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TABULATION OF CUBIC FUNCTION FIELDS VIA

POLYNOMIAL BINARY CUBIC FORMS

PIETER ROZENHART, MICHAEL JACOBSON JR., AND RENATE SCHEIDLER

Abstract. We present a method for tabulating all cubic function fields over
Fq(t) whose discriminant D has either odd degree or even degree and the
leading coefficient of −3D is a non-square in F∗

q , up to a given bound B on

deg(D). Our method is based on a generalization of Belabas’ method for tabu-
lating cubic number fields. The main theoretical ingredient is a generalization
of a theorem of Davenport and Heilbronn to cubic function fields, along with
a reduction theory for binary cubic forms that provides an efficient way to
compute equivalence classes of binary cubic forms. The algorithm requires
O(B4qB) field operations as B → ∞. The algorithm, examples and numerical
data for q = 5, 7, 11, 13 are included.

1. Introduction and motivation

In 1997, Belabas [3] presented an algorithm for tabulating all non-isomorphic
cubic number fields of discriminant D with |D| ≤ X for any X > 0. In the
above context, tabulation means that all non-isomorphic fields with discriminant
|D| ≤ X are listed or written to a file, by listing the minimal polynomial for each
respective field. The results make use of the reduction theory for binary cubic
forms with integral coefficients. A theorem of Davenport and Heilbronn [15] states
that there is a discriminant-preserving bijection between Q-isomorphism classes of
cubic number fields of discriminant D and a certain explicitly characterizable set
U of equivalence classes of primitive irreducible integral binary cubic forms of the
same discriminant D. Using this one-to-one correspondence, one can enumerate
all cubic number fields of discriminant D with |D| ≤ X by computing the unique
reduced representative f(x, y) of every equivalence class in U of discriminant D
with |D| ≤ X. The corresponding field is then obtained by simply adjoining a root
of the irreducible cubic f(x, 1) to Q. Belabas’ algorithm is essentially linear in X,
and performs quite well in practice.

In this paper, we give an extension of the above approach to function fields.
That is, we present a method for tabulating all Fq(t)-isomorphism classes of cubic
function fields over a fixed finite field Fq up to a given upper bound on the degree
of the discriminant, using the theory of binary cubic forms with coefficients in Fq[t],
where Fq is a finite field with char(Fq) �= 2, 3. The discriminant D must also satisfy
certain technical conditions, which we detail below.

This paper is a substantial expansion and extension of the material in [26] and
corresponds to Chapters 4 and 6 of the first author’s Ph.D thesis, prepared under
the supervision of the last two authors. The present paper includes a more detailed
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description of the algorithm in the unusual discriminant case and improved bounds
on the coefficients of a reduced form compared to those appearing in [26]. Another
somewhat complementary approach to tabulating cubic function fields different
from the one taken in this paper is described in [20], and relies on computations of
quadratic ideals to construct all cubic function fields of a given fixed discriminant.
The approach in [20] is limited to finite fields Fq where q ≡ −1 (mod 3), and unlike
our algorithm, considers only fixed discriminants and not all discriminants D with
deg(D) bounded above.

Our main tool is the function field analogue of the Davenport-Heilbronn theorem
[15] mentioned above, which generalizes to Dedekind domains (see Taniguchi [31]).
As in the case of integral forms, we also make use of the association of any binary
cubic form f of discriminant D over Fq[t] to its Hessian Hf which is a binary
quadratic form over Fq[t] of discriminant −3D. Under certain conditions on the
discriminant, this association can be exploited to develop a reduction theory for
binary cubic forms over Fq[t] that is analogous to the reduction theory for integral
binary cubic forms. Suppose that deg(D) is odd, or that deg(D) is even and the
leading coefficient of −3D is a non-square in F∗

q . We will establish that under
these conditions, the equivalence class of f contains a unique reduced form, i.e., a
binary cubic form that satisfies certain normalization conditions and has a reduced
Hessian. Thus, equivalence classes of binary cubic forms can be efficiently identified
via their unique representatives. The case where deg(D) is odd is analogous to the
case of definite binary quadratic forms, but the other case has no number field
analogue.

Our tabulation method proceeds analogously to the number field scenario. The
function field analogue of the Davenport-Heilbronn theorem states that there is a
discriminant-preserving bijection between Fq(t)-isomorphism classes of cubic func-
tion fields of discriminant D ∈ Fq[t] and a certain set U of primitive irreducible
binary cubic forms over Fq[t] of discriminant D. Hence, in order to list all Fq(t)-
isomorphism classes of cubic function fields up to an upper bound B on deg(D), it
suffices to enumerate the unique reduced representatives of all equivalence classes
of binary cubic forms of discriminant D for all D ∈ Fq[t] with deg(D) ≤ B. Bounds
on the coefficients of such a reduced form show that there are only finitely many
candidates for a fixed discriminant. These bounds can then be employed in nested
loops over the coefficients to test whether each form found lies in U . The coefficient
bounds obtained for function fields are different from those used by Belabas for
number fields, due to the fact that the degree valuation is non-Archimedean. In
fact, we obtain far simpler and more elegant bounds than those in the number field
case.

This paper is organized as follows. Section 2 begins with some background ma-
terial on algebraic function fields. The reduction theory for imaginary and unusual
binary quadratic forms and binary cubic forms over Fq[t] is developed in Sections
3 and 4, respectively. The derivation of the bounds on the coefficients of a reduced
binary cubic form appears in Section 5. The Davenport-Heilbronn Theorem for
cubic function fields is presented in Section 6. We detail the tabulation algorithm
as well as numerical results in Section 7. Finally, we conclude with some open
problems and future research directions in Section 8.
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2. Preliminaries

For a general introduction to algebraic function fields, we refer the reader to
Rosen [24] or Stichtenoth [30]. Let Fq be a finite field of characteristic at least 5,
and set F∗

q = Fq\{0}. Denote by Fq[t] and Fq(t) the ring of polynomials and the
field of rational functions in the variable t over Fq, respectively. For any non-zero

H ∈ Fq[t] of degree n = deg(H), we let |H| = qn = qdeg(H), and denote by sgn(H)
the leading coefficient of H. For H = 0, we set |H| = 0. This absolute value
extends in the obvious way to Fq(t). Note that in contrast to the absolute value on
the rational numbers, the absolute value on Fq(t) is non-Archimedean.

An algebraic function field is a finite extension K of Fq(t); its degree is the field
extension degree n = [K : Fq(t)]. It is always possible to write a function field as
K = Fq(t, y) where F (t, y) = 0 and F (Y ) is a monic polynomial of degree n in Y
with coefficients in Fq[t] that is irreducible over Fq(t). We assume that Fq is the
full constant field of K, i.e., F (Y ) is absolutely irreducible.

A homogeneous polynomial in two variables of degree 2, with coefficients in Fq[t],
of the form

f(x, y) = Ax2 +Bxy + Cy2

is called a binary quadratic form over Fq[t]. We abbreviate the form as f =
(A,B,C). Similarly, a homogeneous polynomial in two variables of degree 3, with
coefficients in Fq[t], of the form

f(x, y) = ax3 + bx2y + cxy2 + dy3

is called a binary cubic form over Fq[t]. We abbreviate the form f(x, y) by f =
(a, b, c, d). The discriminant D of a binary quadratic form f = (A,B,C) is D(f) =
B2− 4AC. In a similar vein, the discriminant of a binary cubic form f = (a, b, c, d)
is D = D(f) = 18abcd + b2c2 − 4ac3 − 4b3d − 27a2d2. We will assume that all
forms are primitive, irreducible over Fq[t], and have distinct roots and thus non-
zero discriminant.

Let D be a polynomial in Fq[t]. Then D is said to be imaginary if D has odd
degree, unusual ifD has even degree and sgn(D) is a non-square in F∗

q , and real ifD
has even degree and sgn(D) is a square in F∗

q . Correspondingly, a binary quadratic
form is said to be imaginary, unusual or real according to whether its discriminant
is imaginary, unusual or real. These terms have their origins in quadratic number
fields. If D is imaginary (resp. real), then the quadratic function field Fq(t,

√
D)

shows many similarities to an imaginary (resp. real) quadratic number field, such
as the splitting of the infinite place of Fq(t) and the unit group structure. For D

unusual, there is no number field analogue to the function field Fq(t,
√
D). The

terminology “unusual” is due to Enge [18], and we adopt this terminology for
quadratic fields and binary quadratic forms in this paper.

Integral binary forms have a rich history going back to Lagrange and Gauss, and
many important applications (see Buchmann and Vollmer [7] and Buell [8]). Their
reduction theory was developed for positive definite forms first, as this case is the
most straightforward. Recall (from Buell [8], Chapters 1 and 2, for example) that an
integral binary quadratic form (A,B,C) is definite if its discriminant is negative.
In this case, both A and C have the same sign. One then further specializes to
positive definite forms; these are forms with negative discriminant and A > 0 (and
hence C > 0). In other words, one considers the element f = (A,B,C) in the
associate class of definite forms with A > 0. Correspondingly, if f = (A,B,C) is
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a binary quadratic form over Fq[t] with imaginary or unusual discriminant, then
we say that f is positive definite if sgn(A) is a square in F∗

q , and negative definite
otherwise.

We summarize a few useful notions and results pertaining to binary quadratic
and cubic forms over Fq[t] below. These results are completely analogous to their
well-known counterparts for integral binary quadratic forms, found in Chapter 8 of
Cohen [10].

The set

{M : M is a 2× 2 matrix with entries in Fq[t] and det(M) �= 0}
is denoted by Mat2(Fq[t]). As usual, the set

GL2(Fq[t]) = {M : M ∈ Mat2(Fq[t]) with det(M) ∈ F∗
q}

denotes the general linear group of degree 2.

Let f be a binary quadratic or cubic form and M =
(

α β
γ δ

)
∈ Mat2(Fq[t]). The

action of M on f is given by f ◦M = f(αx+ βy, γx + δy). Using this action, we
give the definition of equivalence, which differs slightly from [26] in that the extra
multiplication of f by a unit is removed. This was done to simplify some of the
subsequent work. Two binary forms f and g over Fq[t] are said to be equivalent if

f(αx+ βy, γx+ δy) = g(x, y)

for some α, β, γ, δ ∈ Fq[t] with αδ − βγ ∈ F∗
q , i.e., g = f ◦ M for some M ∈

GL2(Fq[t]). We immediately obtain equations for the coefficients of equivalent
binary quadratic forms, namely, if f = (A,B,C) and g = (A′, B′, C ′) = f ◦ M ,
with M as above, then

A′ = Aα2 +Bαγ + Cγ2,(2.1)

B′ = 2Aαβ +B(αδ + βγ) + 2Cγδ,(2.2)

C ′ = Aβ2 +Bβδ + Cδ2.(2.3)

Analogous formulas for binary cubic forms are also easy to obtain, and are omitted.
We note that it is indeed possible for a positive definite unusual form to be

equivalent to a negative definite form. For instance, fix a primitive root h of F∗
q If

|A| = |C| with sgn(A) = 1 (so f is positive definite) and q ≡ 1 (mod 4) (so −h/4 is
a non-square), then swapping A and C yields an equivalent negative definite form.

Proposition 2.1. Let M =
(

α β
γ δ

)
∈ Mat2(Fq[t]) and f a binary quadratic or

cubic form over Fq[t]. Then the following hold:

(1) D(f ◦M) = (αδ − βγ)2 ·D(f), if f is a binary quadratic form.
(2) D(f ◦M) = (αδ − βγ)6 ·D(f), if f is a binary cubic form.
(3) If M is non-singular, then f ◦M is irreducible over Fq[t] if and only if f

is irreducible.
(4) If M is non-singular, then f ◦M is primitive if and only if f is primitive.

By Proposition 2.1, up to an even power of det(M), equivalent binary quadratic
and cubic forms have the same discriminant. In addition, primitivity and irre-
ducibility are preserved by the action just defined, provided the transformation
matrix is non-singular.

We finish this section by introducing the Hessian of a binary cubic form, along
with some of its properties which are easily verified by straightforward computation.
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Definition 2.2. Let f = (a, b, c, d) be a binary cubic form over Fq[t]. The Hessian
of f and the polynomials P,Q,R are given by

Hf (x, y) = −1

4
det

(
∂2f
∂x∂x

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y∂y

)
= Px2 +Qxy +Ry2,

where P = b2 − 3ac, Q = bc− 9ad and R = c2 − 3bd.

Note that Hf is a binary quadratic form over Fq[t].

Proposition 2.3. Let f = (a, b, c, d) be a binary cubic form over Fq[t] with Hessian
Hf = (P,Q,R). Then the following properties are satisfied.

(1) For any M ∈ Mat2(Fq[t]), we have Hf◦M = (detM)2 ·Hf ◦M .
(2) D(Hf ) = −3 ·D(f).

3. Reduction of binary quadratic forms over Fq[t]

In this section, we give the reduction theory for binary quadratic forms with
polynomial coefficients, due to Artin [1]. A modified version of Artin’s material
is presented here, as he does not consider binary quadratic forms, but only their
roots, which results in a simpler treatment. Furthermore, some of his presentation
is streamlined in this paper, using more modern notation.

The reduction theory for binary quadratic and cubic forms allows us to single out
a unique representative in each equivalence class of forms. The theory also enables
the efficient computation of this representative, and demonstrates that there are
only finitely many such equivalence classes for any given non-zero discriminant D
in the case of binary quadratic forms. The case where D is a real discriminant of a
binary quadratic form is excluded from the paper.

The following conventions will be adopted. As before, let Fq be a finite field
of characteristic at least 5. Fix a primitive root h of F∗

q . We predefine the set

S = {hi : 0 ≤ i ≤ (q − 3)/2}, so that a ∈ S if and only if −a /∈ S. As in Artin
[1], the discriminant D of f is also endowed with the normalization sgn(D) = 1 or
sgn(D) = h, where 1 or h is chosen depending on whether or not sgn(D) is a square
in F∗

q . We choose this normalization in order to avoid the possibility of forms being
equivalent to each other while possessing different discriminants. By Proposition
2.1, the discriminant of a form can only change by a square factor of a finite field
element, so normalizing to a single square or non-square sign value accomplishes
this task.

We provide the reduction theory for binary quadratic forms over Fq[t]. We will
treat the imaginary and unusual scenarios in parallel where possible, but there are
significant differences. The case of unusual binary quadratic forms differs from
that of imaginary forms (see [25]), as it has no number field analogue. Another
crucial difference is as follows: the analogous definition of “reduced” does not lead
to a unique representative in each equivalence class in the case that |A| = |C|,
but instead to q+1 equivalent forms, called partially reduced forms, defined below.
To achieve uniqueness, a distinguished representative among these q+1 equivalent
partially reduced forms needs to be identified.

For the remainder of this section, let f = (A,B,C) be an imaginary or unusual
binary quadratic form with discriminant D. Recall that we only consider irreducible
forms, hence A �= 0. Furthermore, our earlier assumption that Fq is the full constant

field of the function field Fq(t,
√
D) implies that D /∈ Fq.
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Definition 3.1. An imaginary or unusual binary quadratic form f = (A,B,C)
over Fq[t] is partially reduced if it satisfies the following conditions:

(1) |B| < |A| ≤ |C|.
(2) If |A| < |C|, then sgn(A) ∈ {1, h}, and if |A| = |C|, then sgn(A) = 1.
(3) B �= 0 implies sgn(B) ∈ S.

Note that |B| < |A| ≤ |C| if and only if |B| < |A| ≤ |D|1/2, and that reduced
unusual forms are always positive definite. The exponent in |D|1/2 = qdeg(D)/2

in the above lemma is a half integer in the case where f is an imaginary binary
quadratic form, so property (1) above is in fact equivalent to |B| < |A| < |C|.
However, in the case of unusual binary quadratic forms, the exponent in

√
|D| =

qdeg(D)/2 is an integer. Hence, equality |A| = |C| = |D|1/2 may in fact occur in this
case.

Proposition 3.2. Every binary quadratic form is equivalent to a partially reduced
binary quadratic form f = (A,B,C) of the same discriminant.

Proof. The procedure to find f satisfying property (1) above is completely analo-
gous to the one for integral binary quadratic forms; see Algorithms 5.1–5.3, page
87 of Buchmann and Vollmer [7], or [25]. Now, let f = (A,B,C) be a binary qua-
dratic form satisfying condition (1) of Definition 3.1. If |A| < |C| and sgn(A) �= 1
or h, then we replace f(x, y) by f(ε−1x, εy), where ε2 = sgn(A) if f is positive
definite and ε2 = sgn(A)h−1 if f is negative definite. In other words, replace f
with f ◦M , where M =

(
ε−1 0
0 ε

)
. This will yield a form satisfying |B| < |A| ≤ |C|

and sgn(A) ∈ {1, h}.
If |A| = |C|, then consider the norm map from Fq(

√
h) down to Fq; this map is

always surjective (see, for example, Theorem 2.28, p. 54 of [22]). Thus, sgn(A)−1 ∈
F∗
q is the norm of some element α + ε

√
h in Fq(

√
h) (α, ε ∈ Fq). It is now easy to

see from equations (2.1)–(2.3) that the transformation matrix
(

α hε/2
2 sgn(A)ε sgn(A)α

)
of determinant 1 yields a binary quadratic form f ′ = (A′, B′, C ′) with sgn(A′) = 1
and |B′| < |A′| = |C ′|.

Finally, If B �= 0, then sgn(B) ∈ S is achieved by transforming f with J =(
1 0
0 −1

)
if necessary. �

If f = (A,B,C) is a partially reduced form with |A| = |C| and −1 is a non-
square in Fq, then −4/h = sgn(C)−1 is a square in Fq, say −4/h = ε2. Then

(A,B,C) is equivalent to (ε2C,B, ε−2A) via the matrix
(
0 ε−1

ε 0

)
. Hence, additional

normalization conditions will be needed to obtain a unique representative in each
equivalence class in the case when |A| = |C|. We now characterize when two
partially reduced binary quadratic forms are equivalent.

Theorem 3.3. Let f = (A,B,C) and f ′ = (A′, B′, C ′) be two partially reduced
binary quadratic forms of the same discriminant. Then the following hold:

(1) If |A| < |C| and |A′| < |C ′|, then f and f ′ are equivalent if and only if
f = f ′.

(2) If |A| < |C| and |A′| = |C ′|, then f and f ′ are not equivalent.
(3) If |A| = |C| and |A′| = |C ′|, then f and f ′ are equivalent with f ′ = f ◦M

if and only if

M =

(
α β

4uβ/h uα

)
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where α, β ∈ Fq, α
2 − (4/h)β2 = 1, u := det(M) = ±1, and if B′ �= 0, then

u is determined by the condition sgn(B′) ∈ S.

Proof. Suppose that f ′ = f◦M , withM =
(

α β
γ δ

)
and u := det(M) = αδ−βγ ∈ F∗

q .

Then u = ±1 by Proposition 2.1, since f, f ′ have the same discriminant.
Since (A′, B′, C ′) = f(αx + βy, γx + δy), equations (2.1)-(2.3) hold. Since f =

f ′ ◦M−1, we also obtain:

uA = A′δ2 −B′γδ + C ′γ2,(3.1)

uB = −2A′βδ +B′(αδ + βγ)− 2C ′αγ,(3.2)

uC = A′β2 −B′αβ + C ′α2.(3.3)

Forming appropriate products of (2.1), (2.3), (3.1) and (3.3) yields:

4uAA′ = (2Aα+Bγ)2 −Dγ2,(3.4)

4uCA′ = (2Cγ +Bα)2 −Dα2,(3.5)

4uAC ′ = (2Aβ +Bδ)2 −Dδ2,(3.6)

4uCC ′ = (2Cδ −Bβ)2 −Dβ2.(3.7)

Suppose first that |A| < |C|, so |A| < |D|1/2. Then by equation (3.4), |A′| ≤ |D|1/2
and

|(2Aα+Bγ)2 −Dγ2| < |D|.

Since the leading terms of the expressions (2Aα+ Bγ)2 and Dγ2 on the left-hand
side of the above inequality cannot cancel, this forces γ = 0. Thus det(M) = αδ,
and hence α, δ ∈ F∗

q . Now (2.1) implies |A| = |A′|. Then |D| = |AC| = |A′C ′|
precludes the possibility that |A′| = |C ′|, which proves part (2) of Theorem 3.3.
Furthermore, (2.2), together with |B|, |B′| < |A| forces β = 0. Thus β = γ = 0.
Then equations (2.1)–(2.3) yield A′ = Aα2, B′ = B(αδ), C ′ = Cδ2.

It follows that det(M) = αδ = ±1. Since both sgn(A) and sgn(A′) are either
squares (in which case they are both 1) or non-squares (in which case they are both
h), we thus obtain α2 = 1. Hence α = ±1. This yields four possibilities for the
matrix M : ±I,±J , where J =

(
1 0
0 −1

)
. If B = 0 = B′, then f = f ′. If B �= 0, then

both sgn(B), sgn(B′) ∈ S, which means that αδ = 1. This leaves M = ±I, hence
f = f ′, as desired, completing the proof of part (1).

To prove part (3), suppose now that |A| = |C| = |A′| = |C ′| = |D|1/2; in
particular, D is an unusual discriminant. First, we deduce that α, β, γ, δ ∈ Fq

under this assertion. To see this, note that the absolute value of each of the left-
hand sides of equations (3.4)–(3.7) above equals |D|. Note also that there cannot be
cancellation of leading terms on the right-hand side of each of the above equations,
since sgn(D) is a non-square. Thus, the only way that (3.4)–(3.7) can hold is
if α, β, γ, δ ∈ Fq. Recall that sgn(A) = sgn(A′) = 1, sgn(D) = h and thus

sgn(C) = sgn(C ′) = −h/4. If we compare the coefficients of tdeg(A) of both sides
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of equations (2.1)–(2.3), we obtain

1 = α2 +

(
−h

4

)
γ2,(3.8)

0 = αβ +

(
−h

4

)
γδ,(3.9)

1 =

(
−4

h

)
β2 + δ2.(3.10)

If γ = 0, then we deduce as before that M = ±I or M = ±J , where J =
(
1 0
0 −1

)
.

The case M = ±J can only occur when B = 0.
If γ �= 0, then from equation (3.9), we obtain

δ =
4

h

αβ

γ
.

From equations (3.10) and (3.8), it follows that

1 =

(
−4

h

)
β2 +

(
16

h2

)
α2β2

γ2
=

16

h2

β2

γ2
.

Hence, γ2 = (16/h2)β2 and so γ = ±(4/h)β. Write γ = e(−4/h)β with e = ±1.
Then

δ =
4

h

αβ

γ
= −eα.

Then by (3.8),

u = αδ − βγ = −e α2 − e
−h

4
γ2 = −e

(
α2 +

−h

4
γ2

)
= −e.

Hence

M =

(
α β

(4uβ)/h uα

)
with α, β ∈ Fq, α

2 − (4/h)β2 = 1 and u = det(M) = ±1 as desired. Any change in
u between 1 and −1 clearly changes the sign of B′ if B′ �= 0, so u is determined by
sgn(B′) in this case. �

We note that with the same notion of reducedness, Theorem 3.3 is not true for
real binary quadratic forms, as one cannot deduce that α, β, γ, δ ∈ Fq in the same
way as in the proof of Theorem 3.3.

Part (3) of Theorem 3.3 now yields the following:

Corollary 3.4. Any unusual partially reduced binary quadratic form f = (A,B,C)
satisfying |A| = |C| is equivalent to exactly q+1 distinct partially reduced quadratic
forms with the same discriminant.

Proof. Consider the equation α2 − (4/h)β2 = 1 in part (3) of Theorem 3.3. This
equation always has a solution, namely (α, β) = (1, 0). Since 4/h is a non-square in
F∗
q , this equation is a non-degenerate conic in α and β. Since this conic has at least

one solution, it has q + 1 distinct solutions (see Casse [9], page 140 or Hirschfeld
[19], page 141). Each of these q + 1 solutions yields a binary quadratic form f ′

equivalent to f , as given in Theorem 3.3. �

Definition 3.5. Let f = (A,B,C) be an imaginary or unusual partially reduced
binary quadratic form.
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(1) If |A| < |C|, then f is called reduced.
(2) If |A| = |C|, then f is called reduced if it is lexicographically smallest

amongst all the partially reduced forms in its equivalence class.

Theorem 3.6. (1) (Existence and Uniqueness) Every imaginary or unusual binary
quadratic form over Fq[t] is equivalent to a unique reduced binary quadratic
form with the same discriminant.

(2) (Finiteness) There are only finitely many reduced imaginary or unusual
binary quadratic forms with fixed discriminant D.

Proof. Part (1) is obvious. To obtain part (2), note that if f = (A,B,C) is reduced,
then |B| < |D| = |AC|. It is clear that only a finite number of triples (A,B,C) in
Fq[t]

3 can satisfy these conditions. �
Following Buell [8], any matrix M such that f = f ◦ M is called an automor-

phism of f . Automorphisms of binary quadratic forms need to be considered in the
development of the reduction theory of binary cubic forms, and can only occur in
very specific cases if a binary quadratic form is reduced:

Theorem 3.7. Suppose f = (A,B,C) is a partially reduced imaginary or unusual
binary quadratic form such that f = f ◦M for some M ∈ GL2(Fq[t]). If |A| < |C|,
then M = ±I, or M = ±J if B = 0, where J =

(
1 0
0 −1

)
. If |A| = |C|, then

M =
(

α β
−uλβ uα

)
where α, β ∈ Fq, λ = −4/h and u := det(M) = ±1. If β �= 0,

then B �= 0, and α = uβ(Cλ−A)/B ∈ Fq. Hence, such non-trivial transformations
exist if and only if ((Cλ − A)/B)2 + λ is a square in F∗

q , in which case there are
two such non-trivial automorphisms.

Proof. Let M =
(

α β
γ δ

)
. Since f = f ◦M , we obtain from equation (3.4), with f ′

replaced with f , that
4uA2 = (2Aα+ γB)2 −Dγ2.

If |A| < |C|, then |A|2 < D, so γ = 0 and we obtain from equation (2.1) that α ∈ Fq

with α2 = 1. Then, as in the proof of Theorem 3.3, we obtain M = ±I or ±J ,
where the latter two cases force B = 0.

Now suppose that |A| = |C|. Then γ = (4uβ)/h and δ = uα by the proof of
Theorem 3.3, α2 − (4/h)β2 = 1 and u = ±1 is uniquely determined. If β �= 0, then
B �= 0. To see this, suppose β �= 0 and B = 0. Then it follows from equation (2.1)
that

0 = A(α2 − 1) + C(λ2β2) = A(−λβ2) + Cλ2β2 = λβ2(Cλ−A),

therefore A = λC. Since D /∈ Fq and f is assumed to be primitive by Proposition
2.1(4), we have the required contradiction.

Hence B �= 0. Again, by equation (2.1), we obtain

0 = A(α2 − 1)−Buλαβ + Cλ2β2

= −Aλβ2 −Buλαβ + Cλ2β2

= λβ (β(Cλ−A)− uαB).

Therefore, uαB = β(Cλ−A) and solving for α yields α = uβ(Cλ−A)/B, as desired.
To see that ((Cλ−A)/B)2+λ is a square in F∗

q , we substitute α = uβ(Cλ−A)/B

into α2 + λβ2 = 1 to obtain

[((Cλ−A)/B)2 + λ]β2 = 1.
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So such a non-trivial automorphism exists if and only if ((Cλ − A)/B)2 + λ is a
square in F∗

q . In that case, there are two solutions for β, and for each of these
solutions, there is exactly one solution for α, since u is determined by sgn(B) ∈ S.
This completes the proof. �

We note that if |A| = |C|, the case β = 0 is still possible and yields the same
four matrices as for |A| < |C|.

4. Reduction of binary cubic forms over Fq[t]

In this section, we describe the reduction theory for binary cubic forms. Once
again, this theory allows us to single out a unique representative for each equiv-
alence class of binary cubic forms, in a similar way to the reduction theory for
binary quadratic forms. Throughout this section −3D is an imaginary or unusual
discriminant such that sgn(−3D) ∈ {1, h}. Furthermore, h and S are as in Section
3. Recall that our irreducibility assumption forces ad �= 0 for any binary cubic form
f = (a, b, c, d).

Definition 4.1. Let f = (a, b, c, d) be a binary cubic form with imaginary or
unusual Hessian Hf = (P,Q,R).

(1) If Hf is imaginary, then f is reduced if Hf is reduced, sgn(a) ∈ S, and if
Q = 0, then sgn(d) ∈ S.

(2) If Hf is unusual, then f is reduced if Hf is reduced, sgn(a) ∈ S, if Q = 0,
then sgn(d) ∈ S, and f is the lexicographically smallest among all equiva-
lent binary cubic forms with the same reduced Hessian Hf that satisfy the
previous conditions.

The normalization on sgn(a) is needed because f and −f have the same Hessian.
The normalization of sgn(d) in the case when Q = 0 is required because in this
case, Hf has automorphisms ±J with J =

(
1 0
0 −1

)
, so f = (a, b, c, d) and f =

(a,−b, c,−d) have the same reduced Hessian.
In order to obtain a unique reduced binary cubic form in the case where the

unusual Hessian is non-trivially equivalent to itself, we employ the same technique
that was used for unusual binary quadratic forms. That is, we adopt the convention
of choosing the binary cubic form that is the smallest in terms of lexicographical
order as specified in Section 3. Note that it is straightforward to detect whether or
not a Hessian has non-trivial automorphisms: by Theorem 3.7, it simply requires
checking whether or not (4R/h+P )/Q)2−4/h is a square in F∗

q . The lexicographical
minimization condition eliminates ambiguity in case of non-trivial automorphisms
of the Hessian. Collectively, the above conditions ensure uniqueness of reduced
representatives:

Theorem 4.2. Every binary cubic form f with imaginary or unusual Hessian is
equivalent to a unique reduced binary cubic form with imaginary or unusual Hessian
of the same discriminant.

Proof. By Proposition 2.3 and Theorem 3.6, f is equivalent to a binary cubic form
of the same discriminant with reduced Hessian, so we can assume, without loss of
generality, that Hf is reduced.

If sgn(a) /∈ S, then replace f by −f = f ◦ (−I). If sgn(a) ∈ S, Q = 0 and
sgn(d) /∈ S, then replace f by f ◦ J , where J =

(
1 0
0 −1

)
. The resulting form,
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again denoted by f , has reduced Hessian and satisfies the required normalization
conditions on a and d.

Finally, suppose that there exists a matrix M ∈ GL2(Fq[t]) with Hf ◦M = Hf as
described in Theorem 3.7, such that f ◦M also satisfies the required normalization
conditions. Then replace f by the lexicographically smallest among f and f ◦M for
all permissible choices of M . The resulting binary cubic form is reduced. Moreover,
none of the above transformations change D(f) or Hf .

To obtain uniqueness, suppose f = (a, b, c, d) and f ′ = (a′, b′, c′, d′) are reduced
and equivalent. Then there exists a matrix M ∈ GL2(Fq[t]) with f ′ = f ◦M . Set
u = det(M). Then by Proposition 2.3, Hf ′ = u2Hf ◦M = Hf ◦ (uM). Hence Hf ′

and Hf are equivalent, via the transformation matrix uM . By assumption, Hf ′

and Hf are reduced and hence equal by Theorem 3.6. By Proposition 2.3, Hf has
discriminant −3D(f).

Write Hf = (P,Q,R). If |P | < |R|, then by Theorem 3.7, uM = I or −I or J
or −J , where the latter two cases force Q = 0. Since det(uM) = u2 det(M) = u3,
it follows that u3 = 1 or −1. Thus a′ = au−3 if uM = I or J , and a′ = −au−3

if uM = −I or −J. If uM = J , then u3 = det(uM) = det(J) = −1, and hence
a′ = au−3 = −a, which contradicts sgn(a), sgn(a′) ∈ S. If uM = −I, then
u3 = 1, and hence a′ = −au−3 = −a, again a contradiction. If uM = −J , then
u3 = det(−J) = −1. In this case, Hf ′ = Hf implies Q = 0, so sgn(d), sgn(d′) ∈ S.
But then f ′ = u−3f ◦ (−J) implies d′ = du−3 = −d, a contradiction. So we must
have uM = I, and hence u3 = 1. It follows that f ′ = u−3f ◦ (uM) = f ◦ I = f .
This completes the proof for the case |P | < |R|.

If |P | = |R|, then the lexicographical minimality of f and f ′ forces f = f ′. �

5. Coefficient bounds for reduced forms

We now present bounds on the coefficients of a reduced binary cubic form with
imaginary or unusual Hessian. The motivation for these bounds is to establish that
the set of reduced binary cubic forms up to any fixed discriminant degree is in fact
finite, which yields a result analogous to part (2) of Theorem 3.6 for cubic forms.
This also ensures that the search procedure in Section 7 terminates because the
search space is finite. Moreover, we seek optimal bounds on the coefficients of a
reduced binary cubic form so that the search procedure in Section 7 is as efficient
as possible, as smaller upper bounds give rise to shorter loops.

The following equality appears in Cremona [12], and is easily verified by straight-
forward computation.

Lemma 5.1. Let f = (a, b, c, d) be a binary cubic form with coefficients in Fq[t]
with imaginary or unusual Hessian Hf = (P,Q,R). Let U = 2b3 + 27a2d − 9abc.
Then

4P 3 = U2 + 27a2D.

Corollary 5.2. With the notation of Lemma 5.1, we have |U |2 ≤ |P |3 and |a2D| ≤
|P |3.

Proof. Since −3D is imaginary or unusual, there can be no cancellation between
the two summands on the right-hand side of the identity of Lemma 5.1. Hence,
neither term can exceed |P |3 in absolute value. �
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Theorem 5.3. Let f = (a, b, c, d) be a reduced binary cubic form over Fq[t] of

discriminant D with imaginary or unusual Hessian (P,Q,R). Then |a| ≤ |D|1/4,
|b| ≤ |D|1/4, |bc| ≤ |D|1/2 and |ad| ≤ |D|1/2.

Proof. We have |Q| < |P | ≤ |D|1/2. By Lemma 5.1, |a|2 ≤ |P |3/|D| ≤ |P | ≤ |D|1/2.
Now an easy computation reveals U = 2bP − 3aQ. This, together with |U | ≤

|P |3/2 and |aQ| < |aP | ≤ |P |3/2, implies |bP | ≤ max{|U |, |aQ|} ≤ |P |3/2; whence
(5.1) |b| ≤ |P |1/2 ≤ |D|1/4.

For the remainder of the claim, it suffices to prove only one of |ad| ≤ |D|1/2 and
|bc| ≤ |D|1/2, as any one of these inequalities, together with Q = bc− 9ad, implies
the other.

Now by (5.1), |ac| = |b2 − P | ≤ |D|1/2. If |b| ≤ |a|, then |bc| ≤ |ac| ≤ |D|1/2. If
|d| ≤ |c|, then |ad| ≤ |ac| ≤ |D|1/2.

Finally, suppose that |a| < |b| and |c| < |d|. It is easy to verify that bR +
3dP − cQ = 0. Thus, |cQ| < |dP | implies |dP | = |bR|. It follows from (5.1) that
|bdP | = |b2R| ≤ |PR|, so |bd| ≤ |R|. This in turn implies |c|2 = |3bd + R| ≤ |R|,
and hence again from (5.1), |bc|2 ≤ |PR| = |D|, as claimed. �

These bounds are indeed sharp. An example of a reduced binary quadratic form
over F5[t] where |a| = |b| = |c| = |d| = |D|1/4 is f = (a, b, c, d) = (2t+4, 3t+4, 3t+
3, 3t+ 1), where D = t4 + 4t3 + t2 + 3.

We use the bounds of Theorem 5.3 for our tabulation algorithm. Specifically, we
loop over all a, b, c, d satisfying these bounds. An upper bound on |abcd| determines
how often the inner most loop is entered. By Theorem 5.3, such a bound is given
by |D|. Hence, |D| is an upper bound on the number of forms of discriminant D
that the algorithm checks for membership in the Davenport-Heilbronn set U .

6. The Davenport-Heilbronn Theorem

We now briefly discuss the Davenport-Heilbronn theorem for function fields. The
original Davenport-Heilbronn theorem [15] states that there exists a discriminant-
preserving bijection from a certain set U of equivalence classes of integral binary
cubic forms of discriminant D to the set of Q-isomorphism classes of cubic fields
of the same discriminant D. Therefore, if one can compute the unique reduced
representative f of any class of forms in U of discriminant D with |D| ≤ X, then
this leads to a list of minimal polynomials f(x, 1) for all cubic fields of discriminant
D with |D| ≤ X.

The situation for cubic function fields is completely analogous. We now state the
function field version of the Davenport-Heilbronn theorem, describe the Davenport-
Heilbronn set U for function fields, and provide a fast algorithm for testing mem-
bership in U that is in fact more efficient than its counterpart for integral forms.

For brevity, we let [f ] denote the equivalence class of any primitive binary cubic
form f over Fq[t]. Fix any irreducible polynomial p ∈ Fq[t]. Analogous to [3, 4, 10],
we define Vp to be the set of all equivalence classes [f ] of binary cubic forms such
that p2 � D(f). In other words, if D(f) = i2Δ where Δ is square-free, then f ∈ Vp

if and only if p � i. Hence, f ∈
⋂

p Vp if and only if D(f) is square-free.

Now let Up be the set of equivalence classes [f ] of binary cubic forms over Fq[t]
such that

• either [f ] ∈ Vp, or
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• f(x, y) ≡ λ(δx − γy)3 (mod p) for some λ ∈ Fq[t]/(p)
∗, γ, δ ∈ Fq[t]/(p),

and in addition, f(γ, δ) �≡ 0 (mod p2).

For brevity, we summarize the condition f(x, y) ≡ λ(δx − γy)3 (mod p(t)) for
some γ, δ ∈ Fq[t]/(p) and λ ∈ Fq[t]/(p)

∗ with the notation (f, p) = (13) as was done
in [14, 15].

Finally, we set U =
⋂

p Up. The set U is the set under consideration in the

Davenport-Heilbronn theorem. The version given below appears in [25]. A more
general version of this theorem for Dedekind domains appears in Taniguchi [31].

Theorem 6.1. Let q be a prime power with gcd(q, 6) = 1. Then there exists a
discriminant-preserving bijection between Fq(t)-isomorphism classes of cubic func-
tion fields and classes of binary cubic forms over Fq[t] belonging to U . This bijection
maps a class [f ] ∈ U to the triple of Fq(t)-isomorphic cubic fields that have minimal
polynomial f(x, 1).

In order to convert Theorem 6.1 into an algorithm, we require a fast method for
testing membership in the set U . This is aided by the following efficiently testable
conditions:

Proposition 6.2. Let f = (a, b, c, d) be a binary cubic form over Fq[t] with Hessian
Hf = (P,Q,R). Let p ∈ Fq[t] be irreducible. Then the following hold:

(1) (f, p) = (13) if and only if p | gcd(P,Q,R).
(2) If (f, p) = (13), then f ∈ Up if and only if p3 � D(f).

In addition, classes in U contain only irreducible forms; this result can be found
for integral cubic forms in Chapter 8 of [10], and is completely analogous for forms
over Fq[t].

Theorem 6.3. Any binary cubic form whose equivalence class belongs to U is
irreducible.

By Theorem 6.1, if [f ] ∈ U , then f(x, 1) is the minimal polynomial of a cubic
function field over Fq(t). This useful fact eliminates the necessity for a potentially
costly irreducibility test when testing membership in U .

Using Proposition 6.2, we can now formulate an algorithm for testing member-
ship in U . This algorithm will be used in our tabulation routines for cubic function
fields. The algorithm is slightly different from the one in [26]; Hessian and discrim-
inant values are passed into the routine, rather than computed inside Algorithm
1.

We note here that step 2 of Algorithm 1 uses part (2) of Proposition 6.2. In step
5, note that if p | �H and p | s, then p3 | D and using part (1) of Proposition 6.2
yields [f ] /∈ Up. If f passes steps 1–6, then s is not square-free if and only if there
exists an irreducible polynomial p ∈ Fq[t] with p2 | s and hence p � �H . Using part
(2) of Proposition 6.2 again rules out (f, p) = (13). On the other hand, we also
have p2 | D(f), so f /∈ Vp, and hence f /∈ Up. Thus, if s is not square-free, then
[f ] �∈ Up for some p, or equivalently, [f ] �∈ U . Conversely, if s is square-free, then
the primes p dividing s, and hence dividing D, occur in D to the first power. Thus
f ∈ Vp for all such p, proving the validity of step 7.

Note that steps 2 and 7 of Algorithm 1 require tests for whether a polynomial
F ∈ Fq[t] is square-free. This can be accomplished very efficiently with a simple
gcd computation, namely by checking whether gcd(F, F ′) = 1, where F ′ denotes



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

2348 PIETER ROZENHART, MICHAEL JACOBSON JR., AND RENATE SCHEIDLER

Algorithm 1 . Test for membership in U
Input: A binary cubic form f = (a, b, c, d) with coefficients in Fq[t], its Hessian

(P,Q,R) and its discriminant D.
Output: true or false according to whether or not [f ] lies in the set U .
1: Compute �H := gcd(P,Q,R);
2: if �H is not square-free then
3: return false;
4: Compute s := −3D/(�H)2;
5: if gcd(s, �H) �= 1 then
6: return false;
7: if s is square-free then
8: return true;
9: else

10: return false.

the formal derivative of F with respect to t. This is in contrast to the integral
case, where square-free testing of integers is generally difficult; in fact, square-free
factorization of integers is just as difficult as complete factorization. Hence, the
membership test for U is more efficient than its counterpart for integral forms. One
may be tempted to try a more näıve approach, namely factoring the square part
i out of the discriminant D and then testing only the resulting p. Even though
factorization of polynomials over finite fields is much easier than factoring integers,
this would add an unnecessary log factor to our theoretical run times, so we did
not attempt this approach.

7. Algorithms and numerical results

We now describe the tabulation algorithm for cubic function fields corresponding
to reduced binary cubic forms over Fq[t] with imaginary or unusual Hessian; that
is, cubic extensions of Fq(t) of discriminant D where deg(D) is odd, or deg(D) is
even and sgn(−3D) is a non-square in F∗

q .
The idea of the algorithm is as follows. Input a prime power q coprime to 6, a

degree bound B ∈ N, a primitive root h of F∗
q and the set S. The algorithm outputs

minimal polynomials for all Fq(t)-isomorphism classes of cubic extensions of Fq(t)
of discriminant D such that −3D is imaginary or unusual and degD ≤ B. The
algorithm searches through all coefficient 4-tuples (a, b, c, d) that satisfy the degree
bounds of Theorem 5.3 with |D| replaced by qB such that the form f = (a, b, c, d)
satisfies the following conditions:

(1) f is reduced;
(2) f has imaginary (resp. unusual) Hessian;
(3) f belongs to an equivalence class in U ;
(4) f has a discriminant D, where deg(D) ≤ B.

If f passes all of these tests, the algorithm outputs f(x, 1) which, by Theorem 6.1,
is the minimal polynomial of a triple of Fq(t)-isomorphic cubic function fields of
discriminant D.

The test of whether or not f is reduced in the case where Hf is unusual is
more involved than in the imaginary case. Recall from Theorem 3.3 and Corol-
lary 3.4 that if Hf = (P,Q,R) is the Hessian of f and both |P | = |R| =

√
|D|
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and sgn(P ) = 1 are satisfied, then this test requires the computation of q + 1
partially reduced binary quadratic forms equivalent to Hf , along with the determi-
nation of whether Hf is the smallest lexicographically amongst the q+1 quadratic
forms. Furthermore, by Theorem 3.7, Hf may have non-trivial automorphisms,
potentially resulting in more than one equivalent binary cubic form with the same
Hessian. Fortunately, the proportion of forms for which these extra checks need
to be performed is small by Lemma 7.2 below, so this does not significantly affect
the run time of the tabulation algorithm. However, the fact that the bounds in
Theorem 5.3 can be attained when |P | = |R|, whereas they cannot be exactly met
when |P | < |R|, make the algorithm for unusual Hessians slower by a factor of q,
as seen in Corollary 7.3.

Checking whether a binary cubic form has a partially reduced Hessian amounts to
checking the conditions specified in Definition 4.1. Checking whether a given cubic
form lies in U involves running Algorithm 1. A basic version of Algorithm 2 loops
over each of the coefficients a, b, c, d up to the bounds given in Theorem 5.3. We
omit the description here, instead giving an improved version in Algorithm 2. First,
we modify the for loop on a so that the condition sgn(a) ∈ S is checked first. The
other improvement involves the for loop on d. Instead of using the for loop on d as
one might do in a basic implementation, we determine which degree values of d lead
to an odd (resp. even) degree discriminant. This entails computing the quantities
m1 through m5 and the maximum of these values m. The values of m1 through m5

are simply the degree values of each term in the formula for the discriminant of a
binary cubic form. If the maximum value m of these terms is taken on by a unique
term amongst the mi and m is not of the appropriate parity, the next degree value
for d is considered instead of proceeding further with computing the Hessian and
discriminant. This allows us to avoid extra computations for discriminants that do
not have odd (resp. even) degree altogether.

For admissible values, we compute the Hessians and the discriminant as before,
but we can compute the quantities P and t1 := bc, t2 := c2 before any informa-
tion about d is known. We also note that the seemingly redundant check of the
conditions deg(D) ≤ B and deg(D) odd (resp. even) near the end of the algorithm
may be necessary in the event of cancellation of terms when m is not taken on by
a unique term among the mi (since it may be possible that the maximum m of the
degrees on the terms of the cubic discriminant satisfies m > B but deg(D) ≤ B).

Some extra routines are needed for the unusual Hessian case and are described
here. First, a routine called ConicSolver is used to solve the equation α2−(4/h)β2 =
1 for α, β ∈ Fq via brute force. Each solution pair is stored in an array. If the
Hessian Hf = (P,Q,R) of a binary cubic form f satisfies |P | = |R| and sgn(P ) = 1,
then the solutions (α, β) are used as in Corollary 3.4. Each pair (α, β) determines

a matrix Mα,β =
(

α β
4uβ/h uα

)
, where u = ±1 is chosen so that either sgn(Qi) ∈ S

when Qi �= 0 for any of the q+1 Hessians (Pi, Qi, Ri) of the corresponding partially
reduced q + 1 cubic forms, or sgn(di) ∈ S when Qi = 0; here, fi = (ai, bi, ci, di) =
f ◦M where (Pi, Qi, Ri) = Hfi = Hf ◦M , and M is the appropriate matrix Mα,β .
Each of these matrices is applied to each Hessian Hf under consideration, with the
value u determined as described above.

If the Hessian Hf is the smallest in terms of lexicographical order amongst the
q + 1 Hessians computed, then the corresponding binary cubic form f is output
if it lies in U . This task is accomplished via a routine called IsSmallestQuad,
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Algorithm 2 . Tabulation of Imaginary (resp. Unusual) Cubic Function Fields
(modified version)

Input: A prime power q not divisible by 2 or 3, a primitive root h of Fq, the set

S = {1, h, h2, . . . h(q−3)/2}, and a positive integer B.
Output: Minimal polynomials for all Fq(t)-isomorphism classes of cubic function

fields of discriminant D with deg(D) odd, sgn(−3D) ∈ {1, h} (resp. deg(D)
even and sgn(−3D) = h), and deg(D) ≤ B.

1: for deg(a) ≤ B/4 AND sgn(a) ∈ S do
2: for deg(b) ≤ B/4 do
3: for deg(c) ≤ B

2 − deg(b) do
4: m1 := 2(deg(b) + deg(c));
5: m2 := deg(a) + 3 deg(b)
6: for i = 0 to B/2− deg(a) do
7: m3 := deg(a) + deg(b) + deg(c) + i;
8: m4 := 3 deg(b) + i;
9: m5 := 2(deg(a) + i);

10: m := max{m1,m2,m3,m4,m5}
11: if (m is not taken on by a unique term among the mi) OR (m is

taken on by a unique term AND m is odd (resp. even) AND m ≤ B)
then

12: Compute P := b2 − 3ac;
13: Compute t1 := bc;
14: Compute t2 := c2

15: for deg(d) = i do
16: Set f := (a, b, c, d);
17: Compute Q := t1 − 9ad;
18: Compute R := t2 − 3bd;
19: Compute −3D = −3D(f) = Q2 − 4PR;
20: if deg(D) is odd and sgn(−3D) ∈ {1, h} (resp. deg(D) even and

sgn(−3D) = h) AND deg(D) ≤ B AND f is reduced AND
[f ] ∈ U then

21: Output f(x, 1).

which returns true if Hf is the smallest lexicographically amongst the q+ 1 forms
equivalent to Hf , and returns false otherwise. In the event that Hf is the smallest
and Hf has non-trivial automorphisms as given in Theorem 3.7, then f is tested to
see if it is the smallest in terms of lexicographical ordering amongst itself and the
two binary cubic forms equivalent to f via a non-trivial automorphism. This task is
accomplished via a routine called IsDistCub, which returns true if f is the smallest
lexicographically amongst these binary cubic forms, and returns false otherwise.
If the routine IsDistCub returns true and the binary cubic form f lies in U , the
minimal polynomial f(x, 1) is output.

If the (unusual) Hessian Hf of a binary cubic form f satisfies |P | < |R|, then the
algorithm is much simpler, since the partially reduced binary cubic form is in fact
reduced. That is, we simply test the binary cubic form f to see if it lies in U , just
like in the case of imaginary Hessians. If it does, the minimal polynomial f(x, 1) is
output.
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Tables 1 and 2 present the results of our computations using Algorithm 2 for
cubic function fields with imaginary and unusual Hessian, respectively, for various
values of B, given in column 2 of each table. The third column gives the number
of fields with discriminant D satisfying deg(D) ≤ B and the fourth column denotes
the number of reduced cubic forms whose Hessians have non-trivial automorphisms.
The last column gives the various timings for each degree bound. The results in
these tables extend and correct those in [26]. The lists of cubic function fields were
computed on a multi-processor machine with four 2.8 GHz Pentium 4 processors
running Linux with 4 GB of RAM, with a 180 MB cache using the C++ program-
ming language coupled with the number theory library NTL [29] to implement our
algorithm. The results for unusual discriminants in this table are new and did not
appear in [26].

Table 1: Number of cubic function fields over Fq(t) of discriminant
D with deg(D) ≤ B, deg(D) odd

q Degree bd. B # of fields # non-triv. auto. Total elapsed time
5 3 100 — 0.02 seconds

5 2100 — 1.21 seconds
7 64580 — 31.66 seconds
9 1877260 — 26 minutes, 4 sec
11 45627300 — 9 hours, 31 min, 45 sec

7 3 294 — 0.17 seconds
5 12642 — 17.48 seconds
7 718494 — 25 minutes, 4 sec
9 39543210 — 21 hours, 56 min, 45 sec

11 3 1210 — 2.61 seconds
5 134310 — 18 minutes, 45 sec
7 17849810 — 1 day, 2 hours,

9 min, 28 sec
13 3 2028 — 7.10 sec

5 318396 — 55 minutes, 54 sec
7 58239948 — 6 days, 31 min, 56 sec

Table 2: Number of cubic function fields over Fq(t) of discriminant
D with deg(D) ≤ B, deg(D) even

q Degree bd. B # of fields # non-triv. auto. Total elapsed time
5 4 280 10 0.88 seconds

6 6480 10 19.06 seconds
8 156920 320 12 minutes, 3 sec
10 4688440 320 7 hours, 12 min, 32 sec
12 117981240 11385 10 days, 19 hours,

3 min, 8 sec
7 4 1077 42 12.18 seconds

Continued on next page
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Table 2 – continued from previous page
q Degree bd. B # of fields # non-triv. auto. Total elapsed time

6 51645 42 17 minutes, 28 sec
8 2475271 2436 10 hours,

38 minutes, 33 sec
10 138360895 2436 23 days, 4 hours,

16 min, 51 sec
11 4 5722 54 13 minutes, 5 sec

6 810372 54 21 hours,
54 min, 59 sec

13 4 11334 304 40 minutes, 42 sec
6 2240106 304 3 days, 14 hours,

7 min, 24 sec

Timings for Algorithm 2 are compared to those of a basic version of Algorithm 2
in Table 3 for q = 5, 7. Recall that this basic version simply loops over all a, b, c, d
satisfying the bounds of Theorem 5.3, without a priori eliminating potential un-
suitable values of d as was done in Algorithm 2. The cases q = 11, 13 are omitted
for brevity. As seen in the third column of these tables, the modified algorithm is a
significant improvement over the basic algorithm. These improvements appear to
get better as the degree increases, likely because higher degrees give fewer chances
of “bad” leading term cancellations in the discriminant, thereby a priori eliminat-
ing more unsuitable values of d. Also, interestingly, the improvement seems more
pronounced for even degrees. Again, this is likely due to fewer “bad” cancellations
of leading terms of the discriminant in this case. For example, the terms (bc)2 or
27(ad)2 in D can never individually dominate if deg(D) is odd.

Table 3: Basic vs. modified algorithm timings

q Degree bd. Basic times Modified times Basic/Mod
5 3 0.09 seconds 0.02 seconds 4.5

4 7.67 seconds 0.88 seconds 8.72
5 7.19 seconds 1.21 seconds 5.94
6 3 minutes, 55 sec 19.06 seconds 12.32
7 3 minutes, 20 sec 31.66 seconds 6.33
8 5 hours, 52 min, 38 sec 12 minutes, 3 sec 29.28
9 4 hours, 26 minutes, 4 sec 9.51

7 min, 57 sec
10 5 days, 1 hour, 7 hours, 16.87

38 min, 6 sec 12 min, 32 sec
11 6 days, 8 hours, 9 hours, 15.99

22 min, 7 sec 31 min, 45 sec
7 3 0.73 seconds 0.17 seconds 4.29

4 2 minutes, 1 sec 12.18 seconds 9.92
5 3 minutes, 56 sec 17.48 seconds 13.49
6 3 hours, 17 minutes, 28 sec 11.26

Continued on next page
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Table 3 – continued from previous page
q Degree bd. Basic times Modified times Basic/Mod

16 min, 40 sec
7 3 hours, 12 min, 34 sec 25 minutes, 4 sec 7.68
8 10 days, 10 hours, 22.61

38 min, 17 sec 38 minutes, 33 sec
9 12 days, 18 hours, 21 hours, 13.97

35 min, 3 sec 56 min, 45 sec

The value h = 2 was chosen as a primitive root for F5, F11 and F13. For F7,
h = 3 was chosen. This completely determines the set S specified in Section 3.
These sets were {1, 2}, {1, 2, 3}, {1, 2, 4, 5, 8} and {1, 2, 3, 4, 6, 8} for F5, F7, F11 and
F13, respectively.

The worst-case complexity of the algorithm, expressed in terms of the number of
field operations required as a function of the degree bound B, largely depends on
the size of each of the coefficients a, b, c, d of a binary cubic form that the algorithm
loops over. It follows from Theorem 5.3 that |abcd| ≤ |D|, so the number of forms
that need to be checked up to an upper bound B on deg(D) is of order B. This
idea is fully explained in the following lemmas.

Lemma 7.1. For s ∈ N, denote by Fs the set of binary cubic forms f = (a, b, c, d)
over Fq[t] such that deg(D(f)) = s, deg(a) ≤ s/4, deg(b) ≤ s/4, deg(ad) ≤ s/2,
deg(bc) ≤ s/2, and sgn(a) ∈ S. Then

#Fs ≤

⎧⎪⎪⎨
⎪⎪⎩

q3

32
s2qs +O(sqs) if s is odd ,

q4

32
s2qs +O(sqs) if s is even ,

as s → ∞.

Proof. The number of monic polynomials in Fq[t] of degree m is qm. Hence, the
number of pairs of monic polynomials (G,H) with deg(G) ≤ s/4 and deg(GH) ≤
s/2 is

Ns =
∑

m≤s/4

∑
m+n≤s/2

qm+n =

s/4∑
m=0

qm
�s/2�−m∑

n=0

qn

=
1

q − 1

s/4∑
m=0

(q�s/2�+1 − qm) =
q

4(q − 1)
sq�s/2� +O(qs/2)

as s → ∞.
Let f = (a, b, c, d) ∈ Fs. Note that ad �= 0. Thus there are (q − 1)/2 choices

for sgn(a) and q − 1 choices for sgn(d), for a total of Ns(q − 1)2/2 pairs (a, d).
Similarly, the possible number of (b, c) pairs is Nsq

2. Hence the total number of
forms in Fs is

N2
s

q2(q − 1)2

2
=

q4

32
s2q2�s/2� .

The result now simply follows from the fact that 2
s/2� = s if s is even and s− 1
if s is odd. �
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Lemma 7.2. Let Fs be as defined in Lemma 7.1 and Es denote the number of
forms in Fs such that Hf = (P,Q,R) is partially reduced and deg(P ) = deg(R).
Then

Es ≤
q + 1

2
qs

if s ≡ 0 (mod 4), and Es = 0 if s �≡ 0 (mod 4).

Proof. Let f = (a, b, c, d) ∈ Fs so that Hf is partially reduced with deg(P ) =
deg(R). Then deg(Q) < deg(P ) = deg(R) = s/2, so s must be even. A straightfor-
ward calculation yields

(7.1) bQ = cP + 3aR, 3cQ = 3dP + bR,

whence deg(c) = deg(bQ − 3aR) − deg(P ) ≤ s/4 and deg(d) = deg(3cQ − bR) −
deg(P ) ≤ s/4. Hence all of a, b, c, d have degree no more than s/4. In fact, the
formulas for Q,P,R can be seen to force deg(a) = deg(c) = s/4 or deg(b) =
deg(d) = s/4. It follows that Es = 0 unless s is a multiple of 4, which we assume
for the remainder of the proof.

If deg(b), deg(d) ≤ s/4 − 1, then sgn(c)2 = sgn(R) = −h/4 forces −1 to be a
non-square in Fq, or equivalently, q ≡ −1 (mod 4). Together with −3 sgn(ac) =
sgn(P ) = 1 and sgn(a) ∈ S, this determines sgn(a) and sgn(c) uniquely. Thus, this
accounts for at most qs forms if q ≡ −1 (mod 4) and no forms if q ≡ 1 (mod 4).

If deg(a), deg(c) ≤ s/4−1, then deg(b) = deg(d) = s/4. In this case, P = b2−3ac
forces sgn(b) = ±1, so there are 2qs/4 possibilities for b. Then sgn(R) = −3 sgn(bd)
determines sgn(d), so there are qs/4 choices for c and d each. The number of
permissable a is at most

q − 1

2

s/4−1∑
m=0

qm <
qs/4

2
.

So this case produces no more that qs forms.
Finally, suppose that a, b, c, d all have degree s/4. By (7.1), the leading coef-

ficients of a and b determine those of c and d uniquely. Specifically, sgn(c) =
3h sgn(a)/4, and substituting this into P =b2−3ac yields sgn(b)2−h(3 sgn(a)/2)2 =
1. The equation v2 − hu2 = 1 represents a non-degenerate conic which has q + 1
solutions (u, v) over Fq. However, since a �= 0, the two solutions (u, v) = (0,±1) are
invalid. In addition, if q ≡ −1 (mod 4), then v = 0 produces two invalid solutions.
In fact, sgn(a) ∈ S eliminates half of the remaining solutions, allowing (q − 3)/2
choices for ( sgn(a), sgn(b)) when q ≡ −1 (mod 4), and (q−1)/2 choices when q ≡ 1
(mod 4). So the number of possibilities for f is (q − 3)qs/2 if q ≡ −1 (mod 4) and
(q − 1)qs/2 if q ≡ 1 (mod 4).

In all scenarios, the number of possibilities for f adds up to (q + 1)qs/2 as
claimed. �
Corollary 7.3. Assuming standard polynomial arithmetic in Fq[t], Algorithm 2
requires O(B4qB) = O(qB+ε) operations in Fq as B → ∞. The O-constant is cubic
in q when B is odd and quartic in q when B is even.

Proof. Algorithm 2 loops exactly over the forms in Fs for s ≤ B, with Fs as in
Lemma 7.1. For each such form f , the entire collection of polynomial computations
in Algorithm 2, including those of Algorithm 1, requires at most Ks2 field opera-
tions for some constant K that is independent of B and q. This holds because all
polynomials under consideration have degree bounded by s.
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The overall complexity of Algorithm 2 is dominated by step 20. The sign and
degree checks in that step, as well as the test for partial reducedness of Hf =
(P,Q,R), require negligible time. When |P | = |R|, the q + 1 partially reduced
forms equivalent to Hf must be computed and compared to Hf . Once the reduced
Hessian is found, one needs to check if it has non-trivial automorphisms according
to Theorem 3.7. If yes, compute the two corresponding equivalent binary cubic
forms with the same Hessian and identity the lexicographically smallest among
these three cubic forms. It follows that the overall complexity of Algorithm 2 is
certainly bounded above by

B∑
s=1

(
#Fs + 2(q + 1)Es

)
·Ks2 .

By Lemma 7.2, 2(q + 1)Es = O(qs), so this contribution is negligible compared to
the error term in the bound on #Fs given in Lemma 7.1. Hence, the asymptotic
complexity of Algorithm 2 is bounded above by

B∑
s=3

((
Css

2qs +O(sqs)
)
·Ks2

)
≤

B∑
s=3

Csq
s ·KB4 +O(B3qB) ,

where Cs = q3/32 if s is odd and Cs = q4/32 is s is even.
Suppose first that B is odd. Then

B∑
s=3

Csq
s =

(B−1)/2∑
i=1

q3

32
q2i+1 +

(B−1)/2∑
i=2

q4

32
q2i <

q5

16(q2 − 1)
qB .

Similarly, if B is even, then

B∑
s=3

Csq
s =

B/2−1∑
i=1

q3

32
q2i+1 +

B/2∑
i=2

q4

32
q2i

<
q4

32(q2 − 1)
qB +

q6

32(q2 − 1)
qB =

q4(q2 + 1)

32(q2 − 1)
qB .

Hence, the overall run time is O(B4qB) where the O-constant is as claimed. �

The bounds in Corollary 7.3 appear to be reasonably sharp. For any fixed q,
the time required to run Algorithm 2 on the discriminant degree bound B + 2 (of
the same parity) should be larger by a factor of q2, compared to the time required
when using the bound B. If B is odd, then the computation time of Algorithm 2
using the (even) discriminant degree bound B + 1 should be larger by a factor of
(1 + B−1)4(q2 + 1)/2, compared to the time required when running the algorithm
with the bound B. Similarly, going from an even bound B to B+1 should increase
the run time by a factor of (1 + B−1)4 · 2q2/(q2 + 1). Our computations times in
Tables 1 and 2 largely bear this out.

If we write qB = X, i.e., |D| ≤ X, then the complexity of Algorithm 2 is O(X1+ε)
as X → ∞, which is completely analogous to the run time of Belabas’ algorithm
[3] for tabulating cubic number fields of absolute discriminant up to X.

Corollary 7.3 states that our algorithm in the imaginary and unusual cases should
be roughly linear in X if q is small. To see that this is the case in practice, we
plotted the various values of logq(sec) versus logq X (i.e. degree) for q = 5 and
q = 7, where sec denotes the time (in seconds) taken to tabulate all cubic function
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Figure 1. F5 Tabulation Timings for Cubic Function Fields:
log5(sec) versus degree
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Line of best fit (unusual) g(x) =  1.01827*x - 2.69310

Figure 2. F7 Tabulation Timings for Cubic Function Fields:
log7(sec) versus degree

fields whose discriminant has absolute value at most X for various values of logq X.
The line of best fit for the data in the imaginary and unusual Hessian cases is also
given in each figure. As seen in Figures 1 and 2, the running times (in seconds) of
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Algorithm 2 are approximately linear in X for both imaginary and unusual Hessian,
as expected.

The algorithm presented in this section has some of the same advantages as Be-
labas’ algorithm [3] over earlier field tabulation algorithms (see Cohen [10], Chapter
9). In particular, by Theorem 6.3, there is no need to check for irreducibility over
Fq(t) of binary cubic forms lying in U , no need to factor the discriminant, and no
need to keep all fields found so far in memory. Our algorithm has the additional ad-
vantage that there is no overhead computation needed for using a sieve to compute
numbers that are not square-free, by the remarks following Algorithm 1.

The number of binary cubic forms with Hessian having non-trivial automor-
phisms was rare. The percentage of such cubic fields with discriminant degree at
most B having non-trivial automorphisms appears to be tending towards zero as
B → ∞. We conjecture that this rare behavior persists for higher degrees, but an-
alyzing the behavior of such fields and their distribution remains an open problem.

8. Conclusion and open problems

The main results of this paper are the development of the reduction theory of
binary cubic forms with coefficients in Fq[t], and its use in conjunction with the
Davenport-Heilbronn theorem to obtain an algorithm for tabulating cubic function
fields. The tabulation algorithm checks O(qB+ε) reduced forms in order to tabulate
all cubic function fields with imaginary or unusual Hessian whose discriminant
satisfies deg(D) ≤ B, which is in line with Belabas’ result [3] for number fields
when q is small.

The reduction theory developed here is applicable to cubic forms (and hence
function fields) of discriminant D when −3D is imaginary or unusual. It is unclear
which suitable quadratic form should be associated to a cubic form of discriminant
D when −3D is real. Neither the Mathews [23], Berwick and Mathews [5], nor the
Julia approach [12] appear to be applicable in general here; even if there are certain
cases where they might lead to a unique representative in each equivalence class of
cubic forms, it is unclear how to derive upper bounds on the coefficients of such a
form, due to the non-Archimedian nature of the absolute value on Fq[t].

One possible way to overcome this obstacle is to change the question somewhat.
Instead of considering cubic extensions F/Fq(t) of discriminant D up to some degree
bound, we consider such extensions whose ramification divisor (or different) D has
a norm which satisfies the degree bound. Here, D incorporates the information on
all the ramified places, including the infinite ones, while only the finite places are
contained in the discriminant D. We have deg(N (D)) = deg(D) + εF where εF
(0 ≤ εF ≤ 2) is given by the ramified infinite places of F and can be computed from
the signature at infinity of F (see [20, 21, 28]). Here, one needs to understand the
relationship between the ramification divisor of a cubic form and that of a suitable
associated quadratic form. A more detailed exploration of this approach is the
subject of future work.

From our tabulation output, it appears that the number of cubic extensions over
Fq(t) with odd discriminant degree is always divisible by q(q − 1). For imaginary
Hessians, the divisibility by q is easily explained: every one of the q translates
t → t+u with u ∈ F∗

q keeps a form reduced since it does not change any degrees or
signs. The resulting form is different unless a, b, c, d are all polynomials in tq − t,
which is impossible from the degree bounds in Theorem 5.3 for reasonably sized D:
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unless deg(D) ≥ 4q, a and b must be constant, which forces deg(c) = deg(d) ≥ q.
Then deg(D) = 3 deg(c) ≥ 3q, which is still very large. For unusual Hessians,
the above argument does not apply as the lexicographical ordering would not be
preserved under these translates. It would be interesting to be able to prove if this
type of divisibility phenomenon always occurs, or at the very least, prove specific
formulas for fixed even discriminant degree and q values. We discuss this in an
upcoming paper [27].

An explicit comparison to the Datskovsky-Wright asymptotics on cubic function
fields [13] was not completed here, since we did not consider the case where −3D is
a real discriminant. Furthermore, the asymptotics are not given for each possible
signature for −3D. Other asymptotics on function fields of arbitrary degree which
take into account the Galois group include Ellenberg and Venkatesh [16]. Density
results for number fields can be found in [6, 17], among others.

Constructing tables of number fields has been done for cubic, quartic and other
higher degree extensions (see Cohen [10]). To the knowledge of the authors, the
problem of tabulation of function fields has not been widely explored. The gener-
alization of existing algorithms used for tabulating number fields to the function
field setting is also the subject of future work.

Belabas modified his tabulation algorithm to compute 3-ranks of quadratic num-
ber fields [4]. This has also been generalized to quadratic function fields in [25],
and is the subject of a future paper [27].
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