
The Efficiency and Security of a Real Quadratic Field Based-Key

Exchange Protocol

M. J. Jacobson, Jr., R. Scheidler and H. C. Williams

December 21, 2001

Abstract

Most cryptographic key exchange protocols make use of the presumed difficulty of solving the
discrete logarithm problem (DLP) in a certain finite group as the basis of their security. Recently,
real quadratic number fields have been proposed for use in the development of such protocols.
Breaking such schemes is known to be at least as difficult a problem as integer factorization;
furthermore, these are the first discrete logarithm based systems to utilize a structure which is
not a group, specifically the collection of reduced ideals which belong to the principal class of
the number field. For this structure the DLP is essentially that of determining a generator of a
given principal ideal.

Unfortunately, there are a few implementation-related disadvantages to these schemes, such
as the need for high precision floating point arithmetic and an ambiguity problem that requires
a short, second round of communication. In this paper we describe work that has led to the
resolution of some of these difficulties. Furthermore, we discuss the security of the system,
concentrating on the most recent techniques for solving the DLP in a real quadratic number
field.

1 Introduction and Motivation

In 1976, W. Diffie and M. Hellman introduced their by now legendary protocol for communicating
a secret cryptographic key across an insecure channel. In their original scheme, two communication
partners first agree on a large prime p and a nonzero element g ∈ Fp; p and g are public. The
two parties generate respective secret exponents a and b, and subsequently exchange ga and gb.
From their own secret exponent and the information received from the other communicant, each
party can now generate the secret common key gab. The only known attack on this scheme is for an
eavesdropper to solve an instance of the discrete logarithm problem (DLP) in Fp: given g, ga ∈ Fp,
find a.

It was soon recognized that the Diffie-Hellman protocol could be extended to any sufficiently large
group with fast arithmetic and a difficult discrete logarithm problem. Many such groups were
suggested, including arbitrary finite fields, matrices over a finite field [15], the unit group of Z/nZ
with n a product of two primes [13], the group of points on an elliptic curve [14, 8], the Jacobian of a
hyperelliptic curve [9], and the class group of an imaginary quadratic number field [3]. More careful

1

inspection of the scheme reveals that only a semi-group structure is required, and two non-group
versions were proposed, using as underling structure the infrastructure of a real quadratic number
field and function field, respectively [17, 18].

In order to conduct key exchange in the set R of reduced principal ideals of a real quadratic number
field K, one requires an operation under which R is closed and associative. The most natural way
to do this is to assign to two reduced principal ideals the reduced principal ideal “closest” to their
(generally nonreduced) product; that is, the unique reduced ideal whose generator is closest to the
product of the two respective generators. In this model, a reduced principal ideal r is publicized
beforehand. Alice and Bob generate respective secret exponents a and b and compute the reduced
principal ideal closest to ra and rb, respectively. The common key the unique reduced principal
ideal closest to rab.

Unfortunately, ideal generators are generally too large to allow for efficient arithmetic. Moreover,
in practice, they are only given up to a limited precision, so it may be impossible to determine the
unique reduced principal ideal closest to a given ideal. The arithmetic of [17] opted for computing
two possible candidates – adjacent reduced principal ideals – for the closest ideal. To make sure
that both parties obtain the same two candidates for the final key ideal, generators had to be
given to p correct bits where 2p > 3072

√
DB2 and B is an upper bound on the exponents a and

b. The problem of ambiguity was eliminated in [4], maintaining essentially the same precision p
for computing the key ideal. In this paper, we give a more elegant version of the protocol of [17]
which achieves five-fold ambiguity with considerably less precision, namely 2p > 46B2 log2B; note
that this bound is independent of the radicand D of the field. In practice, the two communicants
always obtain the same ideal after their exchange, but for the paranoid user, we describe how
communicating five more bits guarantees uniqueness.

Our paper is organized as follows. In the next section, we review the basics of real quadratic number
fields and their ideals. Section 3 introduces the so called (f, p) representations used to represent
ideals and the algorithms underlying our protocol. In section 4, we present the actual key exchange
protocol. In the remaining sections we discuss implementation and security issues.

2 Real Quadratic Number Fields

In this section we will review some basic properties of real quadratic number fields from a compu-
tational perspective. This material can be found in greater detail in [21] and [16].

Let D be a positive squarefree integer and let K = Q(
√
D) be the real quadratic number field of

discriminant ∆ = (4/σ2)D where σ = 2 if D ≡ 1 (mod 4) and σ = 1 otherwise. For an element
α = a + b

√
D ∈ K with a, b ∈ Q, the conjugate of α is α = a − b

√
D. The maximal order of K is

O = Z[ω] where ω = (σ − 1 +
√
D)/σ.

Every nonzero ideal a in O is a Z-module of rank 2 with a Z-basis of the form {SQ/σ, S(P+
√
D)/σ}

with S,Q, P ∈ Z, Q > 0, σ | Q and σQ | D − P 2. If a is primitive, then S = 1; in this case, write
a = (Q,P) for brevity. A primitive ideal a = (Q,P) is reduced if Q is a minimum in a; that is,
no nonzero α ∈ a satisfies |α| < Q and |α| < Q. If b1 = (Q0, P0) is any primitive ideal, then the

2

recursion

qj−1 =

⌊
Pj−1 +

√
D

Qj−1

⌋
, Pj = qj−1Qj−1 − Pj−1, Qj =

D − P 2
j

Qj−1
, (2.1)

j ∈ N, defines a sequence of pairwise equivalent ideals bj = (Qj−1, Pj−1) (j ∈ N). This, of course,
is the continued fraction expansion of (P +

√
D)/Q, where the qj values are the partial quotients

and the (Pj +
√
D)/Qj values are the complete quotients. Here, bj = (Ψj)b1 where

Ψj =
j−1∏
i=1

ψi and ψi =
Pi +

√
D

Qi−1
(1 ≤ i ≤ j − 1). (2.2)

for j ∈ N. It is easy to see that Ψj+2 = qjΨj+1 + Ψj and ΨjΨj = (−1)j−1Qj−1/Q0 for j ∈ N. If b1

is reduced, then bj is reduced for all j ∈ N, in which case

1 +
1√
∆
< ψj <

√
∆ and ψj+1ψj > 2 (j ∈ N). (2.3)

If b1 is nonreduced, then bj is reduced as soon as Qj−1 > 0 and Pj−1 <
√
D; this happens after

no more than O(log(Q0/
√
D)) iterations of (2.1). Furthermore, if bj is the first reduced ideal in

the sequence (bi)i∈N, then Ψj ≤ 1 (see Corollary 4.6 of [16]) and |Ψi| < 1, 0 < Pi <
√
D, and

σ ≤ Qi < 2
√
D for i ≥ j. The process of obtaining bj+1 from bj is called a forward step. Also, by

the symmetry property of the continued fraction of ω, we see that ψi is a complete quotient in that
continued fraction.

Suppose bj+1 = (Qj , Pj) is reduced for some j ∈ N. Then one can perform a backward step to
obtain bj = (Qj−1, Pj−1) from the recursion

Qj−1 =
D − P 2

j

Qj
, qj−1 =

⌊
Pj +

√
D

Qj−1

⌋
, Pj−1 = qj−1Qj−1 − Pj . (2.4)

If we set b∗1 = (Q∗
0, P

∗
0) = bj , so Q∗

0 = Qj−1 and P ∗
0 = Pj−1, then (2.4) generates a sequence of

reduced ideals b∗i = (Q∗
i−1, P

∗
i−1) (i ∈ N). Here, we have b∗i = (Ψ∗

i)b
∗
1 where Ψ∗

i = Ψj−i+1 and in
fact b∗i = bj−i+1. Analogous to (2.2), we have

Ψ∗
i =

i−1∏
j=1

ψ∗j where ψ∗j =

√
D − P ∗

j−1

Q∗
j−1

=
1

ψi−j
(1 ≤ j ≤ i− 1) (2.5)

as well as |Ψ∗
i Ψ

∗
i | = Q∗

i−1/Q0 and Ψ∗
i+2 = Ψ∗

i − q∗i Ψ
∗
i+1 for 1 ≤ i ≤ j − 2.

Every principal ideal a has a unique generator θ such that 1 ≤ θ < ε where ε is the unique
fundamental unit of K with ε > 1. For i ∈ N, let bi = (Ψi) with b1 = O. If a is nonreduced, then
there exists a unique index j ∈ N with Ψj < θ < Ψj+1. We define ρ(a) = bj+1 and ρ−1(a) = bj .
Write ρ0(a) = a and ρn(a) = ρ(ρn−1(a)) = ρ−1(ρn+1(a)) for n ∈ Z.

3

3 (f, p) Representations and their Arithmetic

In order to perform arithmetic with principal ideals, we represent a (generally unknown) primitive
ideal a by a known ideal b = (θ)a (where (θ) is the fractional principal ideal generated by θ ∈ K)
and an approximation of θ to a given precision and accuracy. More precisely:

Definition 3.1 Let p ∈ N and f ∈ R with 1 ≤ f < 2p. An (f, p) representation of a primitive ideal
a is a pair (b, d) where

1. b is an ideal equivalent to a,
2. d, p ∈ Z with d > 0 and p ≥ 0,

3. if θ ∈ K with b = (θ)a, then
∣∣∣∣2pθ

d
− 1
∣∣∣∣ < f

2p
.

An (f, p) representation (b, d) of a is reduced if b is a reduced ideal.

Informally speaking, d2−p is an approximation of the relative generator θ of b with respect to a to
accuracy f2−p, and p is the precision of the approximation. Note that for any primitive ideal a and
any p ∈ N, (a, 2p + 1) is always a (1, p) representation, and hence an (f, p) representation for any
f ∈ [1, 2p), of a.

We now investigate the arithmetic of (f, p) representations.

Algorithm MULT

Input: (fi, p) representations (bi, di) of primitive ideals ai where bi = (Qi, Pi) for i = 1, 2.

Output: An (f, p) representation ((S)b, d) of a1a2 where b = (Q,P) is primitive and f = 1 + f1 +
f2 + f1f22−p.

Algorithm:

1. Compute G = gcd
(
Q1

σ
,
Q2

σ

)
and solve

Q1

σ
X ≡ G

(
mod

Q2

σ

)
for X ∈ Z.

2. Compute S = gcd
(
P1 + P2

σ
,G

)
and solve Y

P1 + P2

σ
+ ZG = S for Y, Z ∈ Z.

3. Set U ≡ XY (P2 − P1) + Z
D − P 2

1

Q1

(
mod

Q2

S

)

4. Set Q =
Q1Q2

σS2
, P ≡ P1 + U

Q1

σS
(mod Q), d =

⌈
d1d2

2p

⌉
.

Write ((S)b, d) = MULT(b1, d1, b2, d2) for the output of Algorithm MULT.

4

Lemma 3.2 If d1, d2 > 2p, then d > 2p, and Algorithm MULT produces the correct output using
O(logD) integer operations.

Proof: The expressions for Q and P are simply given by the well-known ideal multiplication for-
mulas, and the complexity result is clear. Let bi = (θi)ai for i = 1, 2. Then b = (θ1θ2)a1a2. Set
f0 = f1 + f2 + f1f22−p = f − 1. Then

1− f0

2p
<

22pθ1θ2
d1d2

< 1 +
f0

2p
.

It is clear that d > 2p and 2pθ1θ2/d < 1 + f2−p. If η = d− d1d22−p, then

2pθ1θ2 > (d− η)
(

1− f0

2p

)
= d

(
1− f0 + 2pηd−1

2p

)
+ η

f0

2p
> d

(
1− f0 + 1

2p

)
.

2

For the following algorithm, we assume that s ∈ N is sufficiently large so that

d1

2s
<

1
10

.

Algorithm REDUCE

Input: An (f, p) representation ((S)b1, d1) of some ideal a where b1 = (Q0, P0) is primitive.

Output: A reduced (f + 2, p) representation (b, d) of a where b = (Q,P).

Algorithm:

1. Set T−2 = −P02s + b2s
√
Dc, T−1 = 2sQ0, M = bSQ02p+s/d1c, j = 0.

2. While Qj−1 < 0 or Pj−1 >
√
D do

(a) Increase j by 1;

(b) Set qj−1 =

⌊
Pj−1 +

√
D

Qj−1

⌋
, Pj = qj−1Qj−1 − Pj−1, Qj =

D − P 2
j

Qj−1
;

(c) Set Tj−1 = qj−1Tj−2 + Tj−3;

3. If Tj−2 ≤M, then

(a) Repeat

i. Increase j by 1;

ii. Set qj−1 =

⌊
Pj−1 +

√
D

Qj−1

⌋
, Pj = qj−1Qj−1 − Pj−1, Qj =

D − P 2
j

Qj−1
;

5

iii. Set Tj−1 = qj−1Tj−2 + Tj−3.

until Tj−2 > M.

(b) Set b = (Qj−1, Pj−1), d =
⌈
d1Tj−2

SQ02s

⌉
.

Else

(c) Set Q∗
0 = Qj−1, P

∗
0 = Pj−1, T

∗
−1 = Tj−2, T

∗
0 = Tj−3, j = 0.

(d) Repeat

i. Increase j by 1;

ii. Set Q∗
j =

D − (P ∗
j−1)

2

Q∗
j−1

, q∗j =

⌊
P ∗

j−1 +
√
D

Q∗
j

⌋
, P ∗

j = q∗jQ
∗
j − P ∗

j−1;

iii. Set T ∗
j = T ∗

j−2 − q∗jT
∗
j−1;

until T ∗
j−1 ≤M.

(e) Set b = (Q∗
j−1, P

∗
j−1), d =

⌈
d1T

∗
j−2

SQ02s

⌉
.

Write (b, d) = REDUCE((S)b1, d1) for the output of Algorithm REDUCE. With the notation of
the algorithm, we let

bj = (Qj−1, Pj−1), dj =
⌈
d1Tj−2

SQ02s

⌉
, b∗j = (Q∗

j−1, P
∗
j−1), d

∗
j =

⌈
d1T

∗
j−2

SQ02s

⌉
for j ∈ N. We first show that all the loops in the above algorithm terminate.

Lemma 3.3 Let s be as described above and assume that d1 > 2p. Then the loops in steps 2, 3 (a),
and 3 (d) in Algorithm REDUCE terminate.

Proof: The while loop in step 2 terminates after O(log(Q0/D)) iterations, once the first reduced
ideal bl (l ∈ N) is encountered. Then Ψl ≤ 1. We consider two cases.

Case 1: Tl−2 ≤M. Then it suffices to show the existence of an index k > l with Tk−2 > M.

For i ∈ N, we have bi = (Ψi)b1 where Ψi is given by (2.2). Write Ψi = (Gi−2 +Bi−2

√
D)/Q0 with

Gi−2, Bi−2 ∈ Z and Bi−2 ≥ 0. Set

Ψ̂i =
(Gi−2 +Bi−22−sb2s

√
Dc

Q0
.

Then
0 < Ψi − Ψ̂i <

Bi−2

Q02s

and Ti−2 = 2sQ0Ψ̂i for i ∈ N. It is easy to see that Ti−2 > M if and only if Ψ̂i > S2p/d1.

6

Since Ψ1 = 1 and the sequence (Ψi)i≥l is increasing, there exists an index k > l for which Ψk−1 ≤
3S/2 < Ψk. We have Ψk = ψk−1Ψk−1 with ψk−1 = (Pk−1 +

√
D)/Qk−2 < 2

√
D, hence Ψk < 3S

√
D.

Together with |Ψk| < 1, obtain

0 <
Bk−2

Q02s
≤ Ψk + |Ψk|

2s+1
√
D

<
3S
√
D + 1

2s+1
√
D

< S · 21−s <
S

2
(3.6)

and hence Ψ̂k > Ψk −Bk−2/Q02s > S > S2p/d1. Then Tk−2 > 2p+sQ0S/d1 and hence Tk−2 > M.

Case 2: Tl−2 > M. Then T ∗
−1 > M and we need to establish the existence of an index k ∈ N

with T ∗
k ≤ M. We have b∗i = (Ψ∗

i)b
∗
1 where the Ψ∗

i are given by (2.5), and as before, we define an
approximation Ψ̂∗

i to Ψ∗
i (i ∈ N) for which

0 < sgn(Bi−2)(Ψ∗
i − Ψ̂∗

i) <
|B∗

i−2|
Q02s

and T ∗
i−2 = 2sQ0Ψ̂∗

i for i ∈ N. Once again, T ∗
i−2 > M if and only if Ψ̂∗

i > S2p/d1.

Now B∗
−1 > 0 implies that Ψ∗

1 > Ψ̂∗
1 > S2p/d1. Therefore, there must exist an index k ∈ N

with Ψ∗
k > S2p/d1 ≥ Ψ∗

k+1. If T ∗
k−1 ≤ M, there is nothing to prove, so assume T ∗

k−1 > M. Then
Ψ̂∗

k+1 > S2p/d1 > Ψ∗
k+1 and hence B∗

k−1 < 0. The identity Ψ∗
k+2 = ψ∗k+1Ψ

∗
k+1 implies

B∗
k =

G∗
k−1 −B∗

k−1P
∗
k

Q∗
k

=
Q0Ψ∗

k+1 −B∗
k−1(P

∗
k +

√
D)

Q∗
k

> 0.

Therefore Ψ̂∗
k+2 < Ψ∗

k+2 < Ψ∗
k+1 ≤ S2p/d1 and hence T ∗

k ≤M. 2

Lemma 3.4 Let ((S)b1, d1) be the input of Algorithm REDUCE and let s be as described above.
Assume that 2p < d1 < 9S2Q02p−2.

1. Let j ∈ N be defined by the last iteration of the loop in step 3 (a) of Algorithm REDUCE,
so bj is reduced and Tj−3 ≤ M < Tj−2. Then dj−1 ≤ 2p < dj , and if Pj−1 6= b

√
Dc, then

dj ≤ 3Qj−12p−1.

2. Let j ∈ N be defined by the last iteration of the loop in step 3 (d) of Algorithm REDUCE,
so b∗j is reduced and T ∗

j−1 ≤ M < T ∗
j−2. Then d∗j+1 ≤ 2p < d∗j , and if P ∗

j−1 6= b
√
Dc, then

d∗j ≤ 3Q∗
j−12

p−1.

Proof: We use the same notation as in the proof of the previous lemma. It is easy to see that
Ti−2 > M if and only if di > 2p, so dj−1 ≤ 2p < dj ; similarly, T ∗

i−2 > M if and only if d∗i > 2p, so
dj+1 ≤ 2p < dj . Furthermore, d12−s < 1/4 and 2p + 1/2 < 3 · 2p−1.

Once again, let bl be first reduced ideal computed in the algorithm and suppose first that Tl−2 ≤M.
Let k be as in case 1 of the proof of Lemma 3.3. Then j ≤ k and Bk−2/Q0 < 2S by (3.6). Since
Bi strictly increases with i, it follows that

d1

S
Ψj−1 <

d1

S

(
Ψ̂j−1 +

Bj−3

Q02s

)
< dj−1 +

d1

2s

Bk−2

SQ0
< 2p + 1/2 < 3 · 2p−1.

7

If Pj−1 6= b
√
Dc, then ψj−1 = Qj−1/(

√
D − Pj−1) < Qj−1, hence

d1

S
Ψ̂j ≤

d1

S
Ψj =

d1

S
ψj−1Ψj−1 < 3Qj−12p−1,

and we have dj ≤ 3Qj−12p−1.

Now suppose that Tl−2 > M and let k be as in case 2 of the proof of Lemma 3.3. Then j ≤ k + 1.
Let i ≤ k, so Ψ∗

i > S2p/d1. Then

|Ψ∗
i | =

Q∗
i−1

Ψ∗
iQ0

<
2
√
Dd1

SQ02p
<

9
2
S
√
D,

|Ψ∗
k+1| = |ψ∗k||Ψ∗

k| <
P ∗

k−1 +
√
D

Q∗
k−1

d1Q
∗
k−1

SQ02p
<

2
√
Dd1

SQ02p
<

9
2
S
√
D.

Together with Ψ∗
i ,Ψ

∗
k+1 < 1, this implies for all i ≤ k + 1,

d1|B∗
i−2|

SQ02s
≤ d1

S2s

|Ψ∗
i |+ |Ψ∗

i |
2
√
D

<
d1

2s

(
1

2S
√
D

+
9
4

)
<

1
4
.

If j ≤ k, then

d1

S
Ψ̂∗

j <
d1

S

(
1
ψ∗j

(
Ψ̂∗

j+1 +
|B∗

j−1|
Q02s

)
+
|B∗

j−2|
Q02s

)

<
1
ψ∗j

(
d∗j+1 +

1
4

+
1
4
ψ∗j

)
<

3 · 2p−1

ψ∗j
,

where we use ψ∗j < 1 for the last inequality. Since ψ∗j = (
√
D − P ∗

j−1)/Q
∗
j−1 > 1/Q∗

j−1 if P ∗
j−1 6=

b
√
Dc, we obtain d∗j ≤ 3Q∗

j−12
p−1.

If j = k + 1, then d1Ψ∗
j/S < 2p, so d1Ψ̂∗

j/S < 2p + 1/4 < 3 · 2p−1 and hence d∗j < 3 · 2p−1. 2

Corollary 3.5 Assume the conditions and notation of Lemma 3.4.

1. di − 2 < d1Ψi/S < di + 1 for i ∈ {j, j − 1}.

2. d∗i − 2 < d1Ψ∗
i /S < d∗i + 1 for i ∈ {j, j + 1}.

Proof: If k is defined as in case 1 of the proof of Lemma 3.3, we have by (3.6), 0 < d1(Ψi− Ψ̂i)/S <
d121−s < 1 for all i ≤ k. If k is as in case 2 of the same proof, then again d1|Ψ∗

i − Ψ̂∗
i |/S < 1/4 for

all i ≤ k + 1. Also, if j = k + 1, then d1Ψ∗
j/S > 2p − 1/4 > 2p − 1, so |Ψ∗

j | < d1Q
∗
j−1/SQ0(2p − 1)

and

|Ψ∗
j+1| = |ψ∗j ||Ψ∗

j | <
2
√
Dd1

SQ0(2p − 1)
<

18
√
DS2p−2

2p − 1
.

8

Together with Ψ∗
j+1 < 1, we obtain

d1

S
|Ψ∗

j+1 − Ψ̂∗
j+1| <

d1

S

B∗
j−1

Q02s
≤ d1

S2s

Ψ∗
j+1 + |Ψ∗

j+1|
2
√
D

<
d1

2s

(
1

2S
√
D

+
9 · 2p−2

2p − 1

)
=

d1

2s

(
1

2S
√
D

+
9
4

)
+
d1

2s

9/4
2p − 1

<
1
2
,

where we use the fact that d12−s < 1/10 for the last inequality. Now is easy to see that for any
two positive real numbers α and α̂, the inequality |α− α̂| < 1 implies dα̂e − 2 < α < dα̂e+ 1. 2

Theorem 3.6 Assuming the conditions of Lemma 3.4 and the notation of Algorithm REDUCE,
the following hold.

1. (b, d) is a reduced (f + 2, p) representation of a.

2. The loops in step 3 in the algorithm are executed at most O(log(SD)) and O(logD) times,
respectively.

3. Ti, T
∗
i = O(SQ0

√
D2s) throughout the algorithm.

Proof: Let (S)b1 = (θ)a, b = (Ψ)b1, d = dd1Ψ̂/Se.

1. From f < 2p and d1(1− f2−p) < 2pθ < d1(1 + f2−p), we obtain from the previous Corollary,

2pΨθ
S

<
Ψ
S
d1

(
1 +

f

2p

)
≤ (d+ 1)

(
1 +

f

2p

)
< d

(
1 +

f

2p
+

2
d

)
< d

(
1 +

f + 2
2p

)
and

2pΨθ
S

>
Ψ
S
d1

(
1− f

2p

)
≥ (d− 2)

(
1− f

2p

)
> d

(
1− f

2p
− 2
d

)
> d

(
1− f + 2

2p

)
.

2. Suppose step 3 (a) is executed j times. Then by (2.3) Ψj > 2b(j−1)/2c, and by Corollary 3.5
and Lemma 3.4,

Ψj <
S

d1
(dj + 1) <

S

2p
(3Qj−12p−1 + 1) = O(S

√
D)

because bj is reduced.

Now let j be the number of iterations of step 3 (d). Then again by (2.3) Ψ∗
j < 2−b(j−1)/2cΨ∗

1

where d1Ψ∗
1/S = O(

√
D2p). It follows that

2p − 2 < d∗j − 2 ≤
d1Ψ∗

j

S
< 2−b(j−1)/2cO(

√
D2p),

so 2b(j−1)/2c = O(
√
D).

9

3. Let j be as in part 1 of Lemma 3.4. Since d1 > 2p and dj ≤ 3Qj−12p−1 < 3
√
D2p, we see that

Ψ̂j ≤ Sdj/d1 < 3
√
DS. Using the bound Bj−2 < 2Q0S from (3.6), we obtain for 1 ≤ i ≤ j:

Ti−2 = 2sQ0Ψ̂i ≤ 2sQ0Ψi ≤ 2sQ0Ψj < 2sQ0Ψ̂j +Bj−2 = O(2s
√
DSQ0).

Now let j be as in part 2 of Lemma 3.4. Since Ψ∗
i ≤ Ψ∗

1 = O(S
√
D) and |Ψ∗

i | < 1 for 1 ≤ i ≤ j,
we obtain

T ∗
i−2 = 2sQ0Ψ̂∗

i ≤ 2sQ0Ψ∗
i + |B∗

i−2| ≤ 2sQ0Ψ∗
i +

Q0

2
√
D

(Ψ∗
i + |Ψ∗

i |) = O(2s
√
DQ0S).

2

We combine the previous two algorithms as follows:

Algorithm MR

Input: Reduced (fi, p) representations (bi, di) of primitive ideals ai (i = 1, 2).

Output: A reduced (f, p) representation (b, d) of a1a2 where f = 3 + f1 + f2 + f1f22−p.

Algorithm:

1. ((S)c, e) = MULT(b1, d1, b2, d2).

2. (b, d) = REDUCE((S)c, e).

Write (b, d) = MR(b1, d1, b2, d2).

Theorem 3.7 Let (b1, d1), (b2, d2) be the inputs and (b, d) the output of Algorithm MR. Write
b1 = (Q1, P1), b2 = (Q2, P2), b = (Q,P), and suppose that 2p < di < 3Qi2p for i = 1, 2. Then
(b, d) is a reduced (f, p) representation of a1a2 with 2p < d < 3Q2p. Also, Algorithm MR requires
O(logD) integer operations to compute (b, d), and the largest value computed in the algorithm is
bounded by O(D3/22p).

Proof: We have (S)c = b1b2. Let c = (Q̃, P̃). Then ((S)c, e) is a (g, p) representation of a1a2

where g = 1 + f1 + f2 + f1f22−p and 2p < e ≤ d1d22−p < 9S2Q̃2p−2. Also, (b, d) is an (f, p)
representation of a1a2 with 2p < d < 3Q2p−1 and f = g + 2. The complexity result is clear since
S ≤ min{Q1, Q2} < 2

√
D, and the largest value computed is O(Q̃S

√
D2p) = O(D3/22p). 2

We point out that the upper bound 3Q2p−1 on d required P < b
√
Dc. In the very unlikely case

where equality occurs, we can only achieve d < 3aQj−12p−1 where a = (
√
D − b

√
Dc)−1 > 1.

However, letting b = (Ψ)c, one can still achieve e|Ψ− Ψ̂|/S < 1 at the expense of higher precision
s′ in Algorithm REDUCE. Here, s′ must be chosen so that

e

2s′ <
1
10

.

10

Let Tj (j ∈ N) be the sequence of values computed in steps 2 and 3 of Algorithm REDUCE with
respect to precision s, and let T ′

j be the analogous sequence if precision s′ is used. Then one can
recover T ′

j−1 and T ′
j from Tj−1 and Tj using the formulas

(22sD − δ2)T ′
j−1 = (2s+s′

D − δδ′)Tj−1 + (2sδ′ − ss′
δ)(QjTj − Pj+1Tj−1),

(22sD − δ2)T ′
j = (2s+s′

D − δδ′)Tj + (2sδ′ − ss′
δ)(Pj+1Tj +Qj+1Tj−1),

where δ = b
√
D2sc and δ′ = b

√
D2s′c. Analogous formulas can be derived for T ∗

j−1 and T ∗
j . In

any case, it is always possible to achieve a < 2, for example, if we choose D to be of the form
D = A2 +R with A,R ∈ N and A+ 1 ≤ R ≤ 2A.

We conclude this section with a method for exponentiation with (f, p) representations. This algo-
rithm is an adaptation of the standard binary exponentiation technique.

Algorithm EXP

Input: n ∈ N and a reduced (f0, p) representation (b0, d0) of some ideal a.

Output: A reduced (f, p) representation (b, d) of an for suitable f ∈ [1, 2p).

Algorithm:

1. Compute the binary representation of n, say n =
k∑

i=0

bi2k−i (b0 = 1, bi ∈ {0, 1} for 1 ≤ i ≤ k,

k = blog2 nc).

2. Set (c, e) = (b0, d0).

3. For i = 1 to k do

(a) (b, d) = MR(c, e, c, e).

(b) If bi = 1 then replace (b, d) by MR(b, d, b0, d0).

(c) (c, e) = (b, d).

Write (b, d) = EXP(b0, d0, n). Before we analyze Algorithm EXP, we require an auxiliary lemma.

Lemma 3.8 Let p, k ∈ N and h ∈ R with p ≥ 8 and h ≥ max{16, k}. Define a sequence (ai)i≥0

recursively via

a0 ∈ R+, ai = 6 +

((
1 +

1
h

)2

+
3
2p

)
a0 +

(
2 +

1
h

)
ai−1 (i ∈ N).

Then ak < (3.43a0 + 9.9)2k.

11

Proof: For brevity, set g = 2 + h−1. Then it is easy to verify that the closed form for (ai)i≥0 is

ai =
(
gi+1 − g + 1 +

gi − 1
g − 1

· 3
2p

)
a0 + 6

gi − 1
g − 1

(i ∈ N).

Now (gi − 1)/(g − 1) < gi and the multiple of a0 in the above equality is bounded above by
gi+1 + 3 · 2−8gi. Using h ≥ 16 and p ≥ 8, we obtain

ai < gi

((
2 +

1
16

+
3

256

)
a0 + 6

)
< gi(2.08a0 + 6)

= 2i

(
1 +

1
2h

)i

(2.08a0 + 6) < 2i exp
(
i

2h

)
(2.08a0 + 6) .

Since h ≥ k, we have ak ≤ 2k exp(0.5)(2.08a0 + 6) < (3.43a0 + 9.9)2k. 2

Theorem 3.9 Let (b0, d0) and n be the inputs and (b, d) the output of Algorithm EXP. Write
b0 = (Q̃, P̃), b = (Q,P), and suppose that d0 < 9S2Q̃2p−2.

1. b is a reduced (f, p) representation of b0 with 2p < d < 3Q2p−1.

2. Suppose p ≥ 8 and let h ∈ R+ with h ≥ max{16, log2 n}. Set e = 3.43f0 + 9.9. If hen < 2p,
then f < en and hence hf < 2p.

Also, Algorithm EXP requires O(log n logD) integer operations.

Proof: After the i-th iteration of step 3 (1 ≤ i ≤ k), let b = bi and d = di. If we set s0 = b0 = 1
and si = 2si−1 + bi for 1 ≤ i ≤ k, then (bi, di) is an (fi, p) representation of asi where

fi = 3 + f0 +
(

3 + 2fi−1 +
f2

i−1

2p

)
+ f0

(
3 + 2fi−1 +

f2
i−1

2p

)
2−p

for 1 ≤ i ≤ k. Set f = fk. Since sk = n, Algorithm EXP produces a reduced (f, p) representation
of an with 2p < d < 3Q2p−1.

Let (ai)i≥0 be as in Lemma 3.8 with a0 = f0. Since h ≥ k, we have ak < e2k ≤ en, so hai < 2p for
0 ≤ i ≤ k. Then hf0 < 2p and inductively, fi < ai, so fi < en and hfi < 2p; in particular, f < en
and hf < 2p. 2

4 The Protocol

Our goal is to establish a protocol by which both parties are able to compute a unique reduced
principal ideal k. This ideal will be an (f, p) representation of rab for suitable f where r is a public
reduced starting ideal and a and b are the respective secret exponents. Since the two communicants

12

follow different exponentiation procedures for computing a candidate for k, they may not arrive at
the same ideal. However, we will see that their respective candidates lie within only five reduction
steps (2.1) of each other. By exchanging five more bits of information, both parties will be able to
agree on a unique key ideal.

Lemma 4.1 Let r be a reduced principal ideal and let p, a, b, B ∈ Z with 0 < a, b ≤ B, B ≥ 36, and
2p ≥ 46B2 max{16, log2B}. If (k, d) = EXP(EXP(r, 2p + 1, a), b), then k is an (f, p) representation
of rab with 16f < 2p.

Proof: Clearly, (r, 2p + 1) is a reduced (1, p) representation of r. Set h = max{16, log2B}, then
h ≥ max{16, log2 a, log2 b}. Let (a, e) = EXP(r, 2p +1, a). Since h(3.43 ·1+9.9)B < 2p, by Theorem
3.9, (a, e) is a reduced (g, p) representation of ra with g < 13.33a ≤ 13.33B and hg < 2p. Similarly,
h(3.43g+9.9)b < h(45.72B2 +9.9B) < 46B2 max{16, log2B} < 2p. Since h ≥ 16, (k, d) is a reduced
(f, p) representation of rab with 16f < 2p. 2

Theorem 4.2 Let (b1, d1) and (b2, d2) be two (f, p) representations of some ideal a with p ≥ 3 and
7f ≤ 2p. Let k = (κ)b1, ρ

−1(k) = (κ−)b1, m = (µ)b2, ρ
−1(m) = (µ−)b2 where k and m are reduced

ideals with d1κ, d2µ > 2p − 2 and d1κ−, d2µ− < 2p + 1. Then k ∈ {ρ−2(m), ρ−1(m),m, ρ(m), ρ2(m)}.

Proof: Suppose k = ρi(m) with |i| ≥ 3 and assume without loss of generality that i > 0 (the case
i < 0 can be proved by reversing the roles of k and m). Then ρ−1(k) = (α)m where α > 2 by (2.3).
Let bi = (θi)a for i = 1, 2 and assume that θ1, θ2, κ, κ−, µ, µ− > 0. Then κ−θ1 > 2µθ2. Now

κ−θ1 < κ−
d1

2p

(
1 +

f

2p

)
<

2p + 1
2p

(
1 +

f

2p

)
,

µθ2 > µ
d2

2p

(
1− f

2p

)
>

2p − 2
2p

(
1− f

2p

)
,

so (2p + 1)(1 + f2−p) > 2(2p − 2)(1− f2−p), implying

f

2p
>

1
3
· 2p − 5
2p − 1

=
1
3

(
1− 4

2p − 1

)
>

1
3
· 3
7

=
1
7
,

a contradiction. 2

Corollary 4.3 Let r, p, B, a, b be as in Lemma 4.1 and let (k, k) = EXP(EXP(r, 2p + 1, a), b) and
(m,m) = EXP(EXP(r, 2p + 1, b), a). Then k ∈ {ρ−2(m), ρ−1(m),m, ρ(m), ρ2(m)}.

Proof: By Lemma 4.1, (k, k) and (m,m) are (f, p) representations of rab with 16f < 2p.

Let (a, e) = EXP(r, 2p + 1, a), and let (b1, d1) be the quantity computed by Algorithm EXP on
input (a, e, b) before the very last reduction step. By Theorem 3.9 and Lemma 4.1, (b1, d1) is a
(g, p) representation of rab with 16g < 16f < 2p. Once (b1, d1) is found, Algorithm EXP generates
(k, k) and (ρ−1(k), k−). If k = (κ)b1 and ρ−1(k) = (κ−)b1, then by Lemma 3.4, k− ≤ 2p < k, and by

13

Corollary 3.5, k− − 2 < d1κ− < k− + 1 and k − 2 < d1κ < k + 1. It follows that d1κ > 2p − 2 and
d1κ− < 2p + 1.

Similarly, let (b, e′) = EXP(r, 2p+1, b), and let (b2, d2) be the quantity generated by algorithm EXP
on input (b, e′, a) before the very last reduction step when computing (m,m) = EXP(b, e′, a). Then
(b2, d2) is also a (g, p) representation of rab with 16g < 2p, and if m = (µ)b2 and ρ−1(m) = (µ−)b2,
then d2µ > 2p − 2 and d2µ− < 2p + 1. Therefore, the conditions of Theorem 4.2 are satisfied and
the Corollary follows. 2

Lemma 4.4 Assume the notation and conditions of Theorem 4.2 and suppose that p ≥ 9 and
16f < 2p.

1. If d1κ− < 7 · 2p−3 + 1, then k ∈ {ρ−2(m), ρ−1(m),m}.

2. If d1κ > 5 · 2p−2 − 1, then k ∈ {ρ2(m), ρ(m),m}. If d2µ > 5 · 2p−2 − 1, then k ∈
{ρ−2(m), ρ−1(m),m}.

3. If d1κ < 5 · 2p−2 + 1, then k 6= ρ2(m).

4. If d1κ− > 7 · 2p−3 − 1, then k 6= ρ−2(m).

5. If d1κ− > 7 · 2p−3 − 1 and d2µ < 5 · 2p−2 + 1, then k 6= ρ−1(m).

6. Suppose d1κ < 5 · 2p−2 + 1. If d2µ < 7 · 2p−2 + 1, then k 6= ρ−2(m), and if d2µ > 7 · 2p−2 − 1,
then k 6= m.
Suppose d2µ < 5 · 2p−2 + 1. If d1κ < 7 · 2p−2 + 1, then k 6= ρ2(m), and if d1κ > 7 · 2p−2 − 1,
then k 6= m.

Proof: We only prove parts 1 and 5; the other parts follow similarly. Note also that the second
statements in parts 2 and 6 are immediate corollaries of the respective first statements of these
parts. By Theorem 4.2, k ∈ {ρ−2(m), ρ−1(m),m, ρ(m), ρ2(m)}.

For part 1, we have

κ−θ1 <
7 · 2p−3 + 1

2p

(
1 +

f

2p

)
<

(
7
8

+
1
29

)(
1 +

1
16

)
=

7633
213

.

Suppose k ∈ {ρ(m), ρ2(m)}, then we reason as in the proof of Theorem 4.2 that

κ−θ1 ≥ µθ2 >

(
1− 1

2p−1

)(
1− f

2p

)
>

(
1− 1

28

)(
1− 1

16

)
=

7650
213

,

a contradiction.

Assume the conditions of part 5. Then

µθ2 <
5 · 2p−2 + 1

2p

(
1 +

f

2p

)
<

(
5
4

+
1
29

)(
1 +

1
16

)
=

10897
213

14

and

κ−θ1 >
7 · 2p−3 − 1

2p

(
1− f

2p

)
>

(
7
8
− 1

29

)(
1− 1

16

)
=

6705
213

.

If k = ρ−1(m), then m = ρ2(k−), so µθ2 > 2κ−θ1 by (2.3), contradicting the above inequalities. 2

Lemma 4.5 Let D ∈ N be squarefree with D ≡ 3 (mod 4) and let k be a reduced ideal, k = (Q,P)
and ρ(k) = (Q+, P+). Then Q 6≡ Q+ (mod 4).

Proof: If Q ≡ Q+ (mod 4), then QQ+ ≡ 0 or 1 (mod 4). By (2.1), QQ+ = D−P 2
+; this is 3 (mod 4)

if P+ is even and 2 (mod 4) if P+ is odd. 2

Throughout our protocol, k,m, κ, κ−, µ, µ−, k, k−,m,m− are as in Corollary 4.3 and its proof.

Protocol:

Alice and Bob publicly agree on

• a large squarefree positive integer D ≡ 3 (mod 4);
• a reduced principal ideal r in Z(

√
D),

• a bound B ∈ N on the exponents.

Both precompute p = dlog2(46B2 max{16, log2B})e.

Alice

• secretly generates a ∈ N, a ≤ B;
• computes (a, da) = EXP(r, 2p + 1, a), here a = (Qa, Pa);
• sends (Qa, Pa, da) to Bob.

Bob

• secretly generates b ∈ N, b ≤ B;
• computes (b, db) = EXP(r, 2p + 1, b), here b = (Qb, Pb);
• sends (Qb, Pb, db) to Alice.

Alice

• computes (k, k) = EXP(b, db, a), here k = (Q,P); she also knows (ρ−1(k), k−);
• sets q ≡ Q (mod 4), 0 ≤ q ≤ 3;
• sets

b1 =
{

0 if k− ≤ 7 · 2p−3,
1 if k− > 7 · 2p−3,

b2 =
{

0 if k ≤ 5 · 2p−2,
1 if k > 5 · 2p−2,

b3 =
{

0 if k ≤ 7 · 2p−2,
1 if k > 7 · 2p−2,

• sends (b1, b2, b3, q) to Bob.

Bob

15

• computes (m,m) = EXP(a, da, b).
• determines an ideal l = (Q̃, P̃) according to the following rules:

if b2 = 0 then
if b1 = 0 then

if m > 7 · 2p−2 then set l = ρ−2(m), else set l = ρ−1(m)
else

if m > 5 · 2p−2 then set l = ρ−1(m), else set l = m

else (in this case b2 = 1)
if m > 5 · 2p−2 then

set l = m

else
if b3 = 0 then set l = m, else set l = ρ(m).

• Sets k = l if Q̃ ≡ Q (mod 4) and k = ρ(l) if Q̃ 6≡ Q (mod 4).

We see that after both parties have completed their respective double exponentiations, Alice simply
communicates five more bits to Bob. Upon receipts of these bits, Bob is able to determine the ideal
k = (Q,P) computed by Alice. The common key is a substring of P or Q of suitable size, where
the last two bits of Q should not be used in the key. In the precomputation, r can be obtained by
applying a few iterations of (2.1) to the ideal O = (1, 0). Similarly, Bob can easily compute l and k

using (2.1) and (2.4).

It remains to be shown that the ideal computed by Bob is in fact the same ideal k that Alice
generates.

Theorem 4.6 After the protocol is executed, both communicants have computed the same ideal k.

Proof: By Corollary 4.3, m ∈ {ρ−2(k), ρ−1(k), k, ρ(k), ρ2(k)}. If we show that if l ∈ {k, ρ−1(k)}, then
by Lemma 4.5, k = l if Q̃ ≡ Q (mod 4) and k = ρ(l) otherwise. We note that by Corollary 3.5,
k − 2 < d1κ < k + 1, k− − 2 < d1κ− < k− + 1, and m− 2 < d2µ < m+ 1.

Suppose first that b2 = 0, so k ≤ 5 · 2p−2 and hence d1κ < 5 · 2p−2 + 1.

Case b1 = 0. Then d1κ− < 7 ·2p−3 +1, so by part 1 of Lemma 4.4, k ∈ {ρ−2(m), ρ−1(m),m}. If m >
7 ·2p−2, then d2µ > 7 ·2p−2−1, so by part 6 of the same lemma, k 6= m. Hence, k ∈ {ρ−2(m), ρ−1(m)}
and l = ρ−2(m) ∈ {k, ρ−1(k)}. Similarly, if m ≤ 7 · 2p−2, then d2µ < 7 · 2p−2 + 1, so again by part 6
of the same lemma k 6= ρ−2(m). Hence, k ∈ {ρ−1(m),m} and l = ρ−1(m) ∈ {k, ρ−1(k)}.

Case b1 = 1. Then d1κ < 5 · 2p−2 + 1 and d1κ− > 7 · 2p−3 − 1, so by parts 3 and 4 of Lemma
4.4, k ∈ {ρ−1(m),m, ρ(m)}. If m > 5 · 2p−2, then by part 2 of the lemma, k ∈ {ρ−1(m),m}, and if
m ≤ 5 · 2p−2, then by part 5, k ∈ {m, ρ(m)}. In either case, l ∈ {k, ρ−1(k)}.

Now suppose that b2 = 1. Then part 2 of Lemma 4.4 yields k ∈ {ρ2(m), ρ(m),m}. If m > 5 · 2p−2,
then again by part 2, k = m = l. If m ≤ 5 · 2p−2, then part 6 shows that k ∈ {ρ(m),m} if b3 = 0 and
k ∈ {ρ2(m), ρ(m)} if b3 = 1. In either case, l ∈ {k, ρ−1(k)}. 2

16

5 Implementation

The algorithms described above were implemented using the C++ computer algebra library LiDIA
[10]. All computations in this section were performed using the GNU g++ compiler version 2.91.66
on a Pentium III 800 Mhz computer running Linux.

A number of optimizations have been incorporated into our implementation. In practice, algo-
rithm MULT can be improved by testing for two commonly-occurring cases: squaring an ideal
(gcd(Q1/σ,Q2/σ) = Q1/σ), and the case gcd(Q1/σ,Q2/σ) = 1. Descriptions of the corresponding
algorithms can be found in [2] and [5].

We now need to discuss how the value of s was selected. In Theorem 3.9 we need d0 < 9S2Q̃2p−2,
where S2Q̃ ≤ Q1Q2 < (2

√
D)(2

√
D) = 4D. Thus, if d0 < 9D2p, we have d0 < 9S2Q̃2p−2. We also

require d1(= d0) to satisfy d1/2s < 1/10 in Lemma 3.4. Thus, if 2s > 90D2p, the EXP algorithm
must work. However, in practice this is a much larger value of s than is actually needed.

Suppose we select some C and K such that

2s > CK2p/
√
D

and d1 in Lemma 3.4 satisfies d1 < K2p. Although we have been at pains to point out how backward
steps can be performed in our algorithms, it turns out that for large values of D we require very
few backward steps. The reason for this is that the first reduced ideal bl that we find is such that
Ψl ≤ 1 (see Lemma 3.3). Indeed, it is often much smaller than 1. Since, as we shall see below, K
can be taken to be small, we almost always have d1Ψl/S < 2p and, as a consequence, we expect
d1Ψ̂l/S < 2p or Tl−2 ≤M. If we now refer to the proof of Corollary 3.5, we may assume that

d1Ψj

S
− d1Ψ̂j

S
=
ηd1Bj−2

Q02sS
,

where 0 < η < 1 and j ≤ k. Since Bj−2 ≤ Bk−2, we get

Bj−2

Q02s
≤

Ψk +
∣∣Ψk

∣∣
2s+1

√
D

≤ ψk−1Ψk−1 + 1
2s+1

√
D

<
3ψk−1S/2 + 1

2s+1
√
D

<
(5/4)ψk−1S

2s
√
D

.

It follows that
ηd1Bj−2

Q02sS
<

(5/4)d1

2s
√
D
ψk−1 ;

thus, if ψk−1 < 4C/5, then d1Ψj/S − d1Ψ̂j/S < 1. Also, since Bj−3 < Bj−2, we get

d1Ψ̂j

S
<
d1ψj−1Ψj−1

S
< ψj−1

(
d1Ψ̂j

S
+ 1

)
;

thus,
dj < (2p + 1)ψj−1 + 1 < ψj−1(2p + 2) .

Therefore, after executing step 1 of Algorithm MR we would have

e < γ1γ2
(2p + 2)2

2p
+ 1 <

5
4
γ1γ22p .

17

Here γ1(> 1) and γ2(> 1) are complete quotients in the continued fraction expansion of ω. If
K > (5/4)γ1γ2, then e < K2p.

By the Gauß-Kuzmin law, we expect that if γ is any complete quotient in the continued fraction of
any real number, then the approximate probability that γ > b is log2(1+1/b). Putting C =

√
5K/4,

we see that the probability that γ1 > 4C/5, γ2 > 4C/5, or ψk−1 > 4C/5 is very likely no more
than 3 log2(1 + 5/(4C)) < 15/(4C log 2). If we put C = (5/4)1/3D1/12, we see that if D is large
(> 512 bits, say) we get C > 243, which means that it is very likely that we have ψk−1 < 4C/5 and
e < K2p. Thus, if

2s >
2p

D1/4
,

Ψ̂i should be a sufficiently good approximation of Ψi for the algorithms to work. Indeed, we found
that values of s such that 2s > D3/4 for B =

√
D and 2s > D1/4 for B = D1/4 are perfectly

adequate as long as D is large.

The reduction algorithm REDUCE primarily consists of expanding the continued fraction of (P +√
D)/Q, and hence we have used the more efficient Tenner’s algorithm [21] for both the “forward”

and “backward” reduction stages. In addition, we have tried two separate strategies to further
speed the algorithm. In each iteration, qj−1 = 1 can be recognized easily by testing whether

Qj−1 ≤ Pj−1 +
√
D < 2Qj−1 .

By handling this case specially, we avoid all multiplications and divisions for the computation of
Pj and Qj for that iteration. Since the Gauß-Kuzmin law predicts that qj−1 = 1 about 41% of the
time, this should, and does, yield a fairly significant speed-up.

Our second method to speed REDUCE was to replace the simple continued fraction algorithm
by the nearest integer continued fraction. The advantage of this algorithm is that the number of
iterations required to find a reduced ideal is only about 70% of that using the simple continued
fraction. However, the smaller number of iterations comes at the price of having qj−1 6= 1 for all j, so
we cannot combine our two methods. We found that using the nearest integer continued fraction for
the forward steps and using the simple continued fraction while testing for partial quotients of 1 was
slightly faster than other combinations of the two approaches, so we used it in our implementation.
In the forward reduction steps, we compute Tj−1 using the formula Tj−1 = qj−1Tj−2 − Tj−3.

In order to test the efficiency of our protocol, we have computed numerous examples using discrim-
inants of 512, 768, and 1024 bits. For each size of radicand, we have executed the key exchange
protocol 100 times for each of 20 randomly chosen prime radicands of the given size. We have
carried these computations out using exponent bounds B =

√
D (with 2s < D3/4) and B = D1/4

(with 2s < D1/4). In all cases, we take r = ρ5((1)). Table 5.1 contains the average CPU time per
communication partner for a single execution of the protocol, for each combination of the parameter
sizes.

After profiling our implementation, we found that by far the most time-consuming part of the
algorithm was ideal reduction — 97% compared to 3% for ideal multiplication. Clearly, any at-
tempts to further optimize the protocol should begin there. One possible improvement would be to
incorporate the NUCOMP algorithm of Shanks [19], which essentially combines the multiplication

18

Table 5.1: Average CPU time (in seconds) per key exchange per partner

B = D1/4, B =
√
D,

log2D 2s < D1/4 2s < D3/4

512 0.48 1.20
768 1.33 2.90

1024 2.74 6.12

and reduction stages. In addition to keeping the sizes of the intermediate operands close to
√
D

(as opposed to operands close to D in Algorithm MULT), many of the reduction steps are replaced
by slightly less expensive simple continued fraction steps.

One disadvantage of using the nearest integer continued fraction for reduction is that the backward
steps in REDUCE are sometimes necessary, since some reduced ideals may be skipped in this type
of continued fraction expansion. However, on average only 1 backward step was required per call
to reduce, and the overall time was not greatly affected.

It should be noted that in all cases both partners do in fact end up with the same ideal, even
though the precision used is less than what is theoretically necessary in the worst case. Thus, in
practice, the second round of the protocol is never executed.

6 Security

6.1 Principal Ideal Testing

As shown in [17], our scheme can be broken by solving the principal ideal problem: given a reduced
principal ideal a, find a generator µ, or log |µ|, such that (µ) = a. It is also mentioned in [17] that
solving the principal ideal problem is at least as difficult as factoring.

The best algorithms available for solving the principal ideal problem employ index-calculus tech-
niques and are of subexponential complexity. Abel [1] was able show that under the Generalized
Riemann Hypothesis (GRH) this problem has complexity

exp
(
(1.44 + o(1))

√
logD log logD

)
.

Improvements by Vollmer [20] suggest that the constant 1.44 can likely be reduced to
√

2 ≈ 1.41.
To date, no algorithm of complexity exp

(
(logD)1/3(log logD)2/3

)
is known to exist.

The most efficient algorithm in practice is due to Jacobson [6], and is based on principles used in the
self-initializing quadratic sieve factoring algorithm. Using this algorithm, it is possible to solve the
principal ideal problem for values of D ≈ 1066 in a little over a day on a 298 MhZ UltraSPARC-II
[6].

19

Notice that for all of these algorithms it is easy to verify unconditionally the correctness of a
solution. The assumption of the GRH is needed to prove the complexity and the termination of
the algorithms.

Currently, it appears that computing R = log ε, the regulator of K, is somewhat easier than solving
the principal ideal problem in practice [5]. Computing the regulator is nevertheless a special case
of solving the principal ideal problem (a = (1)), and hence security estimates based on the state of
the art of regulator computation will yield conservative parameter selection guidelines.

Using a recent distributed implementation of the self-initializing quadratic sieve based algorithm
in [5], we have successfully computed the regulators of a 90 decimal digit discriminant and a 101
decimal digit discriminant, both of which are significantly larger than those presented in [5]. Using
a cluster of 16 550 Mhz Pentium III computers, we found that for the 90-digit

D = 215224698103728400410483771240601671668634200915018506046263
918977716591590126558308631804

we get (under the GRH)

R = 1314117837933813360543450767405060115166686144.03321787
h = 1 ,

where h denotes the ideal class number of K. This computation took a total of 10 days (approxi-
mately 5.2 months of CPU time). For the 101-digit

D = 130221941021903504103190853297932051273194641328847761633615
78366571379092583560263087397184669099836

we get (under the GRH)

R = 317802546231747555392917649154948636172763163478260.945231457
h = 1 ,

and the entire computation on the cluster took 87 days (approximately 3.8 years of CPU time).
More details about these computations will appear in a forthcoming paper.

6.2 The Choice of D

As demonstrated in [5, Chapter 7], the performance of the self-initializing quadratic sieve is highly
sensitive to the quadratic character of D. In fact, the two discriminants listed above were con-
structed so that they would be especially amenable to this algorithm by forcing (D/p) = 1 for as
many small primes p as possible. Conversely, selecting D such that (D/p) = −1 for as many small
primes as possible will cause the regulator computation and the principal ideal problem to be much
harder than average using this algorithm.

Table 6.2 contains run-times, taken from [5] and [7], for a number of various sized discriminants.
The wide range of run-times between 60 and 63 digits and between 72 and 73 digits is due to

20

the varying quadratic characters of the discriminants. For example, the 73-digit discriminant was
constructed so that (D/p) = 1 for all primes p ≤ 233, and less than 14 hours of CPU time were
required to compute its regulator. On the other hand, the 72-digit discriminant was constructed
so that (D/p) = −1 for all primes p ≤ 337, and approximately 18 days of CPU time were required
to compute its regulator.

Table 6.2: Regulator computation CPU times for various sized discriminants

no. of digits in ∆ CPU time
54 6.26 m
58 17.79 m

60 — 63 49.56 m — 2.17 d
67 5.40 h

72 — 73 13.57 h — 18 d
80 2.05 d

The radicand D must also be selected such that there are sufficiently many reduced principal ideals
to foil exhaustive search or baby-step giant-step attacks. Selecting D such that (D/p) = −1 for
many small primes does have a minimizing effect on the product hR, but a result of Littlewood
[11] states that under the GRH we still have hR �

√
D/ log log ∆. Thus, if we also force D to be

prime, h will be odd and the Cohen-Lenstra heuristics predict that h = 1 about 75% of the time,
so we will have R ≈

√
D.

Fortunately, constructing such values of D can be done quite expeditiously using special purpose
sieve devices for solving systems of simultaneous linear congruences [7]. We used the Manitoba
Scalable Sieve Unit [12] to generate three special values of D in this manner. The first 526-bit

D1 =214009058884381187586239644533444807761649005359177505654529
109045630900862009133246926074139814969382293847794568441377
912006369369440438564833304556580156247

was constructed so that (D1/p) = −1 for all odd p < 587. The 778-bit

D2 =796669531828983170355773583534375002582180902544905552378950
144764493346472833047585753578654731891102080015033752405705
485653359704316416529245338144565963640997100318526914842797
752826761905749310505463562856228571783730822181744943

21

has (D2/p) = −1 for all odd p < 727, and the 1040-bit

D3 =628422767086444915443603163898104886122604007365191407856568
878324855316531764204362860362397355373970374319629714174971
709266284883549779890009018542729063845063506367632958411625
937373383256437213469372447649538329791081590593048268726182
797367391958035401412654563687285881593903948899030520286997
0057899153687

has (D3/p) = −1 for all odd p < 937. All three D values are prime.

We have compared the speed of our protocol using these specially constructed D values with that
using randomly selected prime D of the same sizes. For each of 20 random D values of the specified
size and the special D value of that size, the key exchange protocol was performed 100 times. The
average CPU time per key exchange for each communication partner are given in Table 6.3. As in
the previous section we have used our LiDIA implementation on a Pentium III 800 Mhz computer
running Linux. In all cases, we have used B = D1/4, 2s < D1/4, and r = ρ5((1)). Even though the

Table 6.3: Protocol execution times (CPU seconds) for special D values

log2D Random Special
526 0.49 0.49
778 1.29 1.31

1040 3.55 2.97

key exchange protocol does not execute any slower for these special radicands, using the state-of-
the-art algorithm to solve the principal ideal problem will be significantly harder than for random
radicands.

Acknowledgement

The authors greatfully acknowledge Detlef Hühnlein and Sachar Paulus for making an early version
of their paper [4] available to us. We derived our idea of (f, p) representations from their manuscript.

References

[1] C.S. Abel, Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators reellquadratis-
cher Ordnungen. Ph.D. Thesis, Universität des Saarlandes, Saarbrücken, Germany, 1994.

[2] J. Buchmann, S. Düllmann, and H. C. Williams, On the complexity and efficiency of a new
key exchange system. In Advances in Cryptology - EUROCRYPT ’89, LNCS 434, Springer
(New York) 1990, 597–616.

22

[3] J. A. Buchmann and H. C. Williams, A key-exchange system based on imaginary quadratic
fields. J. Cryptology 1 (1988), 107–118.

[4] D. Hühnlein and S. Paulus, On the implementation of cryptosystems based on real quadratic
number fields. To appear in Seventh Annual Workshop on Selected Areas in Cryptography -
SAC2000, Lecture Notes in Computer Science, Springer (New York), 2000.

[5] M. J. Jacobson, Jr., Subexponential Class Group Computation in Quadratic Orders. Ph.D.
Thesis, Technische Universität Darmstadt, Darmstadt, Germany, 1999.

[6] M. J. Jacobson, Jr., Computing discrete logarithms in quadratic orders. J. Cryptology, 13
(2000), 473–492.

[7] M. J. Jacobson, Jr. and H. C. Williams, New quadratic polynomials with high densities of
prime values. Submitted to Math. Comp.

[8] N. Koblitz, Elliptic curve cryptosystems. Math. Comp. 48 (1987), 203–209.

[9] N. Koblitz, Hyperelliptic cryptosystems. J. Cryptology 1 (1988), 94–97.

[10] The LiDIA Group, LiDIA: a C++ library for computational number theory. Soft-
ware, Technische Universität Darmstadt, Germany, 1997. See http://www.informatik.tu-
darmstadt.de/TI/LiDIA.

[11] J. E. Littlewood, On the class number of the corpus P (
√
−k). Proc. London Math. Soc. 27

(1928), 358–372.

[12] R. F. Lukes, C. D. Patterson, and H. C. Williams, Numerical sieving devices: Their history
and some applications. Nieuw Archief voor Wiskunde, series 4, 13 (1995), 113–139.

[13] K. S. McCurley, A key distribution scheme based on factoring. J. Cryptology 1 (1988), 95–105.

[14] V. Miller, Use of elliptic curves in cryptography. In Advances in Cryptology – Proceedings of
CRYPTO ’85, LNCS 218, Springer (New York) 1986, 417–426.

[15] R. W. K. Odoni, V. Varadharajan and P. W. Sanders, Public-key distribution in matrix rings.
Electr. Letters 20 (1984), 386–387.

[16] H. J. J. te Riele, A. J. van der Poorten and H. C. Williams, Computer verification of the
Ankeny-Artin-Chowla conjecture for all primes less than 100,000,000,000. To appear in Math.
Comp.

[17] R. Scheidler, J. A. Buchmann and H. C. Williams, A key-exchange protocol using real quadratic
fields. J. Cryptology 7 (1994), 171–199.

[18] R. Scheidler, A. Stein and H. C. Williams, Key-exchange in real quadratic congruence function
fields. Designs, Codes and Cryptography 7 (1996), 153–174.

[19] D. Shanks, On Gauss and composition I, II. In Proc. NATO ASI on Number Theory and
Applications, Kluwer Academic Press 1989, 163–179.

23

[20] U. Vollmer, Asymptotically fast discrete logarithms in quadratic number fields. In Algorithmic
Number Theory - ANTS4, LNCS 1838, Springer (Berlin) 2000, 581–594.

[21] H. C. Williams and M. C. Wunderlich, On the parallel generation of the residues for the
continued fraction factoring algorithm. Math. Comp. 48 (1987), 405–423.

24

