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Abstract

This paper presents an elementary introduction to some of the theory of hyperellip-

tic curves over �nite �elds of arbitrary characteristic that has cryptographic relevance.

Cantor's algorithm for adding in the jacobian of a hyperelliptic curve and a proof of

correctness of the algorithm are presented.
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1 Introduction

Hyperelliptic curves are a special class of algebraic curves and can be viewed as generaliza-

tions of elliptic curves. There are hyperelliptic curves of every genus g � 1. A hyperelliptic

curve of genus g = 1 is an elliptic curve. Elliptic curves have been extensively studied for over

a hundred years, and there is a vast literature on the topic; for example, see the books by Sil-

verman [34, 35]. Originally pursued mainly for purely aesthetic reasons, elliptic curves have

recently become an essential tool in several important areas of applications including coding

theory (e.g., Driencourt and Michon [11] and van der Geer [15]); pseudorandom number

generation (e.g., Kaliski [18]); number theory algorithms (e.g., Goldwasser and Kilian [16]

and Lenstra [21]); and public-key cryptography (see Koblitz [19], Miller [27], and Menezes

[25]).

On the other hand, the theory of hyperelliptic curves has not received as much attention

by the research community. Most results concerning hyperelliptic curves which appear in

the literature on algebraic geometry are couched in very general terms. For example, a

common source cited in papers on hyperelliptic curves is Mumford's book [28]. However, the

non-specialist will have extreme di�culty specializing (not to mention �nding) the results in

this book to the particular case of hyperelliptic curves. Another di�culty one encounters is

that the theory in such books is usually restricted to the case of hyperelliptic curves over the

complex numbers (as in Mumford's book), or over algebraically closed �elds of characteristic

not equal to 2. The recent book of Cassels and Flynn [6] is an extensive account on curves

of genus 2. (Compared to their book, our approach is de�nitely \low-brow".) Recently,

applications of hyperelliptic curves have been found to areas outside algebraic geometry.

Hyperelliptic curves were a key ingredient in Adleman and Huang's random polynomial-

time algorithm for primality proving [3]. Hyperelliptic curves have also been considered

in the design of error-correcting codes [4], in integer factorization algorithms [22], and in

public-key cryptography [20]. Hyperelliptic curves over �nite �elds of characteristic two are

especially interesting for the purpose of implementing these codes and cryptosystems.

Charlap and Robbins [7, 8] presented an elementary introduction to elliptic curves. The

purpose was to provide elementary self-contained proofs of some of the basic theory relevant

to Schoof's algorithm [33] for counting the points on an elliptic curve over a �nite �eld.

The discussion was restricted to �elds of characteristic not equal to 2 or 3. However, for

practical applications, elliptic and hyperelliptic curves over characteristic two �elds are es-

pecially attractive. This paper, similar in spirit to that of Charlap and Robbins, presents

an elementary introduction to some of the theory of hyperelliptic curves over �nite �elds of

arbitrary characteristic that has cryptographic relevance. For a general introduction to the

theory of algebraic curves, consult Fulton's book [14].
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2 Basic de�nitions and properties

De�nition 1 (hyperelliptic curve) Let K be a �eld and let K be the algebraic closure of K.

A hyperelliptic curve C of genus g over K (g � 1) is an equation of the form

C : v

2

+ h(u)v = f(u) in K[u; v]; (1)

where h(u) 2 K[u] is a polynomial of degree at most g, f(u) 2 K[u] is a monic polynomial

of degree 2g + 1, and there are no solutions (u; v) 2 K � K which simultaneously satisfy

the equation v

2

+ h(u)v = f(u) and the partial derivative equations 2v + h(u) = 0 and

h

0

(u)v � f

0

(u) = 0.

A singular point on C is a solution (u; v) 2 K � K which simultaneously satis�es the

equation v

2

+ h(u)v = f(u) and the partial derivative equations 2v + h(u) = 0 and h

0

(u)v�

f

0

(u) = 0. De�nition 1 thus says that a hyperelliptic curve does not have any singular points.

For the remainder of this paper it is assumed that the �eld K and the curve C have been

�xed.

Lemma 2 Let C be a hyperelliptic curve over K de�ned by equation (1).

(i) If h(u) = 0, then char(K) 6= 2.

(ii) If char(K) 6= 2, then the change of variables u! u, v ! (v� h(u)=2) transforms C to

the form v

2

= f(u) where deg

u

f = 2g + 1.

(iii) Let C be an equation of the form (1) with h(u) = 0 and char(K) 6= 2. Then C is a

hyperelliptic curve if and only if f(u) has no repeated roots in K.

Proof.

(i) Suppose that h(u) = 0 and char(K) = 2. Then the partial derivative equations reduce

to f

0

(u) = 0. Note that deg

u

f

0

(u) = 2g. Let x 2 K be a root of the equation f

0

(u) = 0,

and let y 2 K be a root of the equation v

2

= f(x). Then the point (x; y) is a singular

point on C. Statement (i) now follows.

(ii) Under this change of variables, the equation (1) is transformed to

(v � h(u)=2)

2

+ h(u)(v � h(u)=2) = f(u);

which simpli�es to v

2

= f(u) + h(u)

2

=4; note that deg

u

(f + h

2

=4) = 2g + 1.

(iii) A singular point (x; y) on C must satisfy y

2

= f(x), 2y = 0, and f

0

(x) = 0. Hence

y = 0 and x is a repeated root of the polynomial f(u). 2
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De�nition 3 (rational points, point at in�nity, �nite points) Let L be an extension �eld of

K. The set of L-rational points on C, denoted C(L), is the set of all points P = (x; y) 2 L�L

which satisfy the equation (1) of the curve C, together with a special point at in�nity

1

denoted 1. The set of points C(K) will simply be denoted by C. The points in C other

than 1 are called �nite points.

Example 4 (hyperelliptic curves over the reals) The following are three examples of hyper-

elliptic curves over the �eld of real numbers. Each curve has genus g = 2 and h(u) = 0.

1. C

1

: v

2

= u

5

+ u

4

+ 4u

3

+ 4u

2

+ 3u+ 3 = (u+ 1)(u

2

+ 1)(u

2

+ 3). The graph of C

1

in

the real plane is shown in Figure 1.

2. C

2

: v

2

= u

5

+ u

4

� u

2

� u = u(u� 1)(u+1)(u

2

+ u+1). The graph of C

2

in the real

plane is shown in Figure 2.

3. C

3

: v

2

= u

5

� 5u

3

+ 4u = u(u� 1)(u+ 1)(u� 2)(u+ 2). The graph of C

3

in the real

plane is shown in Figure 3.
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Figure 1: The hyperelliptic curve C

1

: v

2

= u

5

+ u

4

+ 4u

3

+ 4u

2

+ 3u+ 3 over the real numbers.

De�nition 5 (opposite, special and ordinary points) Let P = (x; y) be a �nite point on a

curve C. The opposite of P is the point

e

P = (x;�y � h(x)). (Note that

e

P is indeed on C.)

We also de�ne the opposite of 1 to be

f

1 = 1 itself. If a �nite point P satis�es P =

e

P

then the point is said to be special ; otherwise, the point is said to be ordinary.

1

The point at in�nity lies in the projective plane P

2

(K). It is the only projective point lying on the

line at in�nity that satis�es the homogenized hyperelliptic curve equation. If g � 2, then 1 is a singular

(projective) point which is allowed since 1 62 K �K .
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Figure 2: The hyperelliptic curve C

2

: v

2

= u

5

+ u

4

� u

2

� u over the real numbers.
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Figure 3: The hyperelliptic curve C

3

: v

2

= u

5

� 5u

3

+ 4u over the real numbers.
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Example 6 (hyperelliptic curve over Z

7

) Consider the curve C : v

2

+ uv = u

5

+ 5u

4

+

6u

2

+u+3 over the �nite �eld Z

7

. Here, h(u) = u, f(u) = u

5

+5u

4

+6u

2

+u+3 and g = 2.

It can be veri�ed that C has no singular points (other than 1), and hence C is indeed a

hyperelliptic curve. The Z

7

-rational points on C are

C(Z

7

) = f1; (1; 1); (1; 5); (2; 2); (2; 3); (5; 3); (5; 6); (6; 4)g:

The point (6; 4) is a special point.

Example 7 (hyperelliptic curve over F

2

5
) Consider the �nite �eld F

2

5
= F

2

[x]=(x

5

+x

2

+1),

and let � be a root of the primitive polynomial x

5

+x

2

+1 in F

2

5
. The powers of � are listed

in Table 1.

n �

n

n �

n

n �

n

0 1 11 �

2

+ � + 1 22 �

4

+ �

2

+ 1

1 � 12 �

3

+ �

2

+ � 23 �

3

+ �

2

+ �+ 1

2 �

2

13 �

4

+ �

3

+ �

2

24 �

4

+ �

3

+ �

2

+ �

3 �

3

14 �

4

+ �

3

+ �

2

+ 1 25 �

4

+ �

3

+ 1

4 �

4

15 �

4

+ �

3

+ �

2

+ �+ 1 26 �

4

+ �

2

+ �+ 1

5 �

2

+ 1 16 �

4

+ �

3

+ �+ 1 27 �

3

+ �+ 1

6 �

3

+ � 17 �

4

+ � + 1 28 �

4

+ �

2

+ �

7 �

4

+ �

2

18 �+ 1 29 �

3

+ 1

8 �

3

+ �

2

+ 1 19 �

2

+ � 30 �

4

+ �

9 �

4

+ �

3

+ � 20 �

3

+ �

2

31 1

10 �

4

+ 1 21 �

4

+ �

3

Table 1: Powers of � in the �nite �eld F

2

5
= F

2

[x]=(x

5

+ x

2

+ 1).

Consider the curve C : v

2

+(u

2

+u)v = u

5

+u

3

+1 of genus g = 2 over the �nite �eld F

2

5
.

Here, h(u) = u

2

+ u and f(u) = u

5

+ u

3

+1. It can be veri�ed that C has no singular points

(other than 1), and hence C is indeed a hyperelliptic curve. The �nite points in C(F

2

5
),

the set of F

2

5
-rational points on C, are:

(0; 1) (1; 1) (�

5

; �

15

) (�

5

; �

27

) (�

7

; �

4

) (�

7

; �

25

) (�

9

; �

27

) (�

9

; �

30

)

(�

10

; �

23

) (�

10

; �

30

) (�

14

; �

8

) (�

14

; �

19

) (�

15

; 0) (�

15

; �

8

) (�

18

; �

23

) (�

18

; �

29

)

(�

19

; �

2

) (�

19

; �

28

) (�

20

; �

15

) (�

20

; �

29

) (�

23

; 0) (�

23

; �

4

) (�

25

; �) (�

25

; �

14

)

(�

27

; 0) (�

27

; �

2

) (�

28

; �

7

) (�

28

; �

16

) (�

29

; 0) (�

29

; �) (�

30

; 0) (�

30

; �

16

)

Of these, the points (0; 1) and (1; 1) are special.

3 Polynomial and rational functions

This section introduces basic properties of polynomial and rational functions which arise

when they are viewed as functions on a hyperelliptic curve.
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De�nition 8 (coordinate ring, polynomial function) The coordinate ring of C over K, de-

noted K[C], is the quotient ring

K[C] = K[u; v]=(v

2

+ h(u)v � f(u));

where (v

2

+ h(u)v � f(u)) denotes the ideal in K[u; v] generated by the polynomial v

2

+

h(u)v � f(u). Similarly, the coordinate ring of C over K is de�ned as

K[C] = K [u; v]=(v

2

+ h(u)v � f(u)):

An element of K[C] is called a polynomial function on C.

Lemma 9 The polynomial r(u; v) = v

2

+ h(u)v � f(u) is irreducible over K, and hence

K[C] is an integral domain.

Proof. If r(u; v) were reducible over K, it would factor as (v � a(u))(v � b(u)) for some

a; b 2 K[u]. But then deg

u

(a � b) = deg

u

f = 2g + 1 and deg

u

(a+ b) = deg

u

h � g, which is

impossible. 2

Observe that for each polynomial function G(u; v) 2 K[C], we can repeatedly replace

any occurrence of v

2

by f(u)� h(u)v, to eventually obtain a representation

G(u; v) = a(u)� b(u)v; where a(u); b(u) 2 K[u]:

It is easy to see that the representation of G(u; v) in this form is unique.

De�nition 10 (conjugate) Let G(u; v) = a(u) � b(u)v be a polynomial function in K[C].

The conjugate of G(u; v) is de�ned to be the polynomial function G(u; v) = a(u)+b(u)(h(u)+

v).

De�nition 11 (norm) Let G(u; v) = a(u)� b(u)v be a polynomial function in K[C]. The

norm of G is the polynomial function N(G) = GG.

The norm function will be very useful in transforming questions about polynomial func-

tions in two variables into easier questions about polynomials in a single variable.

Lemma 12 (properties of norm) Let G;H 2 K[C] be polynomial functions.

(i) N(G) is a polynomial in K [u].

(ii) N(G) = N(G).

(iii) N(GH) = N(G)N(H).

7



Proof. Let G = a� bv and H = c� dv, where a; b; c; d 2 K [u].

2

(i) Now, G = a+ b(h+ v) and

N(G) = G �G = (a� bv)(a+ b(h+ v))

= a

2

+ abh� b

2

f 2 K[u]:

(ii) The conjugate of G is

G = (a+ bh) + (�b)(h+ v)

= a� bv = G:

Hence N(G) = G G = GG = N(G).

(iii) GH = (ac+ bdf)� (bc+ ad+ bdh)v, and its conjugate is

GH = (ac+ bdf) + (bc+ ad+ bdh)(h+ v)

= ac+ bdf + bch+ adh+ bdh

2

+ bcv + adv + bdhv

= ac+ bc(h+ v) + ad(h+ v) + bd(h

2

+ hv + f)

= ac+ bc(h+ v) + ad(h+ v) + bd(h

2

+ 2hv + v

2

)

= (a+ b(h+ v))(c+ d(h+ v))

= G H:

Hence N(GH) = GHGH = GHGH = GGHH = N(G)N(H). 2

De�nition 13 (function �eld, rational functions) The function �eld K(C) of C over K is

the �eld of fractions of K[C]. Similarly, the function �eld K(C) of C over K is the �eld of

fractions of K[C]. The elements of K(C) are called rational functions on C.

Note that K[C] is a subring of K(C), i.e., every polynomial function is also a rational

function.

De�nition 14 (value of a rational function at a �nite point) Let R 2 K(C), and let P 2 C,

P 6=1. Then R is said to be de�ned at P if there exist polynomial functions G;H 2 K[C]

such that R = G=H and H(P ) 6= 0; if no such G;H 2 K[C] exist, then R is not de�ned at

P . If R is de�ned at P , the value of R at P is de�ned to be R(P ) = G(P )=H(P ).

It is easy to see that the value R(P ) is well-de�ned, i.e., it does not depend on the choice

of G and H. The following de�nition introduces the notion of the degree of a polynomial

function.

2

If not explicitly stated otherwise, the variable in all polynomials will henceforth be assumed to be u.
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De�nition 15 (degree of a polynomial function) Let G(u; v) = a(u)� b(u)v be a non-zero

polynomial function in K[C]. The degree of G is de�ned to be

deg(G) = max[2 deg

u

(a); 2g + 1 + 2deg

u

(b)]:

Lemma 16 (properties of degree) Let G;H 2 K[C].

(i) deg(G) = deg

u

(N(G)).

(ii) deg(GH) = deg(G) + deg(H).

(iii) deg(G) = deg(G).

Proof.

(i) Let G = a(u)� b(u)v. The norm of G is N(G) = a

2

+ abh� b

2

f . Let d

1

= deg

u

(a(u))

and d

2

= deg

u

(b(u)). By de�nition of a hyperelliptic curve, deg

u

(h(u)) � g and

deg

u

(f(u)) = 2g + 1. There are two cases to consider:

Case 1: If 2d

1

> 2g+1+2d

2

then 2d

1

� 2g+2+2d

2

, and hence d

1

� g+1+d

2

. Hence

deg

u

(a

2

) = 2d

1

� d

1

+ g + 1 + d

2

> d

1

+ d

2

+ g � deg

u

(abh):

Case 2: If 2d

1

< 2g + 1 + 2d

2

then 2d

1

� 2g + 2d

2

, and hence d

1

� g + d

2

. Hence

deg

u

(abh) � d

1

+ d

2

+ g � 2g + 2d

2

< 2g + 2d

2

+ 1 = deg

u

(b

2

f):

It follows that

deg

u

(N(G)) = max(2d

1

; 2g + 1 + 2d

2

) = deg(G):

(ii) We have

deg(GH) = deg

u

(N(GH)); by (i)

= deg

u

(N(G)N(H)); by Lemma 12(iii)

= deg

u

(N(G)) + deg

u

(N(H))

= deg(G) + deg(H):

(iii) Since N(G) = N(G), we have deg(G) = deg

u

(N(G)) = deg

u

(N(G)) = deg(G). 2

De�nition 17 (value of a rational function at 1) Let R = G=H 2 K(C) be a rational

function.

(i) If deg(G) < deg(H) then the value of R at 1 is de�ned to be R(1) = 0.

(ii) If deg(G) > deg(H) then R is not de�ned at 1.

(iii) If deg(G) = deg(H) then R(1) is de�ned to be the ratio of the leading coe�cients

(with respect to the deg function) of G and H.
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4 Zeros and poles

This section introduces the notion of a uniformizing parameter, and the orders of zeros and

poles of rational functions.

De�nition 18 (zero, pole) Let R 2 K(C)

�

and let P 2 C. If R(P ) = 0 then R is said to

have a zero at P . If R is not de�ned at P then R is said to have a pole at P , in which case

we write R(P ) =1.

Lemma 19 Let G 2 K[C]

�

and P 2 C. If G(P ) = 0 then G(

e

P ) = 0.

Proof. Let G = a(u) � b(u)v and P = (x; y). Then G = a(u) + b(u)(v + h(u)),

e

P =

(x;�y � h(x)), and G(

e

P ) = a(x) + b(x)(�y� h(x) + h(x)) = a(x)� yb(x) = G(P ) = 0. 2

Lemmas 20, 21 and 22 are used in Theorem 23 which establishes the existence of uni-

formizing parameters.

Lemma 20 Let P = (x; y) be a point on C. Suppose that G = a(u)� b(u)v 2 K[C]

�

has a

zero at P and that x is not a root of both a(u) and b(u). Then G(P ) = 0 if and only if P is

a special point.

Proof. If P is a special point, then G(P ) = 0 by Lemma 19. Conversely, suppose that P is

an ordinary point, i.e., y 6= (�y � h(x)). If G(P ) = 0 then we have:

a(x)� b(x)y = 0

a(x) + b(x)(h(x) + y) = 0:

Subtracting the two equations yields b(x) = 0, and hence a(x) = 0, which contradicts the

hypothesis that x is not a root of both a(u) and b(u). Hence if G(P ) = 0 then P is special.

2

Lemma 21 Let P = (x; y) be an ordinary point on C, and let G = a(u)� b(u)v 2 K[C]

�

.

Suppose that G(P ) = 0 and x is not a root of both a(u) and b(u). Then G can be written

in the form (u � x)

s

S, where s is the highest power of (u � x) which divides N(G), and

S 2 K(C) has neither a zero nor a pole at P .

Proof. We can write

G = G �

G

G

=

N(G)

G

=

a

2

+ abh� b

2

f

a+ b(h+ v)

:

Let N(G) = (u � x)

s

d(u), where s is the highest power of (u � x) which divides N(G)

(so d(u) 2 K[u]

�

and d(x) 6= 0). By Lemma 20, G(P ) 6= 0. Let S = d(u)=G. Then

G = (u� x)

s

d(u)=G and S(P ) 6= 0;1. 2

10



Lemma 22 Let P = (x; y) be a special point on C. Then (u � x) can be written in the

form (v � y)

2

� S(u; v), where S(u; v) 2 K(C) has neither a zero nor a pole at P .

Proof. Let H = (v � y)

2

and S = (u� x)=H, and note that (u� x) = H � S. We will show

that S(P ) 6= 0;1. Since P is a special point, 2y + h(x) = 0. Consequently, since P is not a

singular point, we have h

0

(x)y� f

0

(x) 6= 0. Also, f(x) = y

2

+ h(x)y = y

2

+ (�2y)(y) = �y

2

.

Now,

H(u; v) = (v � y)

2

= v

2

� 2yv + y

2

= f(u)� h(u)v � 2yv + y

2

:

Hence

1

S(u; v)

=

 

f(u) + y

2

u� x

!

� v

 

h(u) + 2y

u� x

!

: (2)

Notice that the right hand side of (2) is indeed a polynomial function. Let s(u) = H(u; y),

and observe that s(x) = 0. Moreover, s

0

(u) = f

0

(u)�h

0

(u)y, whence s

0

(x) 6= 0. Thus (u�x)

divides s(u), but (u � x)

2

does not divide s(u). It follows that the right hand side of (2) is

non-zero at P , and hence that S(P ) 6= 0;1, as required. 2

Theorem 23 (existence of uniformizing parameters) Let P 2 C. Then there exists a func-

tion U 2 K(C) with U(P ) = 0 such that the following property holds: for each polynomial

function G 2 K [C]

�

, there exists an integer d and function S 2 K(C) such that S(P ) 6= 0;1

and G = U

d

S. Furthermore, the number d does not depend on the choice of U . The function

U is called a uniformizing parameter for P .

Proof. Let G(u; v) 2 K[C]

�

. If P is a �nite point, suppose that G(P ) = 0; if P = 1,

suppose that G(P ) = 1. (If G(P ) 6= 0;1, then we can write G = U

0

G where U is any

polynomial in K[C] satisfying U(P ) = 0.) We prove the theorem by �nding a uniformizing

parameter for each of the following cases: (i) P =1; (ii) P is an ordinary point; and (iii) P

is a special point.

(i) We �rst show that a uniformizing parameter for the point P =1 is U = u

g

=v. First

note that U(1) = 0 since deg(u

g

) < deg(v). Next, write

G =

�

u

g

v

�

d

�

v

u

g

�

d

G;

where d = �deg(G). Let S = (v=u

g

)

d

G. Since deg(v) � deg(u

g

) = 2g + 1 � 2g = 1

and d = �deg(G), it follows that deg(u

�gd

G) = deg(v

�d

). Hence S(1) 6= 0;1.

(ii) Assume now that P = (x; y) is an ordinary point. We show that a uniformizing

parameter for P is U = (u� x); observe that U(P ) = 0. Write G = a(u)� b(u)v. Let

(u� x)

r

be the highest power of (u� x) which divides both a(u) and b(u), and write

G(u; v) = (u� x)

r

(a

0

(u)� b

0

(u)v):

11



By Lemma 21, we can write (a

0

(u)� b

0

(u)v) = (u� x)

s

S for some integer s � 0, and

S 2 K(C) such that S(P ) 6= 0;1. Hence G = (u � x)

r+s

S satis�es the statement of

the theorem with d = r + s.

(iii) Assume now that P = (x; y) is a special point. We show that a uniformizing parameter

for P is U = (v � y); observe that U(P ) = 0. By replacing any powers of u greater

than 2g with the equation of the curve, we can write

G(u; v) = u

2g

b

2g

(v) + u

2g�1

b

2g�1

(v) + � � �+ ub

1

(v) + b

0

(v);

where each b

i

(v) 2 K[v]. Replacing all occurrences of u by ((u�x)+x) and expanding

yields

G(u; v) = (u� x)

2g

b

2g

(v) + (u� x)

2g�1

b

2g�1

(v) + � � �+ (u� x)b

1

(v) + b

0

(v)

= (u� x)B(u; v) + b

0

(v);

where each b

i

(v) 2 K[v], and B(u; v) 2 K [C]. Now G(P ) = 0 implies b

0

(y) = 0, and

so we can write b

0

(v) = (v � y)c(v) for some c 2 K[v]. By the proof of Lemma 22

(see equation (2)), we can write (u� x) = (v� y)

2

=A(u; v), where A(u; v) 2 K[C] and

A(P ) 6= 0;1. Hence

G = (v � y)

"

(v � y)B(u; v)

A(u; v)

+ c(v)

#

=

(v � y)

A(u; v)

[(v � y)B(u; v) +A(u; v)c(v)]

def

=

(v � y)

A(u; v)

G

1

(u; v):

Now if G

1

(P ) 6= 0, then we are done by taking S = G

1

=A. On the other hand, if

G

1

(P ) = 0, then c(y) = 0 and we can write c(v) = (v � y)c

1

(v) for some c

1

2 K[v].

Hence

G = (v � y)

2

"

B(u; v)

A(u; v)

+ c

1

(v)

#

=

(v � y)

2

A(u; v)

[B(u; v) +A(u; v)c

1

(v)]

def

=

(v � y)

2

A(u; v)

G

2

(u; v):

Again, if G

2

(P ) 6= 0 then we are done. Otherwise, the whole process can be repeated.

To see that the process terminates, suppose that we have pulled k factors of v � y.

There are two cases to consider.

12



(a) If k is even, say k = 2l, we can write

G =

(v � y)

2l

A(u; v)

l

D(u; v)

where D 2 K[C]. Hence A

l

G = (v�y)

2l

D = (u�x)

l

A

l

D, whence G = (u�x)

l

D.

Taking norms of both sides yieldsN(G) = (u�x)

2l

N(D). Hence k � deg

u

(N(G)).

(b) If k is odd, say k = 2l + 1, we can write

G =

(v � y)

2l+1

A(u; v)

l+1

D(u; v)

where D 2 K[C]. Hence A

l+1

G = (v � y)

2l+1

D = (u � x)

l

A

l

(v � y)D, whence

AG = (u�x)

l

(v�y)D. Taking norms of both sides yieldsN(AG) = (u�x)

2l

N(v�

y)N(D). Hence 2l < deg

u

(N(AG)), and so k � deg

u

(N(AG)).

In either case, k is bounded by deg

u

(N(AG)) and so the process must terminate.

To see that d is independent of the choice of U , suppose that U

1

is another uniformizing

parameter for P . Since U(P ) = U

1

(P ) = 0, we can write U = U

a

1

A and U

1

= U

b

B,

where a � 1, b � 1, A;B 2 K(C), A(P ) 6= 0;1, B(P ) 6= 0;1. Thus U = (U

b

B)

a

A =

U

ab

B

a

A. Dividing both sides by U yields U

ab�1

B

a

A = 1. Substituting P in both sides

of this equation tells us ab � 1 = 0. Hence a = b = 1. Thus G = U

d

S = U

d

1

(A

d

S),

where A

d

S has neither a zero nor a pole at P . 2

The notion of a uniformizing parameter is next used to de�ne the order of a polynomial

function at a point. An alternative de�nition from [20], which is more convenient to use

for computational purposes, is given in De�nition 26. Lemma 27 establishes that these two

de�nitions are in fact equivalent.

De�nition 24 (usual de�nition of order of a polynomial function at a point) Let G 2 K[C]

�

and P 2 C. Let U 2 K(C) be a uniformizing parameter for P , and write G = U

d

S where

S 2 K(C), S(P ) 6= 0;1. The order of G at P is de�ned to be ord

P

(G) = d.

Lemma 25 Let G

1

; G

2

2 K [C]

�

and P 2 C, and let ord

P

(G

1

) = r

1

, ord

P

(G

2

) = r

2

.

(i) ord

P

(G

1

G

2

) = ord

P

(G

1

) + ord

P

(G

2

).

(ii) Suppose that G

1

6= �G

2

. If r

1

6= r

2

then ord

P

(G

1

+G

2

) = min(r

1

; r

2

). If r

1

= r

2

then

ord

P

(G

1

+G

2

) � min(r

1

; r

2

).

Proof. Let U be a uniformizing parameter for P . By De�nition 24, we can write G

1

= U

r

1

S

1

and G

2

= U

r

2

S

2

, where S

1

; S

2

2 K(C), S

1

(P ) 6= 0;1, S

2

(P ) 6= 0;1. Without loss of

generality, suppose that r

1

� r

2

.

13



(i) G

1

G

2

= U

r

1

+r

2

(S

1

S

2

), from which it follows that ord

P

(G

1

G

2

) = r

1

+ r

2

.

(ii) G

1

+ G

2

= U

r

2

(U

r

1

�r

2

S

1

+ S

2

). If r

1

> r

2

then (U

r

1

�r

2

S

1

)(P ) = 0, S

2

(P ) 6= 0;1, and

so ord

P

(G

1

+G

2

) = r

2

. If r

1

= r

2

then (S

1

+S

2

)(P ) 6=1 (although it may be the case

that (S

1

+ S

2

)(P ) = 0), and so ord

P

(G

1

+G

2

) � r

2

. 2

De�nition 26 (alternate de�nition of order of a polynomial function at a point) Let G =

a(u) � b(u)v 2 K[C]

�

and P 2 C. The order of G at P , denoted ord

P

(G), is de�ned as

follows:

(i) If P = (x; y) is a �nite point, then let r be the highest power of (u� x) which divides

both a(u) and b(u), and write G(u; v) = (u�x)

r

(a

0

(u)� b

0

(u)v). If a

0

(x)� b

0

(x)y 6= 0

then let s = 0; otherwise, let s be the highest power of (u�x) which divides N(a

0

(u)�

b

0

(u)v) = a

2

0

+ a

0

b

0

h � b

2

0

f . If P is an ordinary point, then de�ne ord

P

(G) = r + s. If

P is a special point, then de�ne ord

P

(G) = 2r + s.

(ii) If P =1 then

ord

P

(G) = �max[2 deg

u

(a); 2g + 1 + 2deg

u

(b)]:

Lemma 27 De�nition 24 and De�nition 26 are equivalent. That is, if the order function of

De�nition 26 is denoted by ord, then ord

P

(G) = ord

P

(G) for all P 2 C and G 2 K[C]

�

.

Proof. If P = 1, the proof of the lemma follows directly from the proof of Theorem 23(i).

For the case P is an ordinary point, the proof of the lemma follows directly from Lemma 21

and the proof of Theorem 23(ii).

Suppose now that P = (x; y) is a special point, and let G = a � bv. Let r be the highest

power of (u� x) which divides both a(u) and b(u), and write

G = (u� x)

r

(a

0

(u)� b

0

(u)v)

def

= (u� x)

r

H(u; v):

Let ord

P

(H) = s. Then, by Lemma 22,

ord

P

(G) = ord

P

((u� x)

r

) + ord

P

(H) = 2r + s:

Now, since v � y is a uniformizing parameter for P , we can write

H(u; v) = (v � y)

s

A

1

=A

2

; where A

1

, A

2

2 K[C], A

1

(P ) 6= 0, A

2

(P ) 6= 0:

Multiplying both sides by A

2

and taking norms yields

N(A

2

)N(H) = (y

2

+ h(u)y � f(u))

s

N(A

1

):

Now, N(A

1

)(x) 6= 0 since A

1

(P ) 6= 0 and P is special (Lemma 19). Similarly,N(A

2

)(x) 6= 0.

Also, u = x is a root of the polynomial y

2

+ h(u)y � f(u). Moreover, u = x is not a double

root of y

2

+ h(u)y � f(u) since h

0

(x)y � f

0

(x) 6= 0. It follows that (u � x)

s

is the highest

power of (u� x) which divides N(H). Hence ord

P

(G) = 2r + s = ord

P

(G). 2
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Lemma 28 is a generalization of Lemma 19.

Lemma 28 Let G 2 K[C]

�

and P 2 C. Then ord

P

(G) = ord

e

P

(G).

Proof. There are two cases to consider.

(i) Suppose P = 1; then

e

P = 1. By De�nitions 26(ii) and 15, ord

P

(G) = �deg(G)

and ord

e

P

(G) = ord

P

(G) = �deg(G). By Lemma 16(iii), deg(G) = deg(G). Hence

ord

P

(G) = ord

e

P

(G).

(ii) Suppose now that P = (x; y) is a �nite point. Let G = a(u)� b(u)v = (u�x)

r

H(u; v),

where r is the highest power of (u�x) which divides both a(u) and b(u) and H(u; v) =

a

0

(u)� b

0

(u)v. If H(x; y) 6= 0 then let s = 0; otherwise, let s be the highest power of

(u�x) which divides N(H). Now, G = (u�x)

r

H, where H = (a

0

+ b

0

h)+ b

0

v. Recall

that H(P ) = 0 if and only if H(

e

P ) = 0. Since (u � x) does not divide both a

0

+ b

0

h

and b

0

(since otherwise, (u�x)ja

0

), and s is the highest power of (u�x) which divides

N(H) = N(H), it follows from De�nition 26 that ord

e

P

(G) = ord

P

(G). 2

Theorem 29 Let G 2 K[C]

�

. Then G has a �nite number of zeros and poles. Moreover,

P

P2C

ord

P

(G) = 0.

Proof. Let n = deg(G); then deg

u

(N(G)) = n. We can write

N(G) = GG = (u� x

1

)(u� x

2

) � � � (u� x

n

);

where x

i

2 K , and the x

i

are not necessarily distinct. The only pole of G is at P = 1,

and ord

1

(G) = �n. If x

i

is the u-coordinate of an ordinary point P = (x

i

; y

i

) on C, then

ord

P

(u�x

i

) = 1 and ord

e

P

(u�x

i

) = 1, and (u�x

i

) has no other zeros. If x

i

is the u-coordinate

of a special point P = (x

i

; y

i

) on C, then ord

P

(u� x

i

) = 2, and (u� x

i

) has no other zeros.

Hence, N(G), and consequently also G, has a �nite number of zeros and poles, and moreover

P

P2Cnf1g

ord

P

(N(G)) = 2n. But, by Lemma 28,

P

P2Cnf1g

ord

P

(G) =

P

P2Cnf1g

ord

P

(G),

and hence

P

P2Cnf1g

ord

P

(G) = n. We conclude that

P

P2C

ord

P

(G) = 0. 2

De�nition 30 (order of a rational function at a point) Let R = G=H 2 K(C)

�

and P 2 C.

The order of R at P is de�ned to be ord

P

(R) = ord

P

(G)� ord

P

(H).

It can readily be veri�ed that ord

P

(R) does not depend on the choice of G and H, and

that Lemma 25 and Theorem 29 are also true for non-zero rational functions.
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5 Divisors

This section presents the basic properties of divisors and introduces the jacobian of a hyper-

elliptic curve.

De�nition 31 (divisor, degree, order) A divisor D is a formal sum of points in C

D =

X

P2C

m

P

P; m

P

2Z;

where only a �nite number of the m

P

are non-zero. The degree of D, denoted degD, is the

integer

P

P2C

m

P

. The order of D at P is the integer m

P

; we write ord

P

(D) = m

P

.

The set of all divisors, denoted D, forms an additive group under the addition rule:

X

P2C

m

P

P +

X

P2C

n

P

P =

X

P2C

(m

P

+ n

P

)P:

The set of all divisors of degree 0, denoted D

0

, is a subgroup of D.

De�nition 32 (gcd of divisors) Let D

1

=

P

P2C

m

P

P and D

2

=

P

P2C

n

P

P be two divisors.

The greatest common divisor of D

1

and D

2

is de�ned to be

gcd(D

1

;D

2

) =

X

P2C

min(m

P

; n

P

)P �

 

X

P2C

min(m

P

; n

P

)

!

1:

(Note that gcd(D

1

;D

2

) 2 D

0

.)

De�nition 33 (divisor of a rational function) Let R 2 K(C)

�

. The divisor of R is

div(R) =

X

P2C

(ord

P

R)P:

Note that if R = G=H then div(R) = div(G) � div(H). Theorem 29 shows that the

divisor of a rational function is indeed a �nite formal sum and has degree 0.

Example 34 If P = (x; y) is an ordinary point on C, then div(u � x) = P +

e

P � 21. If

P = (x; y) is a special point on C, then div(u� x) = 2P � 21.

Lemma 35 Let G 2 K[C]

�

, and let div(G) =

P

P2C

m

P

P . Then div(G) =

P

P2C

m

P

e

P .

Proof. The result follows directly from Lemma 28. 2

If R

1

; R

2

2 K(C)

�

then it follows from Lemma 25(i) that div(R

1

R

2

) = div(R

1

)+div(R

2

).
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De�nition 36 (principal divisor, jacobian) A divisor D 2 D

0

is called a principal divisor if

D = div(R) for some rational function R 2 K(C)

�

. The set of all principal divisors, denoted

P, is a subgroup of D

0

. The quotient group J = D

0

=P is called the jacobian of the curve C.

If D

1

, D

2

2 D

0

then we write D

1

� D

2

if D

1

�D

2

2 P; D

1

and D

2

are said to be equivalent

divisors.

De�nition 37 (support of a divisor) Let D =

P

P2C

m

P

P be a divisor. The support of D

is the set supp(D) = fP 2 C j m

P

6= 0g.

De�nition 38 (semi-reduced divisor) A semi-reduced divisor is a divisor of the form D =

P

m

i

P

i

� (

P

m

i

)1, where each m

i

� 0 and the P

i

's are �nite points such that when P

i

2

supp(D) then

f

P

i

62 supp(D), unless P

i

=

f

P

i

, in which case m

i

= 1.

Lemma 39 For each divisor D 2 D

0

there exists a semi-reduced divisor D

1

(D

1

2 D

0

) such

that D � D

1

.

Proof. Let D =

P

P2C

m

P

P . Let (C

1

; C

2

) be a partition of the set of ordinary points on C

such that (i) P 2 C

1

if and only if

e

P 2 C

2

; and (ii) if P 2 C

1

then m

P

� m

e

P

. Let C

0

be the

set of special points on C. Then we can write

D =

X

P2C

1

m

P

P +

X

P2C

2

m

P

P +

X

P2C

0

m

P

P �m1:

Consider the following divisor

D

1

= D �

X

P=(x;y)2C

2

m

P

div(u� x)�

X

P=(x;y)2C

0

�

m

P

2

�

div(u� x):

Then D

1

� D. Finally, by Example 34, we have

D

1

=

X

P2C

1

(m

P

�m

e

P

)P +

X

P2C

0

�

m

P

� 2

�

m

P

2

��

P �m

1

1

for some m

1

2Z, and hence D

1

is a semi-reduced divisor. 2

6 Representing semi-reduced divisors

This section describes a polynomial representation for semi-reduced divisors of the jacobian.

It leads to an e�cient algorithm for adding elements of the jacobian (see x8).

Lemma 40 Let P = (x; y) be an ordinary point on C, and let R 2 K(C) be a rational

function which does not have a pole at P . Then for any k � 0, there are unique elements

c

0

; c

1

; : : : ; c

k

2 K and R

k

2 K(C) such that R =

P

k

i=0

c

i

(u� x)

i

+ (u� x)

k+1

R

k

, and where

R

k

does not have a pole at P .
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Proof. There is a unique c

0

2 K, namely c

0

= R(x; y), such that P is a zero of R � c

0

.

Since (u� x) is a uniformizing parameter for P , we can write R � c

0

= (u� x)R

1

for some

(unique) R

1

2 K(C) with ord

P

(R

1

) � 0. Hence R = c

0

+(u�x)R

1

. The lemma now follows

by induction. 2

Lemma 41 Let P = (x; y) be an ordinary point on C. Then for each k � 1, there exists a

unique polynomial b

k

(u) 2 K[u] such that

(i) deg

u

b

k

< k;

(ii) b

k

(x) = y; and

(iii) b

2

k

(u) + b

k

(u)h(u) � f(u) (mod (u� x)

k

).

Proof. Let v =

P

k�1

i=0

c

i

(u � x)

i

+ (u � x)

k

R

k�1

where c

i

2 K and R

k�1

2 K(C). De�ne

b

k

(u) =

P

k�1

i=0

c

i

(u � x)

i

. From the proof of Lemma 40, we know that c

0

= y, and hence

b

k

(x) = y. Finally, since v

2

+ h(u)v = f(u), reducing both sides modulo (u � x)

k

yields

b

k

(u)

2

+ b

k

(u)h(u) � f(u) (mod (u�x)

k

). Uniqueness is easily proved by induction on k. 2

The following theorem shows how a semi-reduced divisor can be represented as the gcd

of the divisors of two polynomial functions.

Theorem 42 Let D =

P

m

i

P

i

� (

P

m

i

)1 be a semi-reduced divisor, where P

i

= (x

i

; y

i

).

Let a(u) =

Q

(u � x

i

)

m

i

. Let b(u) be the unique polynomial satisfying: (i) deg

u

b < deg

u

a;

(ii) b(x

i

) = y

i

for all i for which m

i

6= 0; and (iii) a(u) divides (b(u)

2

+ b(u)h(u) � f(u)).

Then D = gcd(div(a(u));div(b(u)� v)).

Notation: gcd(div(a(u));div(b(u)� v)) will usually be abbreviated to div(a(u); b(u)� v) or,

more simply, to div(a; b).

Proof. Let C

1

be the set of ordinary points in supp(D), and let C

0

be the set of special

points in supp(D). Let C

2

= f

e

P : P 2 C

1

g. Then we can write

D =

X

P

i

2C

0

P

i

+

X

P

i

2C

1

m

i

P

i

�m1;

where m

i

, m 2Z

�1

.

We �rst prove that there does indeed exist a unique polynomial b(u) which satis�es the

conditions of the theorem. By Lemma 41, for each P

i

2 C

1

there exists a unique polynomial

b

i

(u) 2 K[u] satisfying (i) deg

u

b

i

< m

i

; (ii) b

i

(x

i

) = y

i

; and (iii) (u�x

i

)

m

i

jb

2

i

(u)+b

i

(u)h(u)�

f(u). It can be easily veri�ed that for each P

i

2 C

0

, b

i

(u) = y

i

is the unique polynomial

satisfying (i) deg

u

b

i

< 1; (ii) b

i

(x

i

) = y

i

; and (iii) (u � x

i

)jb

2

i

(u) + b

i

(u)h(u) � f(u). By

the Chinese Remainder Theorem for polynomials, there is a unique polynomial b(u) 2 K[u],

deg

u

b <

P

m

i

, such that

b(u) � b

i

(u) (mod (u� x

i

)

m

i

) for all i:
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It can now be veri�ed that b(u) satis�es conditions (i), (ii) and (iii) of the statement of the

theorem.

Now,

div(a(u)) = div

�

Y

(u� x

i

)

m

i

�

=

X

P

i

2C

0

2P

i

+

X

P

i

2C

1

m

i

P

i

+

X

P

i

2C

1

m

i

e

P

i

� (�)1:

And,

div(b(u)� v) =

X

P

i

2C

0

t

i

P

i

+

X

P

i

2C

1

s

i

P

i

+

X

P

i

2Cn(C

0

[C

1

[C

2

[f1g)

m

i

P

i

� (�)1;

where each s

i

� m

i

since (u�x

i

)

m

i

divides N(b� v) = b

2

+hb� f . Now, if P = (x; y) 2 C

0

,

then (u� x) divides b

2

+ bh� f . The derivative of this polynomial evaluated at u = x is

2b(x)b

0

(x) + b

0

(x)h(x) + b(x)h

0

(x)� f

0

(x) = b

0

(x)(2y + h(x)) + (h

0

(x)y � f

0

(x))

= h

0

(x)y � f

0

(x); since 2y + h(x) = 0

6= 0:

Hence u = x is a simple root of N(b� v) = b

2

+ bh� f , and hence t

i

= 1 for all i. Therefore

gcd(a(u); b(u)� v) =

X

P

i

2C

0

P

i

+

X

P

i

2C

1

m

i

P

i

�m1 = D;

as required. 2

Note that the zero divisor is represented as div(1; 0). The next result follows from the

proof of Theorem 42.

Lemma 43 Let a(u); b(u) 2 K [u] be such that deg

u

b < deg

u

a. If aj(b

2

+ bh � f) then

div(a; b) is semi-reduced.

7 Reduced divisors

This section de�nes the notion of a reduced divisor and proves that each coset of the quotient

group J = D

0

=P has exactly one reduced divisor. We can therefore identify each coset with

its reduced divisor.

De�nition 44 (reduced divisor) Let D =

P

m

i

P

i

� (

P

m

i

)1 be a semi-reduced divisor. If

P

m

i

� g (g is the genus of C) then D is called a reduced divisor.

De�nition 45 (norm of a divisor) Let D =

P

P2C

m

P

P be a divisor. The norm of D is

de�ned to be

jDj =

X

P2Cnf1g

jm

P

j:
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Note that given a divisor D 2 D

0

, the operation described in the proof of Lemma 39

produces a semi-reduced divisor D

1

such that D

1

� D and jD

1

j � jDj.

Lemma 46 Let R be a rational function in K(C)

�

. If R has no �nite poles, then R is a

polynomial function.

Proof. Let R = G=H, where G;H 2 K[C]

�

. Then R =

G

H

�

H

H

= GH=N(H), and so we

can write R = (a � bv)=c, where a; b; c 2 K[u], c 6= 0. Let x 2 K be a root of c. Let

P = (x; y) 2 C where y 2 K, and let d � 1 be the highest power of (u� x) which divides c.

If P is ordinary, then ord

P

(c) = ord

e

P

(c) = d. SinceR has no �nite poles, ord

P

(a�bv) � d

and ord

e

P

(a� bv) � d. Now, since P and

e

P are both zeros of a� bv, it is true that a(x) = 0

and b(x) = 0. It follows that ord

P

(a) � d and ord

P

(b) � d. Hence (u � x)

d

is a common

divisor of a and b, which can be cancelled with the factor (u� x)

d

of c.

Suppose now that P is special. Then ord

P

(c) = 2d. Since R has no �nite poles, ord

P

(a�

bv) � 2d. Then, as in part (iii) of the proof of Theorem 23, we can write

a� bv =

(v � y)

2d

D

A

d

;

where A;D 2 K[C]

�

and A satis�es (v� y)

2

= (u� x)A. Hence a� bv = (u� x)

d

D. Again,

the factor (u� x)

d

of a� bv can be cancelled with the factor (u� x)

d

of c.

This can be repeated for all roots of c; it follows that R is a polynomial function. 2

Theorem 47 For each divisor D 2 D

0

there exists a unique reduced divisor D

1

such that

D � D

1

.

Proof. (Existence) Let D

0

be a semi-reduced divisor such that D

0

� D and jD

0

j � jDj

produced as in the proof of Lemma 39. If jD

0

j � g then D

0

is reduced and we are done.

Otherwise, let P

1

; P

2

; : : : ; P

g+1

be �nite points in supp(D

0

), not necessarily distinct. (A

point P cannot occur in this list more than ord

P

(D

0

) times.) Let div(a(u); b(u)) be the

representation of the divisor

P

1

+ P

2

+ � � �+ P

g+1

� (g + 1)1

as given by Theorem 42. Since deg

u

(b) � g, we have deg(b(u)� v) = 2g + 1, and hence

div(b(u)� v) = P

1

+ P

2

+ � � � + P

g+1

+Q

1

+ � � �+Q

g

� (2g + 1)1

for some �nite points Q

1

; Q

2

; : : : ; Q

g

. Subtracting this divisor from D

0

gives a divisor D

00

,

where D

00

� D

0

� D and jD

00

j < jD

0

j. We can now produce another semi-reduced divisor

D

000

� D

00

such that jD

000

j � jD

00

j. After doing this a �nite number of times, we obtain a

semi-reduced divisor D

1

with jD

1

j � g, and we are done.

3

3

Algorithm 2 in Section 8 describes an e�cient algorithm which, given a semi-reduced divisor D =

div(a; b), �nds a reduced divisor D

1

such that D � D

1

; the algorithm only uses a and b.
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(Uniqueness) Suppose that D

1

and D

2

are two reduced divisors with D

1

� D

2

, D

1

6= D

2

.

Let D

3

be a semi-reduced divisor with D

3

� D

1

�D

2

obtained as in the proof of Lemma 39.

Since D

1

6= D

2

, there is a point P such that ord

P

(D

1

) 6= ord

P

(D

2

). Suppose, without loss

of generality, that ord

P

(D

1

) = m

1

� 1, and either (i) ord

P

(D

2

) = 0 and ord

e

P

(D

2

) = 0;

or (ii) ord

P

(D

2

) = m

2

with 1 � m

2

< m

1

; or (iii) ord

e

P

(D

2

) = m

2

with 1 � m

2

� m

1

.

(If P is special then only (i) can occur.) In case (i), ord

P

(D

3

) = m

1

� 1. In case (ii),

ord

P

(D

3

) = (m

1

� m

2

) � 1. In case (iii), ord

P

(D

3

) = (m

1

+ m

2

) � 1. In all cases,

ord

P

(D

3

) � 1, and so D

3

6= 0. Also, jD

3

j � jD

1

� D

2

j � jD

1

j + jD

2

j � 2g. Let G be a

rational function in K(C)

�

such that div(G) = D

3

; since D

1

� D

2

, and D

3

� D

1

�D

2

, we

know that D

3

is principal and hence such a function G exists. By Lemma 46, since G has no

�nite poles, it must be a polynomial function. Then G = a(u)� b(u)v for some a; b 2 K[u].

Since deg(v) = 2g + 1 and deg(G) = jD

3

j � 2g, we must have b(u) = 0. Suppose that

deg

u

(a(u)) � 1, and let x 2 K be a root of a(u). Let P = (x; y) be a point on C. Now, if P

is ordinary, then both P and

e

P are zeros of G, contradicting the fact that D

3

is semi-reduced.

If P is special, then it must also be a zero of G of order at least 2, again contradicting the

fact that D

3

is semi-reduced. Thus, deg

u

(a(u)) = 0 and so D

3

= 0, a contradiction. 2

8 Adding reduced divisors

Let C be a hyperelliptic curve of genus g de�ned over a �nite �eld K, and let J be the

jacobian of C. Let P = (x; y) 2 C, and let � be an automorphism of K over K. Then

P

�

def

= (x

�

; y

�

) is also a point on C.

De�nition 48 (�eld of de�nition of a divisor) A divisor D =

P

m

P

P is said to be de�ned

over K if D

�

def

=

P

m

P

P

�

is equal to D for all automorphisms � of K over K.

Note that if D is de�ned over K, it does not mean that each point in the support of D

is a K-rational point. A principal divisor is de�ned over K if and only if it is the divisor

of a rational function that has coe�cients in K. The set J(K) of all divisor classes in J

that have a representative that is de�ned over K is a subgroup of J . Each element of J(K)

has a unique representation as a reduced divisor div(a; b), where a; b 2 K[u], deg

u

a � g,

deg

u

b < deg

u

a, and hence J(K) is in fact a �nite abelian group. This section presents an

e�cient algorithm for adding elements in this group.

Let D

1

= div(a

1

; b

1

) and D

2

= div(a

2

; b

2

) be two reduced divisors de�ned over K (so a

1

,

a

2

, b

1

, b

2

2 K[u]). Algorithm 1 �nds a semi-reduced divisor D = div(a; b) with a; b 2 K[u],

such that D � D

1

+ D

2

. Algorithm 2 reduces D to an equivalent reduced divisor D

0

.

Notation: b mod a denotes the remainder polynomial when b is divided by a.
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Algorithms 1 and 2 were presented by Koblitz [20], and generalized earlier algorithms of

Cantor [5] which assumed that h(u) = 0 and char(K) 6= 2.

4

Algorithm 1

Input: Reduced divisors D

1

= div(a

1

; b

1

) and D

2

= div(a

2

; b

2

) both de�ned over K.

Output: A semi-reduced divisor D = div(a; b) de�ned over K such that D � D

1

+D

2

.

1. Use the extended Euclidean algorithm to �nd polynomials d

1

, e

1

, e

2

2 K[u] where

d

1

= gcd(a

1

; a

2

) and d

1

= e

1

a

1

+ e

2

a

2

.

2. Use the extended Euclidean algorithm to �nd polynomials d, c

1

, c

2

2 K[u] where

d = gcd(d

1

; b

1

+ b

2

+ h) and d = c

1

d

1

+ c

2

(b

1

+ b

2

+ h).

3. Let s

1

= c

1

e

1

, s

2

= c

1

e

2

, and s

3

= c

2

, so that

d = s

1

a

1

+ s

2

a

2

+ s

3

(b

1

+ b

2

+ h): (3)

4. Set

a = a

1

a

2

=d

2

(4)

and

b =

s

1

a

1

b

2

+ s

2

a

2

b

1

+ s

3

(b

1

b

2

+ f)

d

mod a: (5)

Theorem 49 (Algorithm 1 works) Let D

1

= div(a

1

; b

1

) and D

2

= div(a

2

; b

2

) be semi-

reduced divisors. Let a and b be de�ned as in equations (4) and (5). Then D = div(a; b) is

a semi-reduced divisor and D � D

1

+D

2

.

Proof. We �rst verify that b is a polynomial. Using equation (3), we can write

s

1

a

1

b

2

+ s

2

a

2

b

1

+ s

3

(b

1

b

2

+ f)

d

=

b

2

(d� s

2

a

2

� s

3

(b

1

+ b

2

+ h)) + s

2

a

2

b

1

+ s

3

(b

1

b

2

+ f)

d

= b

2

+

s

2

a

2

(b

1

� b

2

)� s

3

(b

2

2

+ b

2

h� f)

d

:

Since dja

2

and a

2

j(b

2

2

+ b

2

h� f), b is indeed a polynomial.

4

Koblitz did not provide proofs of correctness of the algorithms, and Cantor's proof contains some errors.

In de�ning the polynomials a(u) and b(u) which represent the semi-reduced divisor D =

P

P

i

2C

m

i

P

i

(for

the case of hyperelliptic curves with h(u) = 0), Cantor incorrectly states that the condition that aj(b

2

� f)

is equivalent to the condition that b� y

i

be divisible by (u� x

i

)

m

i

for all i (where P

i

= (x

i

; y

i

)).
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Let b = (s

1

a

1

b

2

+ s

2

a

2

b

1

+ s

3

(b

1

b

2

+ f))=d + sa, where s 2 K[u]. Now,

b� v =

s

1

a

1

b

2

+ s

2

a

2

b

1

+ s

3

(b

1

b

2

+ f)� dv

d

+ sa

=

s

1

a

1

b

2

+ s

2

a

2

b

1

+ s

3

(b

1

b

2

+ f)� s

1

a

1

v � s

2

a

2

v � s

3

(b

1

+ b

2

+ h)v

d

+ sa

=

s

1

a

1

(b

2

� v) + s

2

a

2

(b

1

� v) + s

3

(b

1

� v)(b

2

� v)

d

+ sa: (6)

From (6) it is not hard to see that aj(b

2

+ bh � f). Namely, b

2

+ bh� f is obtained by

multiplying the left side of (6) by its conjugate: (b�v)(b+v+h) = b

2

+bh�f . Thus, to see that

aj(b

2

+bh�f) it su�ces to show that a

1

a

2

divides the product of (s

1

a

1

(b

2

�v)+s

2

a

2

(b

1

�v)+

s

3

(b

1

�v)(b

2

�v)) with its conjugate; this follows because a

1

j(b

2

1

+b

1

h�f) = (b

1

�v)(b

1

+v+h)

and a

2

j(b

2

2

+ b

2

h� f) = (b

2

� v)(b

2

+ v+ h). Lemma 43 now implies that div(a; b) is a semi-

reduced divisor.

We now prove that D � D

1

+D

2

. There are two cases to consider.

(i) Let P = (x; y) be an ordinary point. There are two subcases to consider.

(a) Suppose that ord

P

(D

1

) = m

1

, ord

e

P

(D

1

) = 0, ord

P

(D

2

) = m

2

, and ord

e

P

(D

2

) = 0,

where m

1

� 0, m

2

� 0. Now, ord

P

(a

1

) = m

1

, ord

P

(a

2

) = m

2

, ord

P

(b

1

� v) � m

1

,

and ord

P

(b

2

� v) � m

2

. If m

1

= 0 or m

2

= 0 (or both) then ord

P

(d

1

) = 0,

whence ord

P

(d) = 0 and ord

P

(a) = m

1

+m

2

. If m

1

� 1 and m

2

� 1, then, since

(b

1

+ b

2

+ h)(x) = 2y + h(x) 6= 0, we have ord

P

(d) = 0 and ord

P

(a) = m

1

+m

2

.

From equation (6), it follows that

ord

P

(b� v) � minfm

1

+m

2

;m

2

+m

1

;m

1

+m

2

g = m

1

+m

2

:

Hence ord

P

(D) = m

1

+m

2

.

(b) Suppose that ord

P

(D

1

) = m

1

and ord

e

P

(D

2

) = m

2

, where m

1

� m

2

� 1. We have

ord

P

(a

1

) = m

1

, ord

P

(a

2

) = m

2

, ord

P

(d

1

) = m

2

, ord

P

(b

1

�v) � m

1

, ord

P

(b

2

�v) =

0, and ord

e

P

(b

2

�v) � m

2

. The last inequality implies that ord

P

(b

2

+h+v) � m

2

,

and hence ord

P

(b

1

+b

2

+h) � m

2

or (b

1

+b

2

+h) = 0. It follows that ord

P

(d) = m

2

and ord

P

(a) = m

1

�m

2

.

From equation (6), it follows that

ord

P

(b� v) � minfm

1

+ 0;m

2

+m

1

;m

1

+ 0g �m

2

= m

1

�m

2

:

Hence ord

P

(D) = m

1

�m

2

.

(ii) Let P = (x; y) be a special point. There are two subcases to consider.
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(a) Suppose that ord

P

(D

1

) = 1 and ord

P

(D

2

) = 1. Then ord

P

(a

1

) = 2, ord

P

(a

2

) = 2,

and ord

P

(d

1

) = 2. Now, (b

1

+b

2

+h)(x) = 2y+h(x) = 0, whence ord

P

(b

1

+b

2

+h) �

2 or (b

1

+ b

2

+ h) = 0. It follows that ord

P

(d) = 2 and ord

P

(a) = 0. Hence

ord

P

(D) = 0.

(b) Suppose that ord

P

(D

1

) = 1 and ord

P

(D

2

) = 0. Then ord

P

(a

1

) = 2, ord

P

(a

2

) = 0,

whence ord

P

(d

1

) = ord

P

(d) = 0 and ord

P

(a) = 2. Since ord

P

(b

1

�v) = 1, it follows

from equation (6) that ord

P

(b� v) � 1. It can be inferred from equation (6) that

ord

P

(b�v) � 2 only if ord

P

(s

2

a

2

+ s

3

(b

2

�v)) � 1. If this is indeed the case, then

ord

P

(s

2

a

2

+ s

3

(b

2

+ h + v)) � 1, and hence ord

P

(s

2

a

2

+ s

3

(b

1

+ b

2

+ h)) � 1 (or

s

2

a

2

+ s

3

(b

1

+ b

2

+ h) = 0). It now follows from equation (3) that ord

P

(d) � 1, a

contradiction. Hence ord

P

(b� v) = 1, whence ord

P

(D) = 1. 2

Example 50 (adding two reduced divisors) Consider the hyperelliptic curve C : v

2

+ (u

2

+

u)v = u

5

+ u

3

+ 1 of genus g = 2 over the �nite �eld F

2

5

(see Example 7). P = (�

30

; 0)

is an ordinary point in C(F

2

5
) and the opposite of P is

e

P = (�

30

; �

16

). Q

1

= (0; 1) and

Q

2

= (1; 1) are special points in C(F

2

5
). The following are examples of computing the

semi-reduced divisor D = div(a; b) = D

1

+D

2

, for sample reduced divisors D

1

and D

2

(see

Algorithm 1).

(i) Let D

1

= P + Q

1

� 21 and D

2

=

e

P + Q

2

� 21 be two reduced divisors. Then

D

1

= div(a

1

; b

1

) where a

1

= u(u + �

30

), b

1

= �u + 1, and D

2

= div(a

2

; b

2

) where

a

2

= (u+ 1)(u+ �

30

), b

2

= �

23

u+ �

12

.

1. d

1

= gcd(a

1

; a

2

) = u+ �

30

; d

1

= a

1

+ a

2

.

2. d = gcd(d

1

; b

1

+ b

2

+ h) = u+ �

30

; d = 1 � d

1

+ 0 � (b

1

+ b

2

+ h).

3. d = a

1

+ a

2

+ 0 � (b

1

+ b

2

+ h).

4. Set a = a

1

a

2

=d

2

= u(u+ 1) = u

2

+ u, and

b =

1 � a

1

b

2

+ 1 � a

2

b

1

+ 0 � (b

1

b

2

+ f)

d

mod a

� 1 (mod a):

Check:

div(a) = 2Q

1

+ 2Q

2

� 41

div(b� v) = Q

1

+Q

2

+

3

X

i=1

P

i

� 51; where P

i

6= Q

1

; Q

2

div(a; b) = Q

1

+Q

2

� 21:

(ii) Let D

1

= P + Q

1

� 21 and D

2

= Q

1

+ Q

2

� 21. Then D

1

= div(a

1

; b

1

) where

a

1

= u(u+ �

30

), b

1

= �u+ 1, and D

2

= div(a

2

; b

2

) where a

2

= u(u+ 1), b

2

= 1.
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1. d

1

= gcd(a

1

; a

2

) = u; d

1

= �

14

a

1

+ �

14

a

2

.

2. d = gcd(d

1

; b

1

+ b

2

+ h) = u; d = 1 � u+ 0 � (b

1

+ b

2

+ h).

3. d = �

14

a

1

+ �

14

a

2

+ 0 � (b

1

+ b

2

+ h).

4. a = (u+ �

30

)(u+ 1); b � �

14

u+ �

13

(mod a).

Check:

div(a) = 2Q

2

+ P +

e

P � 41

div(b� v) = P +Q

2

+

3

X

i=1

P

i

� 51; where P

i

6= P;

e

P ;Q

2

div(a; b) = P +Q

2

� 21:

(iii) Let D

1

= P + Q

1

� 21 and D

2

= P + Q

2

� 21. Then D

1

= div(a

1

; b

1

) where

a

1

= u(u + �

30

), b

1

= �u + 1, and D

2

= div(a

2

; b

2

) where a

2

= (u + �

30

)(u + 1),

b

2

= �

14

u+ �

13

.

1. d

1

= gcd(a

1

; a

2

) = (u+ �

30

); d

1

= 1 � a

1

+ 1 � a

2

.

2. d = gcd(d

1

; b

1

+ b

2

+ h) = 1.

3. d = (�

15

u+ �

4

)a

1

+ (�

15

u+ �

4

)a

2

+ �

15

� (b

1

+ b

2

+ h).

4. a = u(u+ 1)(u+ �

30

)

2

; b � �

17

u

3

+ �

26

u

2

+ �

2

u+ 1 (mod a).

Check:

div(a) = 2P + 2

e

P + 2Q

1

+ 2Q

2

� 81

div(b� v) = 2P +Q

1

+Q

2

+

2

X

i=1

P

i

� 61; where P

i

6= P;

e

P ;Q

1

; Q

2

div(a; b) = 2P +Q

1

+Q

2

� 41:

Algorithm 2

Input: A semi-reduced divisor D = div(a; b) de�ned over K.

Output: The (unique) reduced divisor D

0

= div(a

0

; b

0

) such that D

0

� D.

1. Set

a

0

= (f � bh� b

2

)=a (7)

and

b

0

= (�h� b) mod a

0

: (8)

2. If deg

u

a

0

> g then set a a

0

, b b

0

and go to step 1.
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3. Let c be the leading coe�cient of a

0

, and set a

0

 c

�1

a

0

.

4. Output(a

0

,b

0

).

Theorem 51 (Algorithm 2 works) Let D = div(a; b) be a semi-reduced divisor. Then the

divisor D

0

= div(a

0

; b

0

) returned by Algorithm 2 is reduced and D

0

� D.

Proof. Let a

0

= (f � bh� b

2

)=a and b

0

= (�h� b) mod a

0

. We show that

(i) deg

u

(a

0

) < deg

u

(a);

(ii) D

0

= div(a

0

; b

0

) is semi-reduced; and

(iii) D � D

0

.

The theorem then follows by repeated application of the reduction process (step 1 of Algo-

rithm 2).

(i) Let m = deg

u

a, n = deg

u

b, where m > n, and m � g + 1. Then deg

u

a

0

= max(2g +

1; 2n)�m. If m > g +1, then max(2g +1; 2n) � 2(m� 1), whence deg

u

a

0

� m� 2 <

deg

u

a. If m = g + 1, then max(2g + 1; 2n) = 2g + 1, whence deg

u

a

0

= g < deg

u

a.

(ii) Now, f � bh� b

2

= aa

0

. Reducing both sides modulo a

0

yields

f + (b

0

+ h)h � (b

0

+ h)

2

� 0 (mod a

0

)

which simpli�es to

f � b

0

h� (b

0

)

2

� 0 (mod a

0

):

Hence a

0

j(f � b

0

h� (b

0

)

2

). It follows from Lemma 43 that div(a

0

; b

0

) is semi-reduced.

(iii) Let C

0

= fP 2 supp(D) : P is specialg, C

1

= fP 2 supp(D) : P is ordinaryg, and

C

2

= f

e

P : P 2 C

1

g. Then, as in the proof of Theorem 42, we can write

D =

X

P

i

2C

0

P

i

+

X

P

i

2C

1

m

i

P

i

� (�)1:

Now,

div(a) =

X

P

i

2C

0

2P

i

+

X

P

i

2C

1

m

i

P

i

+

X

P

i

2C

1

m

i

e

P

i

� (�)1

and

div(b� v) =

X

P

i

2C

0

P

i

+

X

P

i

2C

1

n

i

P

i

+

X

P

i

2C

1

0

e

P

i

+

X

P

i

2C

3

s

i

P

i

� (�)1;

where n

i

� m

i

, C

3

is a set of points in Cn(C

0

[ C

1

[ C

2

[ f1g), s

i

� 1, and s

i

= 1 if

P

i

is special. Since b

2

+ bh� f = N(b� v), it follows from Lemma 35 that

div(b

2

+ bh� f) =

X

P

i

2C

0

2P

i

+

X

P

i

2C

1

n

i

P

i

+

X

P

i

2C

1

n

i

e

P

i

+

X

P

i

2C

3

s

i

P

i

+

X

P

i

2C

3

s

i

e

P

i

� (�)1;
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and hence

div(a

0

) = div(b

2

+ bh� f)� div(a)

=

X

P

i

2C

0

1

t

i

P

i

+

X

P

i

2C

0

1

t

i

e

P

i

+

X

P

i

2C

3

s

i

P

i

+

X

P

i

2C

3

s

i

e

P

i

� (�)1;

where t

i

= n

i

�m

i

and C

0

1

= fP

i

2 C

1

: n

i

> m

i

g. Now, b

0

= �h� b+ sa

0

for some s 2

K[u]. If P

i

= (x

i

; y

i

) 2 C

0

1

[C

3

, then b

0

(x

i

) = �h(x

i

)�b(x

i

)+s(x

i

)a

0

(x

i

) = �h(x

i

)�y

i

.

Then, as in the proof of Theorem 42, it follows that

div(b

0

� v) =

X

P

i

2C

0

1

0P

i

+

X

P

i

2C

0

1

r

i

e

P

i

+

X

P

i

2C

3

0P

i

+

X

P

i

2C

3

w

i

e

P

i

+

X

P

i

2C

4

z

i

P

i

� (�)1;

where r

i

� t

i

, w

i

� s

i

, w

i

= 1 if P

i

2 C

3

is special, and C

4

is a set of points in

Cn(C

0

1

[ C

3

[ f1g). Hence

div(a

0

; b

0

) =

X

P

i

2C

0

1

t

i

e

P

i

+

X

P

i

2C

3

s

i

e

P

i

� (�)1

� �

X

P

i

2C

0

1

t

i

P

i

�

X

P

i

2C

3

s

i

P

i

+ (�)1

= D � div(b� v);

whence D � D

0

. 2

Note that all computations in Algorithms 1 and 2 take place in the �eld K itself (and

not in any proper extensions of K). In Algorithm 1, if deg

u

a

1

� g and deg

u

a

2

� g, then

deg

u

a � 2g. In this case, Algorithm 2 requires at most dg=2e iterations of step 1.

Example 52 (reducing a semi-reduced divisor) Consider the hyperelliptic curve C : v

2

+

(u

2

+ u)v = u

5

+ u

3

+ 1 of genus g = 2 over the �nite �eld F

2

5
(see Example 7). Consider

the semi-reduced divisor D = (0; 1) + (1; 1) + (�

5

; �

15

)� 31. Then D = div(a; b), where

a(u) = u(u+ 1)(u + �

5

) = u

3

+ �

2

u

2

+ �

5

u

and

b(u) = �

17

u

2

+ �

17

u+ 1:

Algorithm 2 yields

a

0

(u) = u

2

+ �

15

u+ �

26

;

b

0

(u) = �

23

u+ �

21

:

Hence D � div(a

0

; b

0

) = (�

28

; �

7

) + (�

29

; 0)� 21.
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9 Implementation of hyperelliptic curve cryptosystems

The Di�e-Hellman key exchange [10] is a protocol whereby two entities A and B can, by a

sequence of transmissions over a public channel, agree upon a secret cryptographic key. The

method is as follows. A and B �rst choose a (multiplicatively written) �nite abelian group

G and some element � 2 G. A then selects a random integer a and transmits �

a

to B. B in

turn selects a random integer b and transmits �

b

to A. Both A and B can then determine

�

ab

, which is their shared secret key.

An eavesdropper C monitoring the transmission between A and B would know G, �, �

a

,

and �

b

. The parameters G and � should be chosen so that it is computationally infeasible for

C to then determine �

ab

. Certainly, if C could compute either a or b, then C could determine

�

ab

. The problem of determining a given � and � = �

a

is called the discrete logarithm

problem in G. The integer a, which is unique if restricted to the range [0; order(�) � 1], is

called the discrete logarithm of � to the base �. It is an open problem to decide whether or

not determining �

ab

is equivalent to computing discrete logarithms in G. Among the other

cryptographic protocols whose security relies upon the discrete logarithm problem are the

ElGamal public-key encryption and digital signature schemes [12], and the recently adopted

U.S. Digital Signature Standard [29].

The best algorithms that are known for solving the discrete logarithm problem in an

arbitrary group G are the exponential square root attacks (see McCurley [24]) that have a

running time that is roughly proportional to the square root of the largest prime factor of

l, where l is the order of �. Consequently, if G and � are chosen so that l has a large prime

factor, then these attacks can be avoided.

Let F

q

denote the �nite �eld of order q, and let q = p

m

where p is the characteristic of F

q

.

Di�e and Hellman originally proposed G = F

�

q

, the multiplicative group of F

q

, as a candidate

for implementing the Di�e-Hellman key exchange. There are randomized subexponential-

time algorithms known for computing logarithms in F

q

. (See Coppersmith, Odlyzko and

Schroeppel [9] and Gordon [17] for the case q a prime, Odlyzko [30] for the case where

p = 2, and Adleman and DeMarrais [1] for the general situation.) These algorithms are an

asymptotic improvement over the general algorithms mentioned in the previous paragraph.

For cryptographic purposes we are interested in groups for which subexponential algorithms

for the corresponding discrete logarithm problem are not known. Additionally, for e�cient

and practical implementation, the group operation should be relatively easy to apply. The

jacobian of a hyperelliptic curve de�ned over a �nite �eld is one possibility for such a group.

To implement a discrete log cryptosystem using hyperelliptic curves, a suitable curve C

and underlying �nite �eld K must be selected. Desirable properties of the selected curve

and �eld include the following:

1. Arithmetic in the underlying �nite �eldK should be e�cient to implement; �nite �elds

of characteristic 2 appear to be the most attractive choice.
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2. The order of the jacobian J(K) of C, denoted #J(K), should be divisible by a large

prime number. Given the current state of computer technology, a security requirement

is that #J(K) be divisible by a prime number r of at least 45 decimal digits. In addi-

tion, to avoid the reduction attack of Frey and R�uck [13] which reduces the logarithm

problem in J(K) to the logarithm problem in an extension �eld of K = F

q

, r should

not divide q

k

� 1 for all small k for which the discrete logarithm problem in F

q

k
is

feasible (1 � k � 2000=(log

2

q) su�ces).

One technique for selecting a hyperelliptic curve and computing #J(K) is described next.

Let J be the jacobian of the hyperelliptic curve C de�ned over F

q

, and given by the equation

v

2

+h(u)v = f(u). Let F

q

n

denote the degree-n extension of F

q

, and let N

n

denote the order

of the (�nite) abelian group J(F

q

n

). Denote by M

n

the number of F

q

n

-rational points on C.

Associated with C is the zeta-function, de�ned next.

De�nition 53 (zeta function) Let C be a hyperelliptic curve de�ned over F

q

, and letM

r

=

#C(F

q

r

) for r � 1. The zeta-function of C is the power series

Z

C

(t) = exp

0

@

X

r�1

M

r

t

r

r

1

A

:

The following are some well-known facts (e.g., see [23]) about the zeta-function.

Theorem 54 (properties of the zeta-function) Let C be a hyperelliptic curve of genus g

de�ned over F

q

, and let Z

C

(t) be the zeta-function of C.

(i) Z

C

(t) 2Z(t). More precisely, we have

Z

C

(t) =

P (t)

(1 � t)(1� qt)

(9)

where P (t) is a polynomial of degree 2g with integer coe�cients. Moreover, P (t) has

the form:

P (t) = 1 + a

1

t+ � � �+ a

g�1

t

g�1

+ a

g

t

g

+

qa

g�1

t

g+1

+ q

2

a

g�2

t

g+2

+ � � �+ q

g�1

a

1

t

2g�1

+ q

g

t

2g

:

(10)

(ii) P (t) factors as

P (t) =

g

Y

i=1

(1 � �

i

t)(1� �

i

t); (11)

where each �

i

is a complex number of absolute value

p

q, and �

i

denotes the complex

conjugate of �

i

.
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(iii) N

n

= #J(F

q

n

) satis�es

N

n

=

g

Y

i=1

j1� �

n

i

j

2

; (12)

where j j denotes the usual complex absolute value.

In order to compute N

n

, it thus su�ce to (i) determine the coe�cients a

1

; a

2

; : : : ; a

g

of

P (t), hence determining P (t); (ii) factor P (t) thus determining the �

i

; (iii) compute N

n

via

equation (12). Now, multiplying both sides of equation (9) by (1 � t)(1� qt) yields

P (t) = (1 � t)(1� qt)Z

C

(t):

Taking logarithms of both sides and then di�erentiating with respect to t yields

P

0

(t)

P (t)

=

X

r�0

(M

r+1

� 1 � q

r+1

)t

r

:

By equating coe�cients of t

0

; t

1

; : : : ; t

g�1

of both sides, we see that the �rst g values

M

1

;M

2

; : : : ;M

g

su�ce to determine the coe�cients a

1

; a

2

; : : : ; a

g

and, hence, N

n

.

The following procedure summarizes the technique for computing N

n

in the case g = 2.

1. By exhaustive search, compute M

1

and M

2

.

2. The coe�cients of Z

C

(t) are given by a

1

=M

1

� 1� q and a

2

= (M

2

� 1� q

2

+ a

2

1

)=2.

3. Solve the quadratic equation X

2

+ a

1

X +(a

2

� 2q) = 0, to obtain two solutions 

1

and



2

.

4. Solve X

2

� 

1

X + q = 0 to obtain a solution �

1

, and solve X

2

� 

2

X + q = 0 to obtain

a solution �

2

.

5. Then N

n

= j1 � �

n

1

j

2

� j1� �

n

2

j

2

.

The following bounds on the order N

n

of the jacobian are an immediate corollary of

Theorem 54(iii).

Corollary 55 Let C be a hyperelliptic curve of genus g de�ned over F

q

, and let N

n

=

#J(F

q

n

). Then

(q

n=2

� 1)

2g

� N

n

� (q

n=2

+ 1)

2g

:

Hence, N

n

� q

ng

.
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Example 56 (selecting a hyperelliptic curve) Consider the following hyperelliptic curve C

of genus 2 de�ned over F

2

:

C : v

2

+ v = u

5

+ u

3

+ u:

By exhaustive search, we �ndM

1

= 3 andM

2

= 9; hence a

1

= 0 and a

2

= 2. The solutions of

X

2

�2 = 0 are 

1

=

p

2 and 

2

= �

p

2. SolvingX

2

�

p

2X+2 = 0 yields �

1

= (

p

2+

p

6i)=2;

solving X

2

+

p

2X + 2 = 0 yields �

2

= (�

p

2 +

p

6i)=2. Hence

N

n

= j1� �

n

1

j

2

� j1� �

n

2

j

2

=

8

>

>

>

<

>

>

>

:

2

2n

+ 2

n

+ 1; if n � 1; 5 (mod 6);

(2

n

+ 2

n=2

+ 1)

2

; if n � 2; 4 (mod 6);

(2

n

� 1)

2

; if n � 3 (mod 6);

(2

n=2

� 1)

4

; if n � 0 (mod 6):

For n = 101,

N

101

= 6427752177035961102167848369367185711289268433934164747616257;

and its prime factorization is

N

101

= 7 � 607 � 1512768222413735255864403005264105839324374778520631853993:

Hence N

101

is divisible by a 58-decimal digit prime r. However, since r divides (2

101

)

3

� 1,

the Frey-R�uck attack tells us that C o�ers no more security that a discrete log system in

F

2

303
. Hence the curve C is not suitable for cryptographic applications.

10 Future work

There are several areas of research that need to be pursued before hyperelliptic curve cryp-

tosystems may be adopted in practical applications.

1. The most important issue is with regards to the security of hyperelliptic curve cryp-

tosystems. More precisely, the security relies upon the hyperelliptic curve discrete

logarithm problem (HCDLP) which is the following: given a hyperelliptic curve C over

a �nite �eldK, and given reduced divisors D

1

, D

2

2 J(K), determine a positive integer

l such that D

2

= lD

1

, provided that such an integer exists.

If the order of the divisor D

1

is divisible by a large prime factor r, then the best algo-

rithm known for the HCDLP is an exponential one and takes O(

p

r) steps. However,

for special hyperelliptic curves, it may be possible to reduce the HCDLP to the DLP in

a small extension �nite �eld. Since there are subexponential-time algorithms known for

the DLP, this will yield a subexponential-time algorithm for the HCDLP; hyperelliptic

curves for which such reductions exist o�er no signi�cant advantages over �nite �elds

for the implementation of discrete log cryptosystems.
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Such a reduction was accomplished for the genus 1 hyperelliptic curves (or elliptic

curves) by Menezes, Okamoto and Vanstone [26]. Frey and R�uck [13] extended this

reduction to more general classes of abelian varieties. The reduction is e�cient for

some classes of hyperelliptic curves; the implications of the Frey-R�uck reduction to

hyperelliptic curve cryptography need to be fully explored.

Adleman, DeMarrais and Huang [2] recently discovered an algorithm for HCDLP which

takes subexponential time if the genus g of the curve is large. More precisely, if

the curve is de�ned over Z

p

, then the genus g should satisfy log p � (2g + 1)

0:98

.

Interestingly, the algorithm is worse than exhaustive search if specialized to the g = 1

case. It would be interesting to implement this algorithm, and to better understand

why it is ine�cient when the genus is small.

2. It could be useful to classify the isomorphism classes of hyperelliptic curves over �nite

�elds, in order to know how many essentially di�erent choices of curves there are.

3. Further research needs to be done on the e�cient implementation of the addition rule

in the jacobian. A more e�cient algorithm may arise by considering a di�erent form

of the de�ning equation or by restricting the genus to certain values (e.g., when g = 1,

the equation has a simple form). Cantor [5] described a reduction algorithm that

is asymptotically faster than Algorithm 2. Petersen [31] presented an algorithm for

addition in the jacobian when g = 2 which is comparable to that of Cantor's.

4. Another method for selecting a suitable hyperelliptic curve is to select at random

a de�ning equation over a large �nite �eld K, and compute #J(K) directly. Pila

[32] presented a generalization of Schoof's algorithm for computing the characteristic

polynomial P (t) of the Frobenius endomorphism of an abelian variety de�ned over

a �nite �eld in deterministic polynomial time. In the case that the variety is the

jacobian of an algebraic curve C de�ned over F

q

, the number of F

q

{rational points on

C is then easily recovered. Pila's algorithm, as it applies to hyperelliptic curves, should

be studied further and implemented.
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