime}}(y)=1$.
iii. Prove that $P^{\prime} \in \mathbb{P}_{1}(F)$ is the unique place Q^{\prime} of F with $v_{Q^{\prime}}\left(x-x_{0}\right)>0$ and $v_{Q^{\prime}}\left(y-y_{0}\right)=v_{Q^{\prime}}(y)>0$.
Suppose now that $y_{0} \neq 0$.
i. Show that $P_{x-x_{0}}$ splits in F.
ii. Prove that there exists again a unique finite place $Q^{\prime} \in \mathbb{P}_{1}(F)$ with $v_{Q^{\prime}}\left(x-x_{0}\right)>0$ and $v_{Q^{\prime}}\left(y-y_{0}\right)>0$, namely P^{\prime} or the other place of F lying above $P_{x-x_{0}}$.
(b) Conversely, let P^{\prime} be any rational finite place of F.
i. Show that $P^{\prime} \cap K(x)$ is a finite rational place of $K(x)$, so $P^{\prime} \cap K(x)=P_{x-x_{0}}$ for some $x_{0} \in K$.
ii. If $f\left(x_{0}\right)=0$, show that $\left(x_{0}, 0\right)$ is a point on C and $v_{P^{\prime}}(y)=1$.
iii. Suppose $f\left(x_{0}\right) \neq 0$. Prove that there is a unique $y_{0} \in K^{*}$ such that $v_{P^{\prime}}\left(y-y_{0}\right)>0$.
iv. Let y_{0} be as in part iii. Prove that $\left(x_{0}, y_{0}\right)$ is a point on C.
(c) Prove that the above correspondence is a bijection between the points $\left(x_{0}, y_{0}\right) \in K \times K$ on C and the finite rational places of F.
23. $* * *$ (Semi-reduced divisors)

Let F / K be a function field, and let $x \in F$ be such that $[F: K(x)]$ is algebraic. A divisor of F is finite if all the places in its support are finite (see Exercise ??). A divisor of F is semireduced if is is finite, effective (see Exercise ??) and co-norm-free, i.e. it cannot be written as $\operatorname{coN}(D)+E^{\prime}$ where $D \in \operatorname{Div}(K(x))$ and $E^{\prime} \in \operatorname{Div}(F)$. Assume that $[F: K(x)]=2$.
(a) Let D^{\prime} be a finite effective divisor of F. Prove that D^{\prime} is semi-reduced if and only if for all finite places P^{\prime} of F, the following hold:

- If $P^{\prime} \cap K(x)$ is inert in F, then $v_{P^{\prime}}\left(D^{\prime}\right)=0$.
- If $P^{\prime} \cap K(x)$ is ramified in F, then $v_{P^{\prime}}\left(D^{\prime}\right)=1$.
- If $P^{\prime} \cap K(x)$ splits in F, say as $P^{\prime}+Q^{\prime}$, then $v_{P^{\prime}}\left(D^{\prime}\right)=0$ or $v_{Q^{\prime}}\left(D^{\prime}\right)=0$.
(b) Recall from Problem ?? that every finite place $P_{p(x)}$ of $K(x)$ is equivalent to $\operatorname{deg}(p) P_{\infty}$. Suppose the infinite place of $K(x)$ ramifies in F, i.e. $\operatorname{coN}\left(P_{\infty}\right)=2 \infty$. Let P^{\prime} be a placer of F. Use the fact that the co-norm map preserves principality of divisors to prove the following:
- If $P^{\prime} \cap K(x)$ is inert in F, then $P^{\prime}-2 \infty$ is principal.
- If $P^{\prime} \cap K(x)$ is ramified in F, then $2 P^{\prime}-2 \infty$ is principal.
- If $P^{\prime} \cap K(x)$ splits in F, say as $P^{\prime}+Q^{\prime}$, then $P^{\prime}+\infty$ is equivalent to $-\left(Q^{\prime}+\infty\right)$.
(c) Assume again that the infinite place of $K(x)$ ramifies in F. Prove that every degree divisor $D^{\prime} \in \operatorname{Div}^{0}(F)$ is equivalent to a degree zero divisor of F of the form $D_{0}^{\prime}-$ $\operatorname{deg}\left(D_{0}^{\prime}\right) \infty$ where D_{0} is semi-reduced.

Models of Quadratic Extensions

Throughout, let K be a perfect field.
24. $* * *$ (Defining curves in characteristic $\neq 2$)

Let K have characteristic different from $2, F / K$ a function field, and $x \in F$ such that $[F: K(x)]=2$.
(a) Prove that there exists a square-free polynomial $f(x) \in K[x]$ such that $F=K(x, y)$ with $y^{2}=f(x)$.
(b) Prove that $F / K(x)$ is geometric if and only if the polynomial $f(x)$ of part (a) is nonconstant.
(c) If $f(x)$ is constant, what is \tilde{K} ?
25. $* *$ (From ramified to split models and vice versa)

Let F / K be a function field of characteristic $\neq 2$. and let $x \in F$ with $[F: K(x)]=2$. Write $F=K(x, y)$ where $y^{2}=f(x)$ with $f(x) \in[x]$ square-free and non-constant.
(a) Suppose first that $\operatorname{deg}(f)=2 g+1$ is odd, so the infinite place of $K(x)$ ramifies in F.
i. Show that there exist a monic square-free non-constant polynomial $h(x) \in K[x]$ of degree $2 g+1$ such that $F=K(x, z)$ with $z^{2}=h(x)$.
ii. Let $a \in K$ with $f(a) \neq 0$ and put $t=(x-a)^{-1}$ and $w=z(x-a)^{-(g+1)}$. Prove that $F=(t, w)$ where $w^{2}=m(t)$ with $m(t) \in K[t]$ square-free, non-constant and of degree $2 g+2$, and the infinite place of $F / K(w)$ splits in F.
(b) Suppose first that $\operatorname{deg}(f)=2 g+2$ is even, so the infinite place of $K(x)$ is unramified in F. Suppose there exists $a \in K$ with $f(a)=0$ (note that this is a much stronger assumption than that of part (a) (ii)).
i. Show that $f^{\prime}(a) \neq 0$ where $f^{\prime}(x)$ is the formal derivative with respect to x.
ii. Put $t=(x-a)^{-1}$ and $w=z(x-a)^{-(g+1)}$. Prove that $F=(t, w)$ where $w^{2}=m(t)$ with $m(t) \in K[t]$ square-free, non-constant and of degree $2 g+1$ (so the infinite place of $F / K(w)$ is ramified in F).
26. * (Inert models become split over quadratic constant field extensions)

Let F / K be a function field of characteristic $\neq 2$, and let $x \in F$ with $[F: K(x)]=2$. Write $F=K(x, y)$ where $y^{2}=f(x)$ with $f(x) \in[x]$ square-free and non-constant. Assume that the infinite place of $K(x)$ is inert in F, so $\operatorname{deg}(f)$ is even and the leading coefficient $\operatorname{sgn}(f)$ of $f(x)$ is a non-square in K^{*}.

Let $a \notin K$ be a square root of $\operatorname{sgn}(f)$ in some algebraic closure of K. Put $L=K(a)$ and $E=F L=F(a)$. Prove that $[E: L(x)=2], E=L(x, y)$, and the infinite place of $L(x)$ splits in E.

Divisor Arithmetic in Quadratic Extensions

Throughout, let K be a perfect field.
27. $* * *$ (Mumford representation)

Let K be a field of characteristic $\neq 2$, and let $F=K(x, y)$ where $x \in F$ is transcendental over K and $y^{2}=f(x)$ with $f(x) \in K[x] \backslash K^{2}$ square-free.
(a) Let $D=\sum_{i=1}^{r} n_{i} P_{i}$ be a semi-reduced divisor of F. For each P_{i}, let $P_{p_{i}(x)}$ denote the place of $K(x)$ lying below P_{i}, and set $u(x)=p_{1}(x)^{n_{1}} p_{2}(x)^{n_{2}} \cdots p_{r}(x)^{n_{r}} \in K[x]$.
i. Let $i \in\{1,2, \ldots, r\}$. Prove that there exists a unique polynomial $v_{i}(x) \in K[x]$ such that $v_{P_{i}}\left(v_{i}+y\right)>0$.
Hint: $f(x)$ is a square (possibly zero) modulo $p_{i}(x)$. Now pick a suitable square root.
ii. Prove that there exists a polynomial $v(x) \in K[x]$, unique modulo $u(x)$, such that $u(x)$ divides $f(x)-v(x)^{2}$ and $v_{P_{i}}\left(v_{i}(x)+y\right)>0$ for $1 \leq i \leq r$.
The pair $(u(x), v(x)(\bmod u(x)))$ us called the Mumford representation of D.
(b) Conversely, let $u(x), v(x) \in \mathbb{F}_{q}[x]$ with $u(x)$ monic, non-zero, and dividing $f(x)-v(x)^{2}$. Let $u(x)=p_{1}(x)^{n_{1}} p_{2}(x)^{n_{2}} \cdots p_{r}(x)^{n_{r}}$ be the factorization of $u(x)$ into monic irreducible polynomials in $\mathbb{F}_{q}[x]$, and let $P_{p_{i}(x)}$ be the place of $K(x)$ corresponding to $p_{i}(x)$.
i. Prove that no $p_{i}(x)$ is inert.
ii. Prove that for every i, there is a unique place $P_{i} \in \mathbb{P}(F)$ lying above $P_{p_{i}(x)}$ such that $v_{P_{i}}(v+y)>0$.
iii. Put $D=\sum_{i=1}^{r} n_{i} P_{i}$ where the P_{i} are the unique places determined in part (b) ii. Prove that D is a semi-reduced divisor of F with Mumford representation $(u(x), v(x))$.
28. $* * *$ (Semi-reduced divisors and $K[x, y]$-ideals)

Let K be a field of characteristic different from 2, and let $F=K(x, y)$ where $x \in F$ is transcendental over K and $y^{2}=f(x)$ with $f(x) \in K[x]$ square-free. Let $u(x), v(x) \in K[x]$ with $u(x)$ monic, and consider the $K[x]$-module $M \subseteq K[x, y]$ of rank 2 generated by $u(x)$ and $v(x)+y$.
(a) Prove that M is an ideal in $K[x, y]$ if and only if $u(x)$ divides $v(x)^{2}-f(x)$.

Hint: Convince yourself that M is an ideal if and only if $(v(x)+y) y \in M$.
(b) Prove that the $K[x, y]$-ideals M of the form described above are in one-to-one correspondence with the semi-reduced divisors of $F .{ }^{1}$
29. $* * *$ (Divisor addition)

Let K be a field of characteristic different from 2, and let $F=K(x, y)$ where $x \in F$ is transcendental over K and $y^{2}=f(x)$ with $f(x) \in K[x]$ square-free.
(a) Let $D_{1}=\left(u_{1}, v_{1}\right)$ and $D_{2}=\left(u_{2}, v_{2}\right)$ be two semi-reduced divisors of F in Mumford representation. Prove that $D_{1}+D_{2}$ is semi-reduced if and only if $\operatorname{gcd}\left(u_{1}, u_{2}, v_{1}+v_{2}\right)=1$.
(b) Under the assumption of part (a), prove that the Mumford representation of $D_{1}+D_{2}$ is (u, v) where

$$
u=u_{1} u_{2} \quad \text { and } \quad v \equiv \begin{cases}v_{1} & \left(\bmod u_{1}\right) \\ v_{2} & \left(\bmod u_{2}\right) .\end{cases}
$$

30. $* * *$ (Divisor reduction)

Let K be a field of characteristic different from 2, and let $F=K(x, y)$ have where $x \in F$ is transcendental over K and $y^{2}=f(x)$ with $f(x) \in K[x]$ square-free. Let g be the genus of F.
Let $D=(u, v)$ be a semi-reduced divisor in Mumford representation. Put

$$
u^{\prime}=\frac{f+h v-v^{2}}{u}, \quad v \equiv h-v \quad\left(\bmod u^{\prime}\right)
$$

Prove the following:
(a) $D^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ is a semi-reduced divisor in Mumford representation.
(b) D^{\prime} is equivalent to D.
(c) If $\operatorname{deg}(u) \geq g+2$, then $\operatorname{deg}\left(u^{\prime}\right) \leq \operatorname{deg}(u)-2$.
(d) If $\operatorname{deg}(u)=g+1$, then $\operatorname{deg}(D) \leq g$.
(e) Starting with $D=(u, v)$, the above substitution $(u, v) \rightarrow\left(u^{\prime}, v^{\prime}\right)$ applied at most $\lceil(\operatorname{deg}(u)-g) / 2\rceil$ times yields the unique reduced divisor equivalent to D.

[^0]
Miscellaneous

31. (2-torsion of the class group over an algebraically closed field)

This problem is tangential to the material in the lectures.
Let F be a function field over an an algebraically closed field K, and let $x \in F$ such that $[F: K(x)]=2$. Write $F=K(x, y)$ where $y^{2}=f(x)$ with $f(x) \in \mathbb{F}_{q}[x]$ square-free and of odd degree, so $f(x)$ splits into an odd number of distinct linear factors. Recall that the ramified places of $K(x)$ are the infinite place P_{∞} and the places $P_{i}, 1 \leq i \leq \operatorname{deg}(f)$, that correspond to the linear factors of $f(x)$. Write $\operatorname{coN}\left(P_{\infty}\right)=2 P_{\infty}^{\prime}, \operatorname{coN}\left(P_{i}\right)=2 P_{i}^{\prime}$, and put $D_{i}^{\prime}=P_{i}^{\prime}-P_{\infty}^{\prime}$ for $1 \leq i \leq \operatorname{deg}(f)$. For $D^{\prime} \in \operatorname{Div}^{0}(F)$, let $\left[D^{\prime}\right]$ denote the class of D^{\prime} in $\mathrm{Cl}^{0}(F)$.
(a) Show that $\left[D_{i}^{\prime}\right] \neq 0$ and $2\left[D_{i}^{\prime}\right]=[0]$ for $1 \leq i \leq \operatorname{deg}(f)$.
(b) Show that $\left[D_{1}^{\prime}\right]+\left[D_{2}^{\prime}\right]+\cdots+\left[D_{\operatorname{deg}(f)}^{\prime}\right]=[0]$.
(c) Let G be the subgroup of $\operatorname{Div}^{0}(F)$ generated by $\left[D_{1}^{\prime}\right],\left[D_{2}^{\prime}\right], \ldots,\left[D_{\operatorname{deg}(f)}^{\prime}\right]$. Prove that G is isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{\operatorname{deg}(f)-1}$.
(d) Let $\mathrm{Cl}^{0}(F)[2]$ denote the 2-torsion of $\mathrm{Cl}^{0}(F)$, i.e. the collection of divisor classes of order dividing 2. Prove that $\mathrm{Cl}^{0}(F)[2]=G$, so the number of 2-torsion elements of $\mathrm{Cl}^{0}(F)$ is $2^{\operatorname{deg}(f)-1}$.

[^0]: ${ }^{1}$ In fact, this correspondence extends to a group isomorphism from the ideal class group of $K[x, y]$ onto the degree zero class group of F. More generally, these two groups are isomorphic for any function field F / K for which there exists $x \in F$ transcendental over K such that $F=K(x, y)$ and the infinite place of $K(x)$ is totally ramified in F.

