
Infrastructure: Structure
Inside the Class Group
of a Real Quadratic Field
M. J. Jacobson Jr. and R. Scheidler

Cows and Fields
Suppose that you are a wise ancient Greek, and
that you have been given the task of counting the
Sun God’s cattle on the island of Sicily. They are
too numerous to count manually, and your only
clue is a puzzle that relates the number of cows
and bulls of a particular color to those of another.
How can you determine the size of your herd from
such cryptic information?

A precise version of this numerical puzzle is
the well-known cattle problem of Archimedes [2].
A number of accounts of its solution appear in
the literature [31, 21, 19]. Unfortunately for the
hypothetical Greek sage, this problem does not
have a small and completely elementary solution—
it would take more than 2,000 years before the
first solution was discovered by Amthor [1]. Had
a solution been available, the Greek would likely
have been shocked to find that the Sun God had
somehow managed to pack a herd of more than
10206544 animals onto Sicily!

One of the main ingredients in Amthor’s solution
was solving the Diophantine equation

x2 − 4729414y2 = 1

for integers x and y. This equation is a specific
instance of the (incorrectly named) Pell equation

(0.1) x2 −Dy2 = 1 ,

where D is assumed to be a positive nonsquare

M. J. Jacobson Jr. is associate professor of computer sci-
ence at the University of Calgary. His email address is
jacobs@cpsc.ucalgary.ca.

R. Scheidler is professor of mathematics and computer sci-
ence at the University of Calgary. Her email address is
rscheidl@ucalgary.ca.

DOI: http://dx.doi.org/10.1090/noti1064

integer. Lenstra [21] and Williams [31] have written
excellent expository articles on the history and
modern methods for solving this equation; see also
Jacobson and Williams [19] for a more exhaustive
treatment. The infrastructure plays an important
role in this story, so we begin our discussion here.

One of the simplest methods for solving an
instance of the Pell equation is based on contin-
ued fraction expansions of quadratic irrationals.
Following [19, Ch. 3, p. 57], define δ = (q +

√
D)/r,

where

r =
{

2 if D ≡ 0 or 1 (mod 4) ,
1 otherwise

and

q =
{

1 if D ≡ 1 (mod 4) ,
0 otherwise .

Put P0 = q,Q0 = r , q0 = bδc,G−1 = r ,G0 = rq0−q,
B−1 = 0, B0 = 1, and apply the recurrences

Pi+1 = qiQi − Pi ,

Qi+1 =
D − P2

i+1

Qi
,

qi+1 =
⌊
Pi+1 +

√
D

Qi+1

⌋
,

Gi+1 = qi+1Gi +Gi−1 ,
Bi+1 = qi+1Bi + Bi−1 ,

for i = 0,1,2, . . . until we find the least positive
index p for which Qp = r .

For example, consider D = 193. Applying the
formulas from above, the continued fraction
expansion of (q+

√
D)/r = (1+

√
193)/2 is obtained

as follows:

36 Notices of the AMS Volume 61, Number 1

n Pn Qn qn Gn Bn
-1 2 0
0 1 2 7 13 1
1 13 12 2 28 2
2 11 6 4 125 9
3 13 4 6 778 56
4 11 18 1 903 65
5 7 8 2 2584 186
6 9 14 1 3487 251
7 5 12 1 6071 437
8 7 12 1 9558 688
9 5 14 1 15629 1125
10 9 8 2 40816 2938
11 7 18 1 56445 4063
12 11 4 6 379486 27316
13 13 6 4 1574389 113327
14 11 12 2 3528264 253970
15 13 2

We see that Q15 = 2. Set p = 15, and notice that
r divides both Gp−1 and Bp−1. We find that

(Gp−1/r)2 −D(Bp−1/r)2

= 17641322 − 193 · 1269852 = −1.

Hence, (1764132,126985) is a solution of the
negative Pell equation x2 −Dy2 = −1 for D = 193.
Continuing the continued fraction expansion of
(1 +

√
193)/2 yields a repetition of the cycle of

(Pn,Qn) pairs. Stopping at the second occurrence
of Qn = 2 yields
n Pn Qn qn Gn Bn

29 11 12 2 12448646853698 896073208080

30 13 2

Setting p = 30, we find again that r divides both
Gp−1 and Bp−1. This time, we obtain the identity

(Gp−1/r)2 −D(Bp−1/r)2

= 62243234268492 − 193 · 4480366040402 = 1.

Thus, (t, u) = (6224323426849,448036604040)
is a solution of x2 − 193y2 = 1. It can be proved
that the first solution obtained in this manner is
the fundamental (i.e., minimal) solution of (0.1)
[19, Ch. 3], and all solutions (T ,U) can be obtained
by computing T +U

√
D = (t + u

√
D)n for integers

n ≥ 1 [19, Corollary 1.10].
In addition to the agricultural connection to

fields through Archimedes’ cattle problem, further
examination of the continued fraction method for
solving Pell equations reveals another connection
to fields, specifically real quadratic number fields.
Consider the quantity

εD =
Gp−1 + Bp−1

√
D

r
= 3528264+ 253970

√
193

2
obtained after the first period in the continued
fraction expansion from the example. It belongs to
the real quadratic fieldQ(

√
D) = {a+b

√
D | a, b ∈

Q}.The norm of an elementα = a+b
√
D ∈ Q(

√
D)

is the rational number N (α) = αα = a2 − b2D,
where α = a − b

√
D denotes the conjugate of α.

For the quantity εD from our example, we obtain

N (εD) =
Gp−1 + Bp−1

√
D

2

Gp−1 − Bp−1
√
D

2
= −1 .

Because N (εD) is an integer, εD is an algebraic
integer in Q(

√
D), and because it divides 1, εD is a

nontrivial unit in the subring OD = {a+bδ | a, b ∈
Z} of Q(

√
D). In fact, εD is the smallest unit

exceeding 1 in OD and is called the fundamental
unit ofOD , as all units in this ring can be expressed1

as ±εkD for some k ∈ Z.
The fundamental solution to the Pell equation is

the smallest power of εD with integer coefficients
and norm equal to 1. In the example, one can verify
that

ε2
193 = 6224323426849+ 448036604040

√
193

and, as shown above,

N (ε2
193)

= 62243234268492 − 193 · 4480366040402 = 1,

so (6224323426849,448036604040) is the funda-
mental solution of the Pell equation for D = 193.
In general, εkD for some k ∈ {1,2,3,6} yields the
fundamental solution of the Pell equation. Thus
computing the fundamental unit of OD also yields
all solutions to (0.1).

There are further connections to Q(
√
D). Con-

sider the quantities θj = (Gj−2 + Bj−2
√
D)/2 for

j = 1,2, . . . , p − 1. Like εD, they all belong to
OD. The set of principal OD-ideals (θj) = θjOD
forms the infrastructure of Q(

√
D). Its remarkable

group-like properties led to faster algorithms for
solving the Pell equation, and other applications.
These properties, and additional applications of
the infrastructure, are the focus of this paper.

We begin our discussion of the infrastructure
with a brief study of ideals in the ring of integers of
a real quadratic field. The infrastructure is formally
introduced, and its group-like properties explained,
in the section “What Is the Infrastructure?”. Fur-
ther uses (and nonuses) of the infrastructure are
discussed in the section “What Else Can (and
Can’t!) You Do with Infrastructure?”, and practical
implementation issues arising in these applications
are the subject of the section “Practical Issues”.
We offer a glimpse beyond infrastructure in real
quadratic fields in the section “Beyond Infrastruc-
ture in Real Quadratic Fields” and into relevant
open problems in the section “Open Problems”,
concluding with suggested sources for further
reading in the section “Further Reading”.

1This is a special case of Dirichlet’s unit theorem for an
arbitrary algebraic number field.

January 2014 Notices of the AMS 37

What Is the Infrastructure?
The infrastructure is a collection of certain
OD-ideals of a real quadratic field Q(

√
D). For

simplicity, assume henceforth that D is square-
free, and q = r − 1 (with q and r as defined in the
section “Cows and Fields”). ThenOD is the maximal
order or ring of integers of Q(

√
D), i.e., the inte-

gral closure of Z in Q(
√
D). As seen earlier, OD is

precisely the two-dimensional Z-module in Q(
√
D)

with basis {1, (r−1+
√
D)/r}. The nonzero ideals of

OD are exactly the two-dimensional Z-submodules
ofOD with bases of the form {SQ/r, S(P+

√
D)/r},

where S,Q, P ∈ Z, r divides Q, and rQ divides
D − P2. An OD-ideal a is primitive if it cannot be
written as an integer multiple of another OD-ideal;
we can take S = 1 in this case, and write a = [Q, P].
The conjugate of an ideal a is the ideal a containing
the conjugates of the elements in a. If a = [Q, P],
then a = [Q,−P].

The product of two OD-ideals a, b is defined to
be the collection of all finite sums of products αβ
with α ∈ a and β ∈ b. This is easily seen to be
an OD-ideal, so the set of all OD-ideals forms an
infinite monoid under multiplication with identity
OD. Efficient formulas for computing a Z-basis
of the product of two ideals given in Z-basis
representation exist, based on the composition
formulas of Gauß for binary quadratic forms [19,
Sec. 5.4]. A principal ideal consists of all the OD-
multiples of some fixed element θ ∈ OD, called a
generator of the ideal, and is denoted by (θ). The
principal ideals form an infinite submonoid of the
ideals.

The (ideal) class group ClD, discovered by Gauß
in the context of binary quadratic forms [14], is
an algebraic object of great interest in its own
right. It is defined as the group of nonzero ideal
equivalence classes under multiplication, where
a and b are equivalent if there exist nonzero
α,β ∈ OD such that (α)a = (β)b. The class group
ClD is a finite abelian group whose order is called
the (ideal) class number and is denoted by hD.
One way to prove that ClD is finite is through
the definition of reduced ideals. A primitive ideal
a = [Q, P] is said to be reduced if Q is a minimum
in a, i.e., if there exists no nonzero α ∈ a such
that |α| < Q and |α| < Q. Given any primitive
ideal a = [Q, P] of OD, an equivalent reduced ideal
can be found by expanding the continued fraction
of (P +

√
D)/Q [19, Ch. 5]. Furthermore, it can be

shown that if a is reduced, then the coefficients Q
and P are bounded (roughly) by

√
D [19, Sec. 5.1],

implying that there are only finitely many reduced
ideals in Q(

√
D). Combining this with the fact that

every ideal is equivalent to a reduced ideal yields
the finiteness of the ideal class group.

Ideal reduction also leads to a method for
computing in the class group. The idea is to use a

reduced ideal to represent its entire equivalence
class. Multiplying elements in the class group then
consists of multiplying a reduced representative
from each class and reducing the product. This op-
eration is efficient, with bit complexity polynomial
in logD [19, Sec. 5.4].

The main problem with this method is testing
whether two ideal classes are equal. Although
the number of reduced representatives of an
equivalence class is finite, it could still be too large
for an exhaustive comparison to be feasible. In
particular, as we will see shortly, the regulator
RD = log εD provides an estimate of the number
of reduced ideals in an equivalence class. It is
known that hDRD ≈

√
D [19, Eqn. 7.1]. So if hD is

small, one would have to exhaustively test O(
√
D)

reduced equivalent ideals.
In order to speed up this process, it would be

helpful if elements of the class group had their own
internal structure. This is precisely what Shanks
discovered in 1972 and termed infrastructure [26].
Although each ideal equivalence class has its own
infrastructure, we confine our discussion to the
class of principal ideals—the identity class of
ClD—and refer to “the” infrastructure of Q(

√
D)

as the set of all reduced principal OD-ideals.
The idealOD = [r , r−1] is principal and reduced.

Computing the continued fraction expansion of
(P0 +

√
D)/Q0 with Q0 = r and P0 = r − 1, using

the formulas from the previous section, yields
a sequence of ideals aj = [Qj−1, Pj−1] for j =
1,2, One can show that all these ideals are
reduced and equivalent, satisfying

(0.2) aj+1 = (ψj)aj
where ψj = (Pj +

√
D)/Qj−1 [19, Sec. 5.3].

Notice the similarity of this process to that of
the previous section for solving the Pell equation
using continued fractions. In fact, the sequence of
reduced principal ideals obtained in this fashion
consists precisely of the ideals (θj) with θj =
(Gj−2 + Bj−2

√
D)/r ; i.e., aj = (θj). Thus

θj =
j−1∏
k=1

ψk

which can be derived from (0.2).
One way to describe the structure of the infra-

structure is to draw an analogy to a more familiar
algebraic object, namely, a finite multiplicative
cyclic group G = 〈g〉 of order n. To generate all
the elements in this group, one begins with the
identity element 1 = g0 and successively multiplies
by g until finding gn = 1. The elements of G can
be visualized on a circle of circumference n, as
depicted in Figure 1. Notice that the elements
of G are regularly spaced around the circle. The
distance of an element gi is defined to be i and
measures how far around the circle gi is from 1

38 Notices of the AMS Volume 61, Number 1

g g2

g 3

g 4

· · ·

gn
g
n−1

g
n−

2

g
n−

3

· ·
·

gi
δ(g

i) = i = 8

g j

δ(g j
)
=
j
=

1
2

g
i+
j
δ(
g
i)+

δ(
g
j)
=

2
0

|G| = n

Figure 1. Cyclic group GGG of order nnn generated by
ggg, depicted on a circle. Note that consecutive
elements (powers of ggg) are distance 111 apart on
the circle. The circumference of the circle is
equal to nnn, the order of GGG.

(in clockwise direction). Using this definition, the
distance between two consecutive group elements
on the circle is 1, and the distance around the
entire circle is n, the order of G.

The infrastructure, as we have seen, also de-
scribes a finite cyclic structure. To generate all the
elements in the infrastructure, one starts with the
ideal a1 = OD = [Q0, P0] (recall that Q0 = r and
P0 = r − 1) and computes the ideals ai = [Qi , Pi],
i = 2,3, . . ., by computing the continued fraction
expansion of (P0 +

√
D)/Q0, as described above,

until arriving at OD again. Thus one step in this
continued fraction expansion plays a similar role
to multiplication by g in G. The ideals ai can also
be visualized on a circle, as depicted in Figure 2
(see [19, Fig. 7.1]; figure used with kind permission
of Springer Science+Business Media). Here the
distance of ai = (θi) is defined to be δ(ai) = logθi .
This notion of distance measures how far ai is
around the circle fromOD.Using this definition, the
distance between two consecutive ideals ai+1 and
ai is δ(ai+1, ai) = log(θi+1/θi) = logψi . Although
the distance between consecutive infrastructure
ideals is therefore not constant, the Khintchine-
Lévy Theorem implies that logψi is on average
about 1.18 [19, Theorem 3.17]. In other words, even
though the ideals are not evenly spaced around
the circle—unlike the cyclic group scenario—the

a1

a
2

a
3

a
4

·
·
·

an+1
an

an−
1

an
−2

· ·
·

ai
δ(ai)

a
j

δ
(
a
j)

a
l

δ
(a
l)δ(

a i
)+
δ(

a j
)

δ(an+1)
= RD

Figure 2. The infrastructure of the principal
class of ODODOD , depicted on a circle. Note that the
distance between consecutive elements varies,
but is generally close to 111. The circumference of
the circle is equal to the regulator RDRDRD .

distance between any two neighbors is, neverthe-
less, generally close to one. The distance around
the entire circle, analogous to the order of G, is
R = log εD, the regulator of Q(

√
D).

As an example, the infrastructure of Q(
√

193)
is listed in Table 1 (reproduced from [19, Table
7.1], table used with kind permission of Springer
Science+Business Media). The coefficients of the
ideals are taken from the continued fraction
expansion of (1 +

√
193)/2 from the previous

section. The distances are computed using the
corresponding Gj and Bj values. Notice that
a16 = a1, so δ(a16) ≈ 15.07631652 is the regulator
of Q(

√
193). Notice also that δ(aj) ≈ j in all cases,

as one would expect from the Khintchine-Lévy
Theorem.

The analogy comparing the infrastructure to
a cyclic group shows that the idea of computing
the regulator2 of OD using the continued fraction
expansion of

√
D is similar in spirit to computing

the order of a cyclic group by enumerating the
entire group. The complexity of the latter is
exactly n operations in G, and, similarly, the
Khintchine-Lévy law implies that the complexity
of the former is O(R), which is O(D1/2+ε) in

2Here, “computing” the regulator RD means computing a
sufficiently accurate floating point approximation.

January 2014 Notices of the AMS 39

Table 1. Principal Cycle for D = 193

j aj = [Qj−1, Pj−1] δ(aj)
1 [2,1] 0
2 [12,13] 2.59869817
3 [6,11] 3.32835583
4 [4,13] 4.82844171
5 [18,11] 6.65671165
6 [8,7] 6.80572746
7 [14,9] 7.85709282
8 [12,5] 8.15679754
9 [12,7] 8.71127845
10 [14,5] 9.16513386
11 [8,9] 9.65688343
12 [18,7] 10.61682945
13 [4,11] 10.94102199
14 [6,13] 12.84657298
15 [12,11] 14.26937782
16 [2,13] 15.07631652

the worst case (when hD = 1). However, Shanks’s
discovery of the infrastructure revealed even more
structural similarities to G, which led to significant
improvements in regulator computation.

In the cyclic group setting, one well-known
improvement to computing the group order is to
apply a time-memory tradeoff and use the baby-
step giant-step strategy. The idea is that, in addition
to moving through the group using successive
multiplications by g (baby steps), one can take
larger steps through the group by multiplying by
gi for some positive integer i (giant steps). As
depicted in Figure 1, the distance between two
successive baby steps is only 1, but each giant step
advances by a distance of i, and in particular the
distance of gjgi is precisely j + i, the sum of the
distances of the inputs. To compute the order n of
G, one begins by computing a list of baby steps
L = {1, g, g2, . . . , gl} where l ≈

√
H for a suitable

bound H ≥ n. Then the giant steps g2l , g3l , . . .
are computed until an element is found in the
list L of baby step elements, say gil = gj . This
yields gilg−j = 1, and we have n = il − j if H is a
reasonably tight bound on n. The complexity of
this algorithm is O(

√
H) = O(√n) operations in G.

Modifications exist that achieve complexity O(
√
n)

even without knowing a bound on n [5, 29].
Shanks’s breakthrough was the discovery that

there exists a similar notion of a giant step in the
infrastructure. Consider the effect of multiplying
an infrastructure ideal aj by ai . The resulting
infrastructure ideal a is obtained by multiplying
aj and ai and reducing their product, yielding
(γ)a = ajai for some γ ∈ Q(

√
D). The principal

ideal factor (γ) arises from the fact that, in general,
the reduced ideal a is not equal to ajai but merely
equivalent to it.

Denote by aj ∗ ai the first reduced ideal a =
(γ−1)ajai obtained by applying reduction to the
product ideal ajai . As aj and ai are both principal,
the ideal aj ∗ ai is also principal, and as it is
reduced, it lies somewhere on the infrastructure.
The question is, what is its distance? As aj = (θj)
and ai = (θi), we obtain

δ(aj ∗ ai) = log(θjθi/γ)
= logθj + logθi − logγ
= δ(aj)+ δ(ai)− log(γ).

It can be shown that − log 2 ≤ logγ ≤ log∆ [19,
Eqn. 5.38], and henceδ(aj∗ai) ≈ δ(aj)+δ(ai)as the
“error” logγ in distance is small in comparison to
the circumferenceRD ∈ O(

√
D) and, in general, the

ideal distances δ(aj) and δ(ai). Thus, as illustrated
in Figure 2, multiplication by ai advances the
distance by approximately δ(ai) and has a similar
effect as a giant step in the cyclic group setting.
The main difference is that in G a giant step
using gi advances the distance by exactly i, i.e.,
distances in G are exactly additive, whereas in
the infrastructure case the advance in distance
by applying a giant step with ideal ai is only
approximately i.

Shanks’s discovery imposes a fascinating struc-
ture on the cycle of reduced principal ideals that
gives the infrastructure its name and is tantaliz-
ingly close to a cyclic group structure. Interestingly,
among all the requirements on an abelian group,
the infrastructure violates merely associativity—
and only just barely. Closure holds (the result
of the multiplication/reduction of two infrastruc-
ture ideals is another infrastructure ideal), and
the operation is easily seen to be commutative.
There exists an identity element (namely OD, as
a ∗ OD = aOD = a), and it is possible to define
inverses (roughly, the inverse of the infrastructure
ideal a = [Q, P] is the conjugate ideal a of distance
RD − δ(a)+ logN (a) withN (a) = Q/r). The fact
that distances are not exactly additive in the
infrastructure prevents it from being associative:
the infrastructure ideals (a ∗ b)∗ c and a ∗ (b∗ c)
both have distance close to δ(a)+ δ(b)+ δ(c) but
need not be equal.

Nevertheless, using this “giant step” operation
in the infrastructure leads to a straightforward
adaptation of baby-step giant-step to compute the
regulator RD. The baby-step list consists of the first
l ideals obtained by applying baby steps (using the
continued fraction algorithm), and the giant steps
consist of successively multiplying by an ideal al
with distance close to l and reducing the product.
After some adjustments to account for the fact
that distances are not exactly additive [19, Sec. 5.3],
RD = δ(ai) − δ(aj) is obtained once a giant-step
ideal ai is found that is equal to one of the baby-step

40 Notices of the AMS Volume 61, Number 1

ideals aj . Using the bound of O(D1/2+ε) for RD,
this algorithm has complexity O(D1/4+ε). As with
order computation, there exists a variation that
does not depend on an upper bound on RD and
requires only O(

√
RD) infrastructure operations

[7, 8]. The overall bit complexity of this algorithm
is O(

√
RDDε), as each of the infrastructure opera-

tions has complexity polynomial in logD. This is
currently the fastest deterministic algorithm that
unconditionally computes RD.

To see how this algorithm works in practice,
consider the previous example of D = 193 ([19,
Example 7.15]). By expanding the continued fraction
of (1+

√
193)/2, essentially enumerating the entire

infrastructure by baby steps, we found that ε193 =
1764132+ 126985

√
D, and thus R193 = log ε193 ≈

15.07631652. Instead, suppose that the first six
infrastructure ideals, taken from Table 1, form our
baby-step list,

L = {a1, a2, . . . , a6},
and that the ideal a4 = [4,13] with distance
δ(a4) ≈ 4.82844171 is used for the giant steps.
Successively multiply a4 by itself and apply subse-
quent reduction, thereby obtaining the sequence
of giant-step ideals:

b2 = a4 ∗ a4 = [8,9] = a11 , δ(b2) ≈ 9.65688343 ,

b3 = b2 ∗ a4 = [12,11] = a15 , δ(b3) ≈ 14.26937782 ,

b4 = b3 ∗ a4 = [6,11] = a3 , δ(b4) ≈ 18.40467235 .

We find that b4 ∈ L with b4 = a3, so

R193

= δ(b4)− δ(a3) ≈ 18.40467235− 3.32835583

= 15.07631652,

as required.

What Else Can (and Can’t!) You Do with
Infrastructure?
The analogy between a finite cyclic group and the
infrastructure can be extended further, in the sense
that a number of additional useful algorithms and
techniques from the group setting can be adapted
to solving problems in the infrastructure. For
example, a more general version of the problem of
computing the order of g is the discrete logarithm
problem, computing the smallest power of g equal
to a given group element a. The result represents
the “distance” from the identity element to a.
The infrastructure analogy is the distance problem:
given an infrastructure ideal a, find its distanceδ(a)
from OD. Via compact representations, which are
discussed in more detail at the end of this section,
this problem can be shown to be polynomially
equivalent to the principal ideal problem: finding
a generator of a. As in the cyclic group case, the
distance problem can be solved using the baby-step

giant-step algorithm in O(
√
δ(a)) operations in the

infrastructure. Testing whether two ideals a and b
are equivalent can also be done with this method
by testing whether ab is principal.

A fundamental algorithm in the cyclic group
setting is fast exponentiation, by which gn, the
group element of “distance” n from 1, can be
computed rapidly (in O(logn) group operations)
by combining squarings and multiplications by
g according to the binary expansion of n. In
the infrastructure, the analogue of this algorithm
allows one to compute efficiently the ideal whose
distance is closest to n. By combining giant steps
(in this case, ideal squaring followed by reduction)
with baby steps, such an ideal can be computed in
O(logn) infrastructure operations.

As in the cyclic group setting, the basic operation
of finding an element with distance close to
n enables several additional applications and
algorithms. One such application, common to
both settings, is public-key cryptography. For
example, in a cyclic group, Diffie and Hellman [11]
showed how two parties can agree on a shared
secret over an insecure communication channel by
exchanging ga and gb (where a and b are generated
randomly by the respective parties and kept secret)
and each independently computing the common
group element gab = (ga)b = (gb)a. An analogous
infrastructure key exchange protocol was proposed
in 1989 by Buchmann and Williams [9] using the
computation of closest ideals in the infrastructure
in place of exponentiation. Roughly speaking,
the protocol participants exchange infrastructure
ideals close to a and b and independently compute
the infrastructure ideal close to ab. The result
is a protocol whose security is related to the
principal ideal problem in a similar way to how the
Diffie-Hellman scheme is related to the discrete
logarithm problem. This protocol is noteworthy
in that it was the first public-key cryptosystem
proposed whose security was based on a structure
that is not a group. Other protocols, as well as
improvements to the original cryptosystem, have
also been proposed; a survey can be found in [19,
Ch. 14].

The ability to compute closest ideals also leads
to a simple method for testing whether a given real
number S is a good numerical approximation of an
integer multiple of RD. Once again, the idea stems
from the cyclic group setting, where S is a multiple
of the order of a generator g if and only if gS is
the group identity. Similarly, in the infrastructure
scenario, if S is a multiple of the regulator RD , then
the closest ideal to S has to be OD, because RD is
the distance around the entire infrastructure, i.e.,
from OD to itself. Thus, one simply computes the
ideal closest to S and checks whether it is OD. This
observation also enables accurate approximations

January 2014 Notices of the AMS 41

of RD to be computed efficiently given only a
coarse approximation: one simply computes the
ideal closest to the approximation and computes
the resulting distance to the required precision.

An application of testing for multiples of the
regulator using closest ideals is an improvement,
due to Lenstra [20], of the baby-step giant-step
algorithm for computing the regulator RD. After
computing an approximation H to hDRD, which
can be done analytically [19, Sec. 10.2], the ideal a
with distance closest to H is computed. Baby-step
giant-step is then used to search for the ideal
closest to a whose distance is a multiple of the
regulator; the number of infrastructure operations
required is thus asymptotic to

√
|H − hDRD|, the

square root of the error in the approximation.
Given this multiple of the regulator, a combination
of baby-step giant-step (to check whether the
regulator is larger than a given bound) and closest
ideal computations (to find smaller multiples ofRD)
is used to find RD. By balancing the time required
for the various parts of the algorithm, an overall
complexity ofO(D1/5+ε) is achieved. This algorithm
is unconditionally correct, but the runtime applies
only if the Extended Riemann Hypothesis (ERH)
holds, as it is required to guarantee the accuracy
of the approximation H of hDRD.

There are some techniques from the cyclic
group setting that unfortunately do not translate
well to the infrastructure. One such technique is
computing the order of the group given a multiple
of the group order. This can be done in polynomial
time given the prime factorization of the order
multiplem by finding, for each prime divisor p, the
largest integer i for which m/pi is also a multiple
of the order. This technique does not generalize
to the infrastructure, as there is no known way to
“factor” multiples of the regulator, which are real
numbers.

The best-known method to solve the problem
of finding RD given an integer multiple S of
RD is the technique used in Lenstra’s O(D1/5+ε)
algorithm, namely, using baby-step giant-step to
check whether the regulator is larger than a certain
bound and checking whether S/p is also a multiple
of RD by testing whether the ideal closest to
S/p is equal to OD for all primes p less than
another suitable bound. When used in the context
of Lenstra’s algorithm, where a regulator multiple
must also be computed, optimization results
in the O(D1/5+ε) runtime. When the regulator
multiple S is given as input, reoptimization results
in an algorithm with complexity O(S1/3Dε) for
unconditionally computing RD from S.

An interesting consequence of this algorithm
is that it leads to an efficient practical algorithm
for unconditionally computing RD. Buchmann’s
index-calculus algorithm [4] computes RD in time

subexponential in logD, but both the runtime and
correctness of this algorithm depend on the ERH.
Using the previous algorithm to verify uncondition-
ally that this output is in fact the regulator results
in an overall algorithm [15, 10] that computes RD
unconditionally in expected timeO(D1/6+ε), as the
index-calculus algorithm computes RD in expected
time O(Dε) and RD ∈ O(D1/2+ε). Although this
algorithm is not deterministic, due to its depen-
dence on the index-calculus algorithm to produce
a multiple of RD, it is the fastest known algo-
rithm that computes an unconditionally correct
approximation of RD.

Two more techniques from the cyclic group
setting that do not work well in the infrastructure
are the Pollard-rho algorithm [24] for computing
the order n of a group element g and the Pohlig-
Hellman algorithm [23] for discrete logarithms.
Pollard’s algorithm uses a random walk in the
group and a method to detect cycles in this
walk. The result is a probabilistic algorithm with
expected runtime O(

√
n) that requires only a

constant amount of storage, unlike baby-step giant-
step, which requires O(

√
n) storage. The random

walk and cycle finding algorithm can certainly
be applied in the infrastructure. The problem is
that, by virtue of the probabilistic nature of the
algorithm, the results produced are not minimal;
that is, the algorithm produces an integer multiple
of RD which need not be equal to RD. In the
case of a cyclic group, the output can be factored
and minimized as described above. However, as
there is no appropriate notion of factorization for
distances (which are real numbers), one would
again be forced to apply a minimization strategy
similar to that described above for multiples of the
regulator. In addition, as the distances of the ideals
involved will grow to be much larger than RD,
the precision requirements to ensure numerical
accuracy are almost certainly too unwieldy to make
this approach practical.

The Pohlig-Hellman algorithm solves the discrete
logarithm problem by reducing it to discrete
logarithm problems in order p subgroups for
all primes p that divide the order n of G. Thus
this algorithm is very effective when n is smooth,
i.e., has only small prime factors. Adapting this
algorithm to the infrastructure seems fruitless, as
there is no corresponding notion of smoothness
for the regulator.

One additional computational issue that arises
in the infrastructure is the representation of the
fundamental unit itself, as well as principal ideal
generators. When computing only the regulator or
ideal distances, the sizes of operands encountered
are generally manageable, although, as discussed
in the next section, the numerical accuracy or
precision of their floating point approximations

42 Notices of the AMS Volume 61, Number 1

becomes problematic. The alternative, explicitly
working with the principal ideal generators as
opposed to their logarithms, is tempting in that
problems with approximations are eliminated, but
the size of the operands is too large. For example,
the size of the fundamental unit (i.e., the regulator)
is O(D1/2+ε), so it cannot even be written in time
polynomial in logD.

Fortunately, this problem can also be solved
using arithmetic in the infrastructure. The idea is
to use a type of binary exponentiation to come up
with a representation of principal ideal generators,
including the fundamental unit, in the form of a
power-product of elements of Q(

√
D). An expres-

sion of this form is called a compact representation
[6], [19, Ch. 12]. The compact representation of
an element θ ∈ Q(

√
D) can be computed in time

polynomial in log log |θ| logD given an approxi-
mation of log |θ|. The basic arithmetic operations
(including testing equality, multiplication, divi-
sion, norm, computing x mod m and y mod m
where θ = x+ y

√
D) can be performed on compact

representations in polynomial time [18]. Most
importantly, compact representations have size
polynomial in log log |θ| logD, which motivates
their name. The result is that the algorithms for
computing RD mentioned above can also compute
a compact representation of the fundamental
unit, as well as the fundamental solution of Pell’s
equation, without changing the asymptotic run-
time. In addition, computations requiring explicit
manipulation of fundamental units and solutions
of Pell’s equation, for example, as part of the
resolution of other Diophantine equations [18],
can be performed even for large values of D.

All of the applications mentioned in this section
can, in principle, be implemented relatively easily.
However, there are a number of practical concerns
which are described in the next section.

Practical Issues
One of the difficulties arising in infrastructure
arithmetic stems from the fact that distances are
real numbers and thus need to be approximated
to sufficient accuracy in any computer implemen-
tation. To that end, any (potentially unknown)
infrastructure ideal is represented by a known
infrastructure ideal and an approximation of the
relative distance between the two ideals. More
explicitly, let p ∈ N be a prespecified precision
parameter. For any f ∈ N with f < 2p, a near
reduced (f , p)-representation of a reduced ideal a
is a triple (b, d, k) consisting of another reduced
ideal b and two integers d > 0 and k < 0 [16]. Here
b = (θ)a for some unknown relative generator
θ ∈ Q(

√
D) that is of magnitude about 2k, and

d is a (p + 1)-bit integer that approximates the
most significant p + 1 bits of θ with relative error

2−pf . In practice, it is possible to keep the relative
errors significantly below one. Moreover, |k| and θ
tend to be small, and, in fact, the ideals in any two
near-reduced (f , p)-representations of the same
reduced ideal can be shown to be at most five baby
steps apart in the infrastructure.

Ideal arithmetic is now conducted on (f , p)-
representations. If a is taken to be OD, then each
(f , p)-representation consists of an infrastructure
ideal and an approximation of its principal ideal
generator. Arithmetic in the infrastructure can then
be performed using arithmetic on these represen-
tations. However, such arithmetic introduces error
propagation, so care must be taken in choosing
the precision p large enough to keep the relative
errors sufficiently small. For example, in the key
agreement protocol mentioned in the section “What
Else Can (and Can’t!) You Do with Infrastructure?”,
suppose that the two communicants use secret
exponents of bit size n. In order to guarantee that
the two parties arrive at the same key ideal after
execution of the protocol, i.e., after their respective
double exponentiations, one needs to ensure that
p ≥ 2n+ log2(50n) [16].

The computation of giant steps presents another
computational nuisance. As mentioned earlier,
the standard giant-step algorithm first multiplies
two reduced ideals and subsequently reduces
the primitive part of the product ideal. This
technique has two disadvantages. First, in the
reduction procedure, it is very costly to compute
all the basis coefficientsQj , Pj of the (unnecessary)
intermediate ideals via the continued fraction
algorithm. Second, multiplying two reduced ideals
results in an ideal whose basis coefficients are
roughly twice as large as those of the two input
ideals; the reduction process gradually shrinks the
coefficients back down to original size.

In the 1980s Shanks began to compute class
numbers of imaginary quadratic fields with his
programmable hand-held calculator. Frustrated by
the fact that the large size of the intermediate
results arising in ideal multiplication exceeded the
display capacity of his calculator, he developed
a significantly more efficient ideal multiplication
and reduction algorithm to which he assigned
the Fortran designator NUCOMP (short for “new
composition”)3 [27].

NUCOMP, in essence, stops the multiplication
process before completion and applies a type
of intermediate reduction before generating the
reduced ideal product. Recall that traditional
giant-step computation applies the continued-
fraction algorithm to the quadratic irrational

3Shanks described his work using the language of quadratic
forms, in which composition of forms is the analogue of
ideal multiplication.

January 2014 Notices of the AMS 43

(P +
√
D)/Q arising from the product ideal a =

[Q, P] whose coefficients are of order D until a
reduced ideal is obtained. Shanks’s idea was to
avoid computing the nonreduced product ideal a
altogether and replace the quadratic irrational α =
(P +

√
D)/Q by a suitable rational approximation

of α whose numerator and denominator are of
magnitude

√
D, i.e., significantly smaller. Then the

continued-fraction algorithm is replaced by the
more efficient extended Euclidean algorithm, and
the partial quotients obtained in both methods
will be identical, up to a certain point in the
continued fraction expansion. Since the basis
coefficients of any of the intermediate ideals can
be recovered through simple formulas involving
the convergents of the rational approximation, the
costly computation of all the intermediate ideals
is avoided.

But at which point in the Euclidean algorithm is
the reduced target ideal—or at least an “almost”
reduced ideal—reached? In collaboration with
Atkin, Shanks answered this question as well. Once
the remainders have decreased to approximately
4
√
D, the corresponding ideal is recovered. This

ideal is frequently reduced, and is at most two
continued fraction steps away from being reduced.
Moreover, this computation only involves integers
of magnitude

√
D or less (with a few exceptions

that may be as large as D3/4).
Shanks originally formulated his NUCOMP

method for imaginary quadratic fields, but it
was extended to real quadratic fields by van
der Poorten [30]. Numerical experiments [17], [16]
showed that NUCOMP can be up to 50 percent faster
than ordinary ideal multiplication and reduction.

Beyond Infrastructure in Real Quadratic
Fields
While the ideal class group of an imaginary qua-
dratic field is a very large finite abelian group, its
counterpart in real quadratic fields tends to be
a rather dull object, namely, a very small group
that is frequently trivial. Instead, surprisingly, the
principal class—which is, after all, merely the iden-
tity element of this group—exhibits an interesting,
almost grouplike structure. As described above,
the cycle of reduced principal ideals constitutes
the infrastructure. This raises the natural question
of whether infrastructures occur in other settings.
Indeed, this is the case.

The closest analogue to real quadratic number
fields is real quadratic (or hyperelliptic) function
fields. Informally speaking, to obtain such a field,Q
is simply replaced by a rational function field Fq(x)
of odd characteristic.4 Then the square root of a

4Hyperelliptic function fields can also be defined over fi-
nite fields of characteristic 2, but as their representation

polynomialD(x) ∈ Fq[x]of even degree and square
leading coefficient is adjoined to Fq(x). Ideals are
now represented by a pair of polynomials in Fq[x]
instead of a pair of integers, and for reduced ideals,
these polynomials have degree less than deg(D)/2.
Arithmetic on ideals is completely analogous to real
quadratic field arithmetic, and, once again, every
ideal class has an associated infrastructure [28]. The
main difference between real quadratic function
fields and number fields is that, in the former,
distances are integers. Loosely speaking, distances
are degrees of quadratic irrational functions, as
opposed to logarithms of quadratic irrational
numbers. In particular, ideals are discretely and
relatively evenly spaced around the infrastructure,
and a baby step always produces an advance
in distance of at least one (and almost always
exactly one for large base fields Fq). The result is a
cleaner and simpler ideal arithmetic, avoiding the
need for numerical approximations as discussed
in the previous section. Moreover, interestingly,
integer distances make it possible to provide an
explicit and effective embedding of the principal
infrastructure into a finite cyclic group whose order
is the regulator, as was discovered independently
by Fontein [12] and Mireles Morales [22]. Such an
embedding into a finite cyclic group does not exist
in the number field setting, although embedding
the infrastructure into an infinite cyclic group is
possible (see [20]).

Beyond quadratic extensions, any global field,
i.e., any number field or function field over a finite
field, of unit rank one exhibits an infrastructure
analogous to the one described above. Number
fields of unit rank one can have degree at most four
over Q; specifically, they include real quadratic,
complex cubic, and totally complex quartic fields.
In contrast, function fields of unit rank one
can have arbitrarily high extension degree over
Fq(x). Moreover, unit groups of higher rank result
in infrastructures that are essentially higher-
dimensional tori. In his 1987 Habilitationsschrift [3],
Buchmann established that in fact every number
field has an infrastructure and presented the
first generic algorithm for computing the class
group and regulator of an arbitrary number field.
Twenty-one years later, Schoof in his excellent 2008
treatise [25] provided a modern treatment of the
general number field setting, using Arakelov divisor
theory—the number field analogue to divisor
theory of function fields—as a natural setting for
the infrastructure phenomenon and Buchmann’s
algorithm. Most recently, the number field and
function field scenarios were finally combined by
Fontein [13], who gave a unified and completely

is somewhat more complicated, we will not consider them
here.

44 Notices of the AMS Volume 61, Number 1

general description of the infrastructure of any
global field, including baby steps and giant steps,
the relationship of infrastructure arithmetic to
arithmetic in the divisor class group, and (for the
function field setting) an algorithm for computing
a system of fundamental units and the regulator
of the field.

Open Problems
Although Shanks’s discovery of the infrastructure
of a real quadratic field has already led to new
applications and improved algorithms in that
setting, research into this rich field is by no means
exhausted. There are still a number of interesting
open problems.

A noticeable gap persists between what is possi-
ble for computing the regulator RD of a quadratic
number field unconditionally and deterministically
and what seems possible in practice. The fastest
deterministic, unconditional algorithm has com-
plexityO(

√
RDDε), orO(D1/4+ε) using the fact that

RD ∈ O(D1/2+ε). Assuming the ERH only for the
complexity analysis reduces this to O(D1/5+ε). Al-
lowing nondeterminism (i.e., randomization) yields
O(D1/6+ε). Finally, allowing nondeterminism and
the assumption of the ERH for the correctness
of the output reduces the complexity to subexpo-
nential time O(exp(

√
logD log logD)). Are further

improvements possible?
Work continues to improve the performance

of arithmetic in the infrastructure. The adap-
tation of Shanks’s NUCOMP technique from
imaginary to real quadratic fields represents
notable progress in this direction, and further
improvements are certainly possible. The develop-
ment of (f , p)-representations to maintain accurate
approximations of distances has helped by reduc-
ing the precision requirements; perhaps this can
be improved further.

Finally, arithmetic in general infrastructures is
still in its infancy. In particular, very little work—
algorithmic and especially computational—has
been done for infrastructures of global fields with
degree larger than 3. The works of Schoof and
Fontein provide two different settings with which
to conceptualize these infrastructures. Which one
will turn out to be more advantageous in terms of
concrete algorithms and implementations?

It is the authors’ hope that this article has given
the reader a glimpse into the infrastructure and its
many interesting applications and generalizations.
There is still much ongoing work in this area and
even more left to be done. Readers are encouraged
to join the research into this interesting area.

Further Reading
As this article was written in an expository manner,
many details and proofs were deliberately omitted.
For a thorough treatment of infrastructure in real
quadratic fields, including many of the associated
algorithms and applications, we recommend [19].
The book of Buchmann and Vollmer [8] treats much
of this material in the language of binary quadratic
forms and is also highly recommended. For more
information about infrastructure in functions fields
and higher-dimensional analogues, we refer the
reader to the references in the section “Beyond
Infrastructure in Real Quadratic Fields”.

Acknowledgment
The authors thank Sarah Chisholm, Monireh Rezai
Rad and Peter Zvengrowski for their careful proof-
reading and suggestions for improvement of this
article.

References
1. A. Amthor, Das Problema Bovinum des Archimedes,

Zeitschrift für Math. u. Physik (Hist. Litt. Abtheilung)
25 (1880), 153–171.

2. Archimedes, The Cattle Problem, in English verse by
S. J. P. Hillion and H. W. Lenstra Jr., Mercator, Santpoort,
1999.

3. J. Buchmann, Zur Komplexität der Berechnung von
Einheiten und Klassenzahlen algebraischer Zahlkörper,
Habilitationsschrift, Düsseldorf, 1987.

4. , A subexponential algorithm for the determina-
tion of class groups and regulators of algebraic number
fields, Séminaire de Théorie des Nombres (Paris), 1988–
89, pp. 27–41, Prazr. Math., vol. 91, Birkhäuser Boston,
1990.

5. J. Buchmann, M. J. Jacobson Jr., and E. Teske, On
some computational problems in finite abelian groups,
Mathematics of Computation 66 (1997), no. 220, 1663–
1687.

6. J. Buchmann, C. Thiel, and H. C. Williams, Short repre-
sentation of quadratic integers, Computational Algebra
and Number Theory, Mathematics and its Applications
vol. 325, Kluwer, Dordrecht, 1995, pp. 159–185.

7. J. Buchmann and U. Vollmer, A Terr algorithm for
computations in the infrastructure of real-quadratic
number fields, Journal de Théorie des Nombres de
Bordeaux 18 (2006), no. 3, 559–572.

8. , Binary Quadratic Forms: An Algorithmic Ap-
proach, Algorithms and Computation in Mathematics,
vol. 20, Springer-Verlag, Berlin, 2007.

9. J. Buchmann and H. C. Williams, A key-exchange sys-
tem based on real quadratic fields, CRYPTO ’89, Lecture
Notes in Computer Science, vol. 435, Springer, New
York, 1989, pp. 335–343.

10. R. de Haan, M. J. Jacobson Jr., and H. C. Williams, A
fast, rigorous technique for computing the regulator
of a real quadratic field, Mathematics of Computation
76 (2007), no. 260, 2139–2160.

11. W. Diffie and M. Hellman, New directions in cryp-
tography, IEEE Transactions on Information Theory 22
(1976), 472–492.

12. F. Fontein, Groups from cyclic infrastructures and
Pohlig-Hellman in certain infrastructures, Advances in

January 2014 Notices of the AMS 45

Mathematics of Communications 2 (2008), no. 3, 293–
307.

13. , The infrastructure of a global field of arbi-
trary unit rank, Mathematics of Computation 80 (2011),
no. 276, 2325–2357.

14. C. F. Gauß, Disquisitiones Arithmeticae, Springer
Verlag, 1986, English ed.: translated by A. A. Clark.

15. M. J. Jacobson Jr., Á. Pintér, and P. G. Walsh, A
computational approach for solving y2 = 1k+2k+· · ·+
xk, Mathematics of Computation 72 (2003), no. 244,
2099–2110.

16. M. J. Jacobson Jr., R. Scheidler, and H. C. Williams,
An improved real quadratic field based key exchange
procedure, Journal of Cryptology 19 (2006), 211–239.

17. M. J. Jacobson Jr. and A. J. van der Poorten, Com-
putational aspects of NUCOMP, Algorithmic Number
Theory—ANTS-V (Sydney, Australia), Lecture Notes in
Computer Science, vol. 2369, Springer-Verlag, Berlin,
2002, pp. 120–133.

18. M. J. Jacobson Jr. and H. C. Williams, Modular arith-
metic on elements of small norm in quadratic fields,
Designs, Codes and Cryptography 27 (2002), no. 1–2,
93–110.

19. , Solving the Pell Equation, CMS Books in
Mathematics, Springer, New York, 2009.

20. H. W. Lenstra Jr., On the calculation of regulators
and class numbers of quadratic fields, London Mathe-
matical Society Lecture Note Series, vol. 56, Cambridge
University Press, 1982, pp. 123–150.

21. , Solving the Pell equation, Notices of the AMS
49 (2002), no. 2, 182–192.

22. D. J. Mireles Morales, An analysis of the infrastructure
in real function fields, E-print archive no. 2008/299,
2008.

23. S. C. Pohlig and M. E. Hellman, An improved al-
gorithm for computing logarithms over GF(p) and
its cryptographic significance, IEEE Transactions on
Information Theory 24 (1978), 106–110.

24. J. M. Pollard, Theorems on factorization and primality
testing, Proceedings of the Cambridge Philosophical
Society 76 (1974), 521–528.

25. R. J. Schoof, Computing Arakelov class groups. Algo-
rithmic Number Theory: Lattices, Number Fields, Curves
and Cryptography, Math. Sci. Res. Inst. Publ., vol. 44,
Cambridge Univ. Press, Cambridge, 2008, pp. 447–495.

26. D. Shanks, The infrastructure of real quadratic fields
and its applications, Proceedings of the 1972 Number
Theory Conference, Univ. Colorado, Boulder, Colorado,
1972, pp. 217–224.

27. , On Gauss and composition. I, II, Proceedings of
the NATO ASI on Number Theory and Applications (R. A.
Mollin, ed.), Kluwer Academic Press, 1989, pp. 163–179.

28. A. Stein, Explicit infrastructure for real quadratic
function fields and real hyperelliptic curves, Glasnik
Matematicki 44 (2009), no. 1, 89–126.

29. D. C. Terr, A modification of Shanks’ baby-step giant-
step algorithm, Mathematics of Computation 69 (2000),
no. 230, 767–773.

30. A. J. van der Poorten, A note on NUCOMP,
Mathematics of Computation 72 (2003), no. 244,
1935–1946.

31. H. C. Williams, Solving the Pell equation, Proceedings
of the Millennial Conference on Number Theory, A K
Peters, Natick, MA, 2002, pp. 397–435.

46 Notices of the AMS Volume 61, Number 1

