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Abstract

A “function field version” of Voronoi’s algorithm can be used to
compute the fundamental unit of a purely cubic complex congruence
function field of characteristic at least 5. This is accomplished by
generating a sequence of minima in the maximal order of the field.
The number of mimima computed is the period of the field. Gener-
ally, the period is very large — it is proportional to the regulator and
exponential in the genus of the field — but there are classes of fields
with very short periods. For several infinite families of such fields,
we explicitly compute the Voronoi continued fraction expansions and
the fundamental units. We also investigate the case of period length
1 where the minima in the maximal order are exactly the units of
the field. Finally, we explore the connection between regulator and
period and other cases of small periods and regulators.
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1 Introduction

Voronoi’s algorithm [7], [1, pp. 273–304] computes the fundamental unit of
a complex cubic number field by generating the “Voronoi continued fraction
expansion” of the unit. An explicit implementation in purely cubic fields
was given by Williams et al. [9], and Williams’ version was adapted to purely
cubic congruence function fields of characteristic at least 5 and unit rank 1
in [4, 5]. In short, the method produces a chain (θn)n∈N of successive minima
in the maximal order of the field by starting with θ1 = 1 and computing
adjacent minima θn of increasing absolute value such that θn+1 = µnθn and
µn is the minimum adjacent to 1 in the reduced fractional principal ideal
an = (θ−1

n ) (n ∈ N). If l ∈ N is the first index such that θl+1 has constant
norm, then θl+1 is the fundamental unit of positive degree of the field, and
l is the period of the fundamental unit (or of the field).

Usually, l is exponentially large in the genus of the field, but in fields with
very small fundamental units, the period is as small as linear in the genus of
the field. In [3], the fundamental units for a number of infinite classes of such
fields were explicitly given. In all these fields, the generating polynomial of
the field is of the form D = (M3 − F )/E3 where E,F,M are polynomials
such that E3 divides M3−F and F divides M2. In this paper, we determine
the periods of several infinite subfamilies of these fields. We should point
out that similar investigations were previously performed for purely cubic
number fields with short periods in [8]. We also analyze the situation of
small periods and regulators; in particular, the case where the period is 1.
This setting is of particular interest because here, the fundamental unit is
the minimum adjacent to 1 in the maximal order of the field, and moreover,
the minima θn (n ∈ N) in the Voronoi chain are exactly the units in the
field.

A general introduction to function fields can be found in [6]; the purely
cubic case is discussed in considerable detail in [2] and [4, 5]. Let k = Fq be
a finite field of order q whose characteristic is not 3. If t is a transcendental
element over k, denote by k[t] and k(t) the ring of polynomials and the field
of rational functions, respectively, over k in the variable t. Let D ∈ k[t]
be a nonconstant cubefree polynomial and let ρ be a fixed cube root of D
in some algebraic closure of k(t). Then the other cube roots of D are uρ
and u2ρ where u is a primitive cube root of unity which lies in an algebraic
extension of k of degree at most 2. The cubic extension K = k(t, ρ) of k(t)
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is a purely cubic (congruence) function field over the field of constants k.
The maximal order of K is the integral closure O = k[t] of k[t] in K. O
is both a ring and a k[t]-module of rank 3; a (t)-integral basis of K is a
k[t]-basis of O (which consequently is also a k(t)-basis of K). If D = GH2

where G,H ∈ k[t] are both squarefree and relatively prime, then an integral
basis of K is is given by {1, ρ, ω} where ρ is as before and ω = ρ2/H. We
have ρ3 = D and ω3 = D where D = G2H. ω is also a generator of K over
k(t), and in the corresponding integral basis, one simply has to reverse the
roles of ρ and ω. We point out that in contrast to the number field case, it
is a simple matter to determine H from D; namely H = gcd(D,D′) where
D′ is the formal derivative of D with respect to t. The bases {1, ρ, ρ2} and
{1, ω, ω2} generate submodules Oρ and Oω of O, respectively. Oρ = O if
and only if D = G is squarefree and Oω = O if and only if D = H2 is a
square.

The conjugates of an element α = A + Bρ + Cω ∈ K (A,B,C ∈ k(t)) are
α′ = A + Buρ + Cu2ω and α′′ = A + Bu2ρ + Cuω. The norm and trace of
α (over k(t)) are the respective quantities

N(α) = αα′α′′ = A3 +B3GH2 + C3G2H − 3ABCGH,
Tr(α) = α + α′ + α′′ = 3A.

We have N(α), T r(α) ∈ k(t), and if α ∈ O, then N(α), T r(α) ∈ k[t].

The group O∗ of (t-)units of O is an Abelian group whose torsion part is the
group of nozero constants k∗. Its rank is the (t-)unit rank of K and a set
of generators of the torsion-free part is a system of fundamental (t-)units of
K. If α ∈ O, then N(α) ∈ k∗ if and only if α is a unit in O. Depending on
the form of q and D, the unit rank can be 0, 1, or 2 (see [4] for details); this
is in contrast to purely cubic number fields, which are complex cubic fields
and thus always have unit rank 1. In [4], it was shown that a purely cubic
function field is complex, i.e. has unit rank 1, if and only if q ≡ 2 (mod 3),
the degree deg(D) of D is a multiple of 3, and the leading coefficient sgn(D)
of D is a cube in k∗. Then k does not contain any primitive cube roots of
unity, so if α ∈ K, then α′, α′′ 6∈ K, but α′α′′ = N(α)α−1 ∈ K. Under these
conditions, K can embedded in the field k((1/t)) of Puiseux series over k.
Nonzero elements in k((1/t)) are of the form α =

∑∞
i=m ai/t

i ∈ k((1/t))
(m ∈ Z, ai ∈ k for i ≥ m, am 6= 0). Denote by

deg(α) = −m the degree of α,
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|α| = qdeg(α) = q−m the (absolute) value of α,

sgn(α) = am the sign of α,

bαc =
0∑

i=m

ai
ti

the principal part of α.

We also set deg(0) = −∞, |0| = 0, and b0c = 0. Note that bαc ∈ k[t]
and |α − bαc| < 1 for any α ∈ k((1/t)). If α ∈ K, then we let deg(α′) =
deg(α′′) = deg(α′α′′)/2 and |α′| = |α′′| =

√
|α′α′′| = qdeg(α′).

Henceforth, we assume K to be a purely cubic complex function field. Then
we have one fundamental unit ε of positive degree that is unique up to
factors in k∗. The (t-)regulator of K is the positive integer R = deg(ε)/2 =
− deg(ε′). The genus of K is g = deg(GH)− 2.

To make this paper somewhat self-contained, we briefly review Voronoi’s
algorithm as described in [4] in the next section. The case of period length
1 is analyzed in section 3 and connections between the regulator and the
period as well as instances of small periods are explored in section 4.

2 Voronoi’s Algorithm

Recall that a subset a of O is an integral (O-)ideal if for any α, β ∈ a and
θ ∈ O, α + β ∈ a and θα ∈ a. A subset a of K is a fractional (O-)ideal
if there exists a nonzero polynomial d ∈ k[t] such that da is an integral
ideal of O. Henceforth, we assume all ideals to be nonzero, so the term
“ideal” will be synonymous with “nonzero ideal”. Every fractional ideal a

of O is a k[t]-module of rank 3; if {λ, µ, ν} is a k[t]-basis of a (λ, µ, ν ∈ K),
write a = [λ, µ, ν]. A fractional ideal a is principal if a is of the form
a = {θα | θ ∈ O} for some α ∈ K; write a = (α).

If a is a fractional ideal and α ∈ a, α 6= 0, then α is a minimum in a if for
nonzero β ∈ a, |β| ≤ |α| and |β′| ≤ |α′| imply β ∈ k∗α, i.e. β and α differ
only by a nonzero constant factor. a is reduced if 1 ∈ a and 1 is a minimum
in a. O is reduced, and in fact every unit in O is a minimum in O. Let a

be a fractional ideal and let θ ∈ a be a minimum in a. An element φ ∈ a is
a minimum adjacent to θ in a if φ is a minimum in a, |θ| < |φ|, and for no
α ∈ a, |θ| < |α| < |φ| and |α′| < |θ′|. φ always exists and is unique up to a
trivial unit factor, so we will henceforth speak of the minimum adjacent to
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an element in a fractional ideal, keeping in mind that it is only unique up
to a trivial unit factor. If a is a fractional ideal and θ = θ1 is a minimum
in a, then a sequence (θn)n∈N of elements in a where θn+1 is the minimum
adjacent to θn in a (n ∈ N) is a chain of successive minima in a.

The basic idea for Voronoi’s algorithm is as follows. Start with the reduced
ideal a1 = O and the minimum θ1 = 1 in a1. Define a sequence of reduced
fractional ideals an and minima θn ∈ O (n ∈ N) as follows. Let µn be the
minimum adjacent to 1 in an and set θn+1 = µnθn, an+1 = µ−1

n an = (θ−1
n+1).

Then it can be shown that θn+1 is the minimum adjacent to θn in O and an+1

is a reduced fractional ideal. Thus, we have a chain of successive minima in
O given by

(θn)n∈N where θ1 = 1, θn =
n−1∏
i=1

µi for n ≥ 2. (2.1)

This chain can be shown to contain in fact all the minima in O of nonnega-
tive degree, so in particular, the fundamental unit ε of K must appear in the
chain. Specifically, if l ∈ N is the first index such that N(θl+1) is constant,
then θl+1 is equal to ε up to a constant factor. l is the period of ε (or of K).
Since aml+i = ai and µml+i = µi for all m, i ∈ N, the sequence (2.1) is equal
to

1, θ2, . . . , θl, ε, εθ2, . . . , εθl, ε
2, ε2θ2, . . . , ε

3, . . .

and contains all nonpositive powers of ε. We note that l = 1 if and only
if (2.1) consists exactly of all the nonpositive powers of ε; that is, every
minimum in O is a unit in O and vice versa.

The chain (2.1) is computed as follows. Each ideal an = (θ−1
n ) will be given

in terms of a reduced k[t]-basis {1, µn, νn} that satisfies certain bounds and
includes the minimum µn adjacent to 1 in an. The basis elements µn and
νn are of the form µn = (M0n + M1nρ + M2nω)/Un, νn = (N0n + N1nρ +
N2nω)/Un where M0i, N0i, Un ∈ k[t] for i = 0, 1, 2. Then θn+1 = µnθn and
an+1 = µ−1

n an = [1, 1/µn, νn/µn]. We now replace this basis of an+1 by a new
reduced k[t]-basis {1, µn+1, νn+1} where µn+1 is the minimum adjacent to 1
in an+1. This is accomplished by applying a sequence of suitable unimodular
transformations to the pair (1/µn, νn/µn) of basis elements of an+1, until we
obtain the reduced basis. Details on how to compute such a basis will be
given below. We then go on to compute θn+2. The process terminates once
a basis denominator Un+1 that is constant is encountered, in which case
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an+1 = O and θn+1 = ε (up to a constant factor), i.e. n = l. The following
algorithm computes the fundamental unit ε of K. In each iteration, the
current value of θn is (E0 + E1ρ+ E2ω)/V .

Algorithm 2.1 (Fundamental Unit Algorithm) Input: The polyno-
mials G,H where D = GH2.

Output: E0, E1, E2 ∈ k[t] where ε = E0 + E1ρ + E2ω is the fundamental
unit of K.

Algorithm:

1. Set E0 = V = M1 = N2 = U = 1, E1 = E2 = M0 = M2 = N0 = N1 =
0. (So θ1 = 1, µ = ρ, ν = ω.)

2. Repeat

(a) { Reduce the basis }
Use Algorithm 2.2 below to replace M0,M1,M2, N0, N1, N2, U by
the coefficients of a reduced basis;

(b) { Update θn }
i. Replace

E0

E1

E2

V

 by


E0M0 + (E1M2 + E2M1)GH
E0M1 + E1M0 + E2M2G
E0M2 + E1M1H + E2M0

UV

 ;

ii. Compute S = gcd(E0, E1, E2, V ). For i = 0, 1, 2, replace Ei
by Ei/S and V by V/S;

(c) { Update µ and ν }
i. Set

A0 = M2
0 −M1M2GH,

A1 = M2
2G−M0M1,

A2 = M2
1H −M0M2,

B = M3
0 +M3

1GH
2 +M3

2G
2H − 3M0M1M2GH = N(µ);
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ii. Replace  M0

M1

M2

 by

 A0U
A1U
A2U

 ;

iii. Replace N0

N1

N2

 by

 A0N0 + (A1N2 + A2N1)GH
A0N1 + A1N0 + A2N2G
A0N2 + A1N1H + A2N0

 ;

iv. Replace U by B;

v. Compute S = gcd(M0,M1,M2, N0, N1, N2, U). For i = 0, 1, 2,
replace Mi by Mi/S, Ni by Ni/S and U by U/S;

until U ∈ k∗.

We now tackle the problem of computing a reduced basis and, in particular,
the minimum µn+1 adjacent to 1 in the reduced fractional ideal an+1 (n ∈
N0). Henceforth, we need to exclude the characteristic 2 case, that is, we
require k to be a finite field of characteristic at least 5. Let α = A + Bρ +
Cω ∈ K with A,B,C ∈ k(t). We define the quantities

ξα = Bρ+ Cω,
ηα = Bρ− Cω,
ζα = 2A−Bρ− Cω.

(2.2)

We call a basis {1, µ, ν} of a reduced fractional ideal reduced if

|ζµ| < 1, |ζν | < 1, |ξµ| > |ξν |, |ηµ| < 1 ≤ |ην |. (2.3)

If {1, µ, ν} is a reduced basis of a, then it can be shown that µ is the
minimum adjacent to 1 in a. The following algorithm produces on input of
any basis of a reduced fractional ideal a reduced basis of that same ideal.

Algorithm 2.2 (Reduction Algorithm)

Input: A basis {1, µ̃, ν̃} of a reduced fractional ideal a.
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Output: A reduced basis {1, µ, ν} of a.

Algorithm:

1. Set µ = µ̃, ν = ν̃.

2. If |ξµ| < |ξν | or if |ξµ| = |ξν | and |ηµ| < |ην |, replace(
µ
ν

)
by

(
0 1
−1 0

)(
µ
ν

)
;

3. If |ηµ| ≥ |ην |

(a) while bξµ/ξνc = bηµ/ηνc, replace(
µ
ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ
ν

)
;

(b) Replace (
µ
ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ
ν

)
;

(c) If |ηµ| = |ην |, replace(
µ
ν

)
by

(
1 −a
0 1

)(
µ
ν

)
where a = sgn(ηµ)sgn(ην)

−1 ∈ k∗;

4. (a) While |ην | < 1, replace(
µ
ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ
ν

)
;

(b) While |ηµ| ≥ 1, replace(
µ
ν

)
by

(
bην/ηµc −1

1 0

)(
µ
ν

)
;

5. If |ζµ| ≥ 1, replace µ by µ− (1/2)bζµc;
If |ζν | ≥ 1, replace ν by ν − (1/2)bζνc.
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3 The Case of Minimal Period

Of particular interest is the situation where the period l = 1, in which case ε
is the minimum adjacent to 1 in O and can be computed using one iteration
of Algorithm 2.2.

Lemma 3.1 If α is an element in some reduced fractional ideal, then |N(α)| >
|GH|−2.

Proof: See Corollary 4.7 of [4]. 2

Lemma 3.2 Let a be a reduced fractional ideal of O and let α ∈ a. Then
there exists a minimum θ ∈ a such that |θ| ≤ |α| and |θ′| ≤ |α′|.

Proof: The claim is clear if α is itself a minimum, so suppose α is not a
minimum in a. Then the set H(α) = {β ∈ a | |β| ≤ |α|, |β′| ≤ |α′|, β 6∈
k∗α} is not empty. Let β ∈ H(α), then by Lemma 3.1 deg(β) = deg(N(β))−
2 deg(β′) > −2(deg(GH) + deg(α′)). Thus, the set {deg(β) | β ∈ H(α)}
is a nonempty subset of the integers that is bounded below. By the Well-
Ordering Principle, this set has a smallest element. Let θ ∈ H(α) be of
minimal degree, that is, |θ| ≤ |α|, |θ′| ≤ |α′|, θ 6∈ k∗α, and for any β ∈ H(α),
|β| ≥ |θ|.
We claim that θ is a minimum in a. To see this, let β ∈ a, β 6= 0, with
|β| ≤ |θ| and |β′| ≤ |θ′|. Then |β| ≤ |α| and |β′| ≤ |α′|. If β ∈ k∗α, then
|β| = |α| ≥ |θ|. If β 6∈ k∗α, then β ∈ H(α), so |β| ≥ |θ|. Either way,
|β| = |θ|.
Let γ = β − sgn(β)sgn(θ)−1θ, then |γ| < |θ| ≤ |α|, so γ 6∈ k∗α. Also
|γ′| ≤ max{|β′|, |θ′|} ≤ |α′|. Since |γ| < |θ|, γ cannot lie in H(α). The only
way this is possible is if γ = 0, so β ∈ k∗θ. 2

For the remainder of this section, we again assume that char(k) ≥ 5.

Theorem 3.3 If l = 1 and |G| > |H|, then D = M3−a for some M ∈ k[t]
and a ∈ k∗.

Proof: Suppose |G| > |H|. Then |ρ3| = |GH2| < |G2H| = |ω|3, so |ρ| < |ω|.
Let α = bρc − ρ ∈ O, then |α| < 1 and since α′α′′ = bρc2 + bρcρ + ρ2,

9



|α′| = |ρ|. Also N(α) = bρc3 − D. If α is a minimum in O, then α is a
unit in O since l = 1. In this case, D = M3 − a with M = bρc ∈ k[t] and
a = N(α) ∈ k∗. Suppose now that α is not a minimum in O. By Lemma
3.2, there exists a minimum θ ∈ O with |θ| ≤ |α| and |θ′| ≤ |α′|. Then θ is
also a unit in O.

Let θ = A + Bρ + Cω with A,B,C ∈ k[t]. Then A 6= 0, as otherwise GH
would divide the constant N(θ). Since |θ| ≤ |α| < 1, we must have |θ′| > 1
because 1 is a minimum in O. Hence

|A| = |θ + θ′ + θ′′| ≤ |θ′| ≤ |α′| = |ρ|,
|Bρ+ Cω| = |α− A| = |A| ≤ |ρ|,
|Bρ− Cω| = |θ′ − θ′′| ≤ |θ′| ≤ |ρ|.

Thus |Bρ|, |Cω| ≤ |ρ|. This implies |B| ≤ 1, so B ∈ k. Also |Cρ| < |Cω| ≤
|ρ| implies |C| < 1, so C = 0, and since |θ| < 1, B 6= 0, so B ∈ k∗. Since
N(θ) = A3 + B3D, we have D = M3 − a with M = −B−1A ∈ k[t] and
a = −B−3N(θ) ∈ k∗. 2

Lemma 3.4 If D = M3 − a with M ∈ k[t] and a ∈ k∗, then |G| > |M | >
|H|.

Proof: Suppose |G| ≤ |H|, then |M |3 = |GH2| ≤ |H|3, so |M | ≤ |H|.
Taking the derivative of the equality GH2 = M3 − a shows that H divides
M2M ′. Since gcd(H,M) = 1, this implies that H divides M ′, so |M | ≤
|H| ≤ |M ′| < |M |, a contradiction. Hence |G| > |H| and |M |3 = |GH2| >
|H|3, implying |M | > |H| and |G| = |M |3/|H|2 > |M |. 2

Lemma 3.5 If D = M3−a with M ∈ k[t] and a ∈ k∗, then the fundamental
unit of K is ε = M2 +Mρ+ ρ2.

Proof: It is easier to prove that δ = M − ρ = (a(M2 + Mρ + ρ2))−1 is the
fundamental unit of negative degree of K. To that extent, let δ = ηs where
η = A+Bρ+Cω ∈ O is the fundamental unit of K of negative degree and
s ∈ N. Then

|η′| = |δ′|1/s = |δ′δ′′|1/2s = |δ|−1/2s = |M2 +Mρ+ ρ2|1/2s = |M |1/s.
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Now a simple calculation shows

B =
1

3ρ
(η + u2η′ + uη′′),

C =
1

3ω
(η + uη′ + u2η′′),

where we recall that u is a primitive cube root of unity in some algbraic
closure of k. Since |ρ| = |M | and |ρ2| = |Hω| ≥ |ω|, we have

|B| ≤ |η′|
|ρ|
≤ |M |

1
s

|ρ|
= |M |

1
s
−1,

|C| ≤ |η′|
|ω|
≤ |M |

1
s

|ρ|2
= |M |

1
s
− 1

2 .

If B 6= 0, then 1/s − 1 ≥ 0, implying s = 1 and η = δ = M − ρ. Suppose
B = 0, then C 6= 0 as otherwise η = A and |η| < 1 together imply a
contradiction. In this case, 1/s − 1/2 ≥ 0, so s ≤ 2. Suppose s = 2, then
comparing coefficents of ω in (A + Cω)2 = M − ρ yields 2AC = 0. Since
char(k) 6= 2, we must have A = 0, implying the contradiction 1 > |η| =
|Cω|. 2

Theorem 3.6 If D = M3 − a with M ∈ k[t] and a ∈ k∗, then l = 1.

Proof: If D = M3 − a, then gcd(M,H) = 1, so there exist polynomials
X, Y ∈ k[t] with |Y | < |H| and HX −MY = 1. Set µ = M2 +Mρ+Hω =
M2 +Mρ+ ρ2, ν = bXρ+ Y ωc/2 +Xρ+ Y ω. Then µ, ν ∈ O and {1, µ, ν}
is a basis of O. Since µ is the fundamental unit of K by Lemma 3.5, we
see that l = 1 if µ is the minimum adjacent to 1 in O, so it suffices to show
that µ and ν satisfy conditions (2.3). Using Lemma 3.4, we obtain

|ζµ| = |2M −Mρ− ρ2| = |(2M + ρ)(M − ρ)|

=
|2M + ρ|

|M2 +Mρ+ ρ2|
=

1

|M |
< 1,

|ζν | = |bXρ+ Y ωc − (Xρ+ Y ω)| < 1,

|ξµ| = |Mρ+ ρ2| = |M |2,

|ξν | = |Xρ+ Y ω| =
|ρ|
|H|
|HX + Y ρ| =

|M |
|H|
|MY + 1 + Y ρ|
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=
|M |
|H|
|MY | < |M |2 = |ξµ|,

|ηµ| = |Mρ− ρ2| = |ρ||M − ρ| =
1

|M |
< 1,

|ην | = |Xρ− Y ω| =
|ρ|
|H|
|HX − Y ρ|

=
|M |
|H|
|Y (M − ρ) + 1| > |Y (M − ρ) + 1| = 1,

where the last equality follows from |Y (M − ρ)| = |Y |/|M2 + Mρ + ρ2| <
|H|/|ρ|2 = |ω|−1 < 1. So µ and ν satisfy (2.3) and hence l = 1. 2

Lemma 3.4 and the previous two theorems establish the following:

Corollary 3.7
l = 1 and |G| > |H| if and only if D = M3 − a for some M ∈ k[t] and
a ∈ k∗.
l = 1 and |G| < |H| if and only if D = M3 − a for some M ∈ k[t] and
a ∈ k∗.

In the case where l = 1 and |G| = |H|, there is no simple description of D
analogous to that given in the above corollary. We will see below that if
both G and H are linear, then l = 1 always. On the other hand, there are
instances where G and H are of the same degree and not linear, and l = 1
for any field of constants k. G = t2 +1 and H = t2 yields one such example.
We also point out that the possibility |G| = |H| can never occur in a purely
cubic number field K = Q( 3

√
D) as in this case D = ±G3 would be a cube

in Z.

4 Small Periods And Regulators

In general, the regulator R of a purely cubic complex function field of char-
acteristic 6= 3 can be very large; up to exponentially large in the genus
g = deg(GH)− 2 of K.

Proposition 4.1 R ≤ (
√
q+1)2g, so R ≤ qg+O(qg−1/2) =

|GH|
q2

+O

(
|GH|
q5/2

)
.
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Proof: We have R ≤ L(1) where L(u) =
∏2g

i=1(1− λiu) is the L-polynomial
of K. Here, the λi are algebraic numbers such that |λi| =

√
q for 1 ≤ i ≤ 2g

by the Hasse-Weil Theorem (see [6, Theorem V.1.15, p. 166, and Theorem
V.2.1, p. 169]). 2

Henceforth, we assume once again that char(k) ≥ 5. Then the period l and
the regulator R of K are closely related and are in fact proportional, so
large regulators will result in large period lengths and vice versa.

Proposition 4.2
2R

deg(GH)
≤ l ≤ 2R.

Proof: We have 2R = deg(ε) = deg(θl+1) =
∑l

i=1 deg(µi). Since each µi
is the minimum adjacent to 1 in some reduced fractional ideal, we have
|µi| > 1 for all i ∈ N. On the other hand |µi| ≤ |GH| for all i ∈ N by
Theorem 7.6 of [4]. It follows that l ≤ deg(θl+1) ≤ l deg(GH), so l ≤ 2R
and l ≥ 2R/ deg(GH). 2

We should point out that in almost all the computations performed in [4],
the values of l and R were very close together and often differed only by 1.
We anayze the relationship between regulator and period more closely when
these values are very small.

Proposition 4.3 If l = 1, then R ≤ 1

3
max{deg(D), deg(D)}. If deg(D) 6=

deg(D), or equivalently, |G| 6= |H|, then equality holds.

Proof: Suppose l = 1. If |G| > |H|, then by Corollary 3.7 D = M3 − a
with a ∈ k∗ and M ∈ k[t]. By Lemma 3.5, ε = M2 + Mρ + ρ2 and
R = deg(M) = deg(D)/3 > deg(D)/3. If |G| < |H|, then by Corollary
3.7 D = M3 − a with a ∈ k∗ and M ∈ k[t]. Here, we can apply Lemma
3.5 with the roles of ρ and ω exchanged, so we obtain ε = M2 + Mω + ω2

and R = deg(M) = deg(D)/3 > deg(D)/3. Finally, if |G| = |H|, then by
Proposition 4.2 R ≤ deg(GH)/2 = deg(G) = deg(D)/3 = deg(D)/3. 2

Proposition 4.4 R = 1 if and only if l = 1 and deg(D) = 3 or deg(D) = 3.
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Proof: By [3], R = 1 if and only if D = M3 − a or D = (M3 − a)2 or
D = GH2 with a ∈ k∗, M ∈ k[t], and deg(M) = deg(G) = deg(H) = 1.

If D = M3 − a with deg(M) = 1, then deg(D) = 3, and D is squarefree as
any square polynomial divisor of D would have to divide both M3 − a and
M2. Hence by Corollary 3.7 l = 1. If D = (M3 − a)2, then D is a square,
so G = 1, H = M3 − a = D, deg(D) = 3, and l = 1 by Corollary 3.7.
If D = GH2 with linear G and H, then deg(D) = 3, and one iteration of
Voronoi’s Algorithm shows that l = 1 and ε = (b2+GH)+(G−b)ρ+(H+b)ω
where b = (G−H)/3 ∈ k∗.
Conversely, suppose l = 1 and deg(D) = 3 or deg(D) = 3. If deg(D) = 3,
then either deg(G) = deg(H) = 1 or deg(G) = 3 and deg(H) = 0. In the
former case, R = 1 by the remark at the beginning of the proof. In the
latter case, D = M3 − a with a ∈ k∗ and M ∈ k[t] by Corollary 3.7. Then
M must be linear, so R = 1, again by the remark at the beginning of the
proof. If deg(D) = 3, then either deg(G) = deg(H) = 1 or deg(G) = 0
and deg(H) = 3. In the former case, once again R = 1. In the latter case,
D = M3−a with a ∈ k∗ and M ∈ k[t] by Corollary 3.7. Again, M is linear.
Then D = (M3 − a)2, so by the above remark, R = 1. 2

We conclude this paper with some more instances of small periods. This
investigation was inspired by [8], where several classes of purely cubic num-
ber fields with small periods were analyzed; namely fields of the type K =
Q( 3
√
D) where D ∈ Z is squarefree and is of the form D = m3 + a or

D = m3 + am with m ∈ Z and a = ±1 or ±3. As in the number field case,
the task of finding the period length of a purely cubic complex function field
K = k(t, 3

√
D) where D is not squarefree is much more difficult than the

corresponding problem for squarefree radicands. We were able to establish
the periods of two infinite families of fields with squarefree D analogous
to those analyzed by Williams [8]. Our results were obtained by applying
Voronoi’s algorithm to these fields.

Proposition 4.5 Let D = M3 − aM where M ∈ k[t], a ∈ k∗, and D is
squarefree. Then l = 2. The fundamental unit of K is

ε = (9M4 − 9M2 + 1) + 3M(3M2 − 2)ρ+ 3(3M2 − 1)ρ2

and the regulator of K is R = 2 deg(M). The reduced bases computed in
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each step of Algorithm 2.1 are given as follows:

µ1 = M(3M2 − 2a) + (3M2 − a)ρ+ 3Mρ2,

ν1 =
(
M2 − a

2

)
+Mρ+ ρ2,

µ2 =
M2 +Mρ+ ρ2

M
,

ν2 =
Mρ− ρ2

M
.

Proposition 4.6 Let D = M3 − F where M,F ∈ k[t], 1 < |F | < |M |, F
divides M , and D is squarefree. Then l = 3. The fundamental unit of K is

ε =

(
9

(
M3

F

)2

− 9
M3

F
+ 1

)
+ 3

M2

F

(
3
M3

F
− 2

)
ρ+ 3

M

F

(
3
M3

F
− 1

)
ρ2

and the regulator of K is R = deg(M3/F ) = deg(D)−deg(F ). The reduced
bases computed in each step of Algorithm 2.1 are given as follows:

µ1 = M2 +Mρ+ ρ2, ν1 = M/2 + ρ,

µ2 =
M2 +Mρ+ ρ2

F
, ν2 =

M/2 + ρ

F
,

µ3 =
M2 +Mρ+ ρ2

F
= µ2, ν3 = M/2 + ρ = ν1.
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