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Abstract. While it is well-known that the RSA public-key cryptosystem can be broken if its modulus N can be 
factored, it is not known whether there are other ways of breaking RSA. This paper presents a public-key scheme 
which necessarily requires knowledge of the factorization of its modulus in order to be broken. Rabin introduced 
the first system whose security is equivalent to the difficulty of factoring the modulus. His scheme is based on 
squaring (cubing) for encryption and extracting square (cube) roots for decryption. This introduces a 1:4 (1:9) 
ambiguity in the decryption. Various schemes which overcome this problem have been introduced for both the 
quadratic and cubic case. We generalize the ideas of Williams' cubic system to larger prime exponents. The cases 
of higher prime order introduce a number of problems not encountered in the quadratic and cubic cases, namely the 
existence of fundamental units in the underlying cyclotomic field, the evaluation of higher power residue symbols, 
and the increased difficulty of Euclidean division in the field. 
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1. Introduction 

It is well-known that the RSA public-key cryptosystem can be broken if its modulus N can 
be factored. However, it is not known if the opposite is true, i.e. whether there are other 
methods of breaking RSA. It is therefore of interest to develop cryptographic schemes whose 
security is equivalent to the difficulty of factoring the modulus, i.e. for which knowledge of 
the factorization of the modulus is necessary in order to retrieve plaintext from ciphertext 
without the use of the decryption key. Rabin [12] introduced the first such system, in which 
encryption is essentially squaring the message modulo N, and decryption is extracting 
square roots modulo the factors p and q of N. The main problem with this method is a 1:4 
ambiguity in the decryption. Rabin pointed out that the same technique could be used when 
cubing the message for encryption and would result in a 1:9 ambiguity in the decrypted text. 
In order to distinguish the correct root for decryption, the required information needs to 
be either included in the encryption/decryption algorithms or transmitted together with the 
encrypted message. The former approach was taken by Williams [15] in the quadratic case 
and recently by Loxton, Khoo, Bird and Seberry [9] in the cubic case. The latter idea was 
used by Williams [16] who presented a cubic scheme based on arithmetic in the complex 
quadratic field generated by a primitive cube root of unity. 
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In this paper, we present an RSA-like cryptosystem which can be used with higher prime 
exponents as well. The scheme itself is a generalization of Williams' system [16] to Eu- 
clidean cyclotomic fields of  higher prime order. It solves Rabin's ambiguity problem and its 
security is equivalent to the difficulty of factoring the modulus. Key generation and encryp- 
tion employ some interesting number theoretic concepts and algorithms which do not occur 
in the simpler quadratic and cubic cases. We present an algorithm for Euclidean division in 
cyclotomic fields. We also make use of higher power residue symbols--general izat ions of  
the Jacobi and Legendre symbols - -and  give a method for computing them without factoring 
the denominator. Finally, we address the problem of  evaluating these symbols for units, i.e. 
for nontrivial divisors of  1 in the field. 

It should be noted that for any system of this kind, there is a price to pay for the additional 
information regarding its security. Certain restrictions need to be placed on the primes 
p, q (and thus on the modulus N = pq). The mechanisms for key generation as well 
as encryption and decryption are more complex than those for RSA and require more 
computation. The public key is larger than an RSA key. Finally, since the proof  of the 
equivalence of breaking the scheme to the difficulty of factoring its modulus is constructive, 
the system could be vulnerable to a chosen ciphertext attack (see [15]). 

The paper is organized as follows. The following section presents the mathematical 
concepts used in our cryptosystem. The scheme itself is introduced in Section 3 and its 
security is analyzed in Section 4. Section 5 discusses the underlying algorithms in more 
detail. The paper concludes with an explicit description and computational results for the 
quintic case in Section 6. 

2. Mathematical  Preliminaries 

Let L be a prime and ( be a primitive k-th root of  unity, i.e. ( # 1 and ( z = 1. By adjoining 
( to the field Q of rationals, we obtain an algebraic number field F = Q ( ( )  of  degree 
k - 1 over Q, the cyclotomic field of order L. Every ot E F has a unique representation 
0~ = a l (  + a2( 2 + . - "  d- ak-l~ "k-1 where al . . . . .  ax-1 c Q. 

Denote by R = Z[ ( ]  = Z (  + . . .  + Z (  ~-1 the ring of algebraic integers in F, where 
Z is the set of rational integers. We define the L - 1 conjugate mappings ~i : F ~ F by 
a i ( ( )  = ( i  for 1 < i < k - 1. The two rational numbers N(c0  = l-]~_-] ~i(u) ~ Q>0 

and Tr(o0 = Y~4~-~ ai (t~) E Q are called the norm and trace of u c F, respectively. Then 
N(R) ,  Tr(R) c Z and N(oq~) --- N(oON(fl), Tr(aot + bfl) = a Tr(o0 + bTr(,6) for any 
ol,/36F, a, b 6 Q .  

A unit in F is a divisor (in R) of 1, or equivalently, an element in R of norm 1. Two 
elements ~,/3 ~ R are said to be associates if there exists a unit e such that ~ = e/3. 

A prime rc in R is an element in R such that for any t~,/3 E R, if Jr I c~fl in R, then Jr I 
or rr 1 /3 in R. co = - 2 (  - (z _ (3 . . . . .  (~-1 = 1 - ( is a prime in R and N(co) = k. 
Ifyr 5& co is a prime in R, then N(Jr) = pk where p is a prime in Z and k is the order of p 
modulo k, hence N(rr)  -- 1(rood L). 
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Let ot 6 R, ot ~ 0, and let Jr 6 R be a prime which does not divide o~. Since aN(~)-~ _ 

I (mod Jr), we can define the L-th residue symbol as 

N(~)-t 
where k is such that ol i" ~ (k (mod~v)  a n d 0 < k < L - 1 .  

Assume now that R is a Unique Factorization Domain (UFD)--this restricts our scheme 
to the fields where L _< 19 (see Masley & Montgomery [10]). Then we can define 

i= l  L :~i J 

e, is the unique prime factorization (up to order and where fl 6 R, f l r  0, and fl = [Ji=l 7ri [][oY unit factors) of fl in R. 1 (This is well-defined since for any unit e, [~] = ~ ~ = 1, 

where Jr1-= ezr2.)It is easy to see that [ ~ ]  = [~]  [~ ]  and [~]  = [ } ]  ifet -- },(modfi) 

for any or, fl, ~, ~ R, fl 7~0. 

3. The  Cryptosys tem 

Henceforth, le tp ,  q 6 Z beprimes suchthat p = q -- l (mod L) andp,  q ~ l(mods Set 
N = pq and f = r where 4) denotes Euler's totient function, i.e. q~ (N) = ( p -  1) ( q -  1 ). 
Then L 2 ] ~b(N) and L ~ f .  Let e , d  6 Z be such that Led =-- l ( m o d f ) .  Finally, define 
primes 7r, ~p 6 R such that N(Tr) = p, N ( ~ )  = q, and r ~ Z such that gcd(r  - 1, N )  = 

1, r x ~ l (mod U), and t. [ff~ ] = 1. The basis for our scheme is the following theorem. 
_1 

THEOREM 3.1 Let X ~ Z be such that g c d ( X , N )  = l a n d  [ ~ ]  = 1. Then X f 

rk(mod N )  f o r  some k ~ {0 . . . . .  L - 1}. 

Since gcd(r  - 1, N) = 1, we have r ~ l (mod p), hence r = (1(modTr) for some I # 0, 

and (J ~ [~]  ~ r ~e~ - ~- ~P-~t ~ l(modTO implies j # 0. Define k such that k j  = 

zzzk ~-~i rk(mod re); f i (mod,k)  and 0 < k < )~ - I. Then ( f l  = (/k _= r ~ (modTr), so ( = 

similarly ( _  -z~g _- rk(mod~p). It follows that x f  =_- [ x ]  q-~ _= ~ - ~  - rk(modTr) and 

X f = ~ ( -  ~ '  = rk(modTt). S inceX,  r ~ Z, w e h a v e X  f =_ r~(modN) .  

COROLLARY I f  Z ~ xZe(mod N),  then Z d =--- r kX  (mod N)  f o r  some k E {0 . . . . .  L - 1}. 
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We are now prepared to present our scheme. 

Key Generation: 

1. Choose two large primes p, q where p, q = l (mod)0 ,  p, q 7! l(mod)~2), and a large 
positive integer e such that 0 < e < (p - 1)(q - 1) and gcd(e, (p - 1)(q - 1)) = 1. 

Compute N, f ,  d, rr, ~,  r as above. 

Calculate ritz = c1~ + c2~ 2 + . . .  + cz-l~ z-l  where cl . . . . .  c~-a ~ Z. 

Find S ~ Z such that0 < S  < N and [~-~ ] = ~ - ' .  

Publicize K = {r, S, cl . . . . .  cx-i ,  e} and keep d secret. 

4-1 serves to 

simplify our arithmetic. In order to find S, generate a random integer T relatively prime to 

N a n d c o m p u t e l ~ l = f f k ,  0 < k < L - 1 .  If k = O, try another T, otherwise set S = 
L - - . , , I  

T t (mod N), 0 < S < N, where kl ~ ~. - 1 (mod)~). Then = ~-~ 

Note that N = N ( ~ )  is easily computed. Algorithms for finding r, Jr and ~ from p 
and q as well as evaluating residue symbols in the cases )~ = 2, 3, 5 are given in Section 5. 

As in RSA, messages are considered to be encoded as integer blocks M such that 0 < 
M < N. Note that any non-trivial common divisor of M and N is either p or q, so it is 
extremely unlikely that a message is not relatively prime to N. Hence we may assume that 
gcd(M, N)  = 1 for any message M. 

Encryption: Let M ~ Z be a message, 0 < M < N, gcd(M, N) = 1. Encrypt M as 
follows: 

1. Determine [ ~ ]  = ~m, 0 < m < )~ - 1. 

2. Compute Mo = M S  m, Mi = r iMo(modN) such that0 < Mi < N (0 < i < L - 1) 

3. Sort the M; in ascending order to obtain/1)/0 < . . .  < ~/x-a where {Mo . . . . .  Mx-i } = 
{Mo . . . . .  Mx-I }. (Notethat all Mi are pairwise distinct.) Findn suchthat0 < n < L -  1 
and M0 = M,,. 

, 

3. 

4. 

5~ 

For step 4, we merely require [~-~] # 1; the specification [~-~] 

4. Compute C = M~e(mod N), 0 < C < N. 

5. Transmit {C, m, n}. 

Decryption: On receiving {C, m, n}: 

1. Compute Lo ~ C d, Li  = riLo(mod N) such that 0 < Li < N(0 "~ i < L -- 1). 

2. Sort the Li in ascending order to obtain L0 < . . .  < L~-I  where {L0 . . . . .  Lz-1} = 
{L0 . . . . .  L~-l}. F i n d j  such tha t0  < j < L -  I andL j  = L, .  
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3. Compute S -1 (mod N).  (This need only be done once for each key K). 

4. Compute M =- S - m L j ( m o d  N) such that 0 < M < N. 

[ ~ ]  [,. ] i [ ~ ] [ s l  m =(m((x-m)m ---- IforO < i  <)~- l, soallMi We have = ?-T k ~ J 

satisfy Theorem 3.1. Furthermore, ]l~/i = Li for 0 < i < )~ - 1, so the decrypter is in fact 
able to identify the correct root M0 of  Cd(mod N).  

4. S e c u r i t y  

In order to prove that breaking our scheme is as difficult as factoring N, we first require 
three lemmas which are generalizations of results in [ 16]. 

LEMMA 4.1 Let Y E Z. Then there exists f o r  any i c {0 . . . . .  )~ - 1} an integer Xi such 

thatX)=--  YX(modN and[~-~] = ~'i [?--~]. 

Proof  L e t i  e {0 . . . .  ~ - l } a n d l e t j  ~ {1 . . . . .  k -  1} be such that [~]  = (J .  Let 
k i E Z be such that j k i  ~ i(mod)O. By the Chinese Remainder Theorem, there exists 
Xi ~ Z such that Xi - r k i Y ( m o d p ) a n d  Xi =- Y(modq) .  Then X) ---- Y Z ( m o d N ) a n d  

LEMMA 4.2 Let Y ~ Z be such that gcd(Y, N) = 1 and let m, n ~ {0 . . . . .  X - 1}. I f  
C ~ YX(mod N)  and 0 < C < N, then there exists a unique M ~ Z, 0 < M < N, such 

that encrypting M under key K = {r, S, cl . . . . .  cx_l, e} yields {C, m, n}. 

Proof. Let g e Z be such that ge = l (mod~b(N)).  By the previous Lemma,  there 

exists X ~ Z such that X z =- (Yg)X(modN)  and [~-~] = 1. For 0 < i < ~. 1, 

define Xi - r i X ( m o d N ) , O  < Xi < N.  Sort the Xi in ascending order, obtaining 
)(o < " "  < J)x-i ,  where {Xo . . . . .  Xz-1} = {A'o . . . . .  ) (z- l} and let k be such that 
Xk = )(n. Set M ---- S - ' X k ( m o d N ) ,  0 < M < N.  We need to prove that encrypting M 
under K gives {C, m, n}. 

Step 1: [ ~ ]  = [-A-s I -m  r k 

Step 2: Mi ~ M S ' r  i =-- X k r i ( m o d N ) , O  < Mi < N , ( 0  < i < )~ - l ) , so{Mo . . . . .  Mz-1} = 
{Xo . . . . .  X~-i }. 

Step 3: After sorting, we have A l i =  Xi(0 < i < )~ - 1) and Mo --- Xk -~ 2,, -=/t)/n. 

Step 4: M~ e =_ X}  e =_ X xe -- y~.ge ~ yZ =_ C(mod N).  

Now since decrypting {C, m, n} under K yields M, M must also be unique. [] 
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for  some i 6 {0 . . . . .  L - 1 }. 

Proof  We have X x - yX _ (X - Y ) ( X  - r Y ) . . .  (X - rZ- lY)  =-- 0(mod N). Assume 

that X - r i Y  -- O(modN) for some i ~ { 0 , . . . , ) ~ -  1}. Then = ?-~ = 

] ~ /  which contradicts our assumption. So there must be i E {0 . . . . .  L - 1} such that 

X - r i g  ~ O(modp) and X - r i g  ~ O(modq). But then gcd(X - riy,  N )  =- p. 

THEOREM 4.4 l f  A is an algorithm which, given any key K and cipher {C, m, n} wiU find 
the corresponding plaintext M, then the following algorithm will factor N:  

1. Find Y 6 Z such that 0 < Y < N and [ ~ ] % 1 (note that S is a possible choice for 
Y). 

2. P u t C  -- YX(modN),0 < C < N, a n d s e l e c t a n y m ,  n 6 {0 . . . . .  )~ -  1}. 

3. Use A to decrypt {C, m, n} under K, obtaining M. 

4. Put Mo -- M S ' ,  X -- M0(modN). 

5. For 0 < i < ~ - 1, compute gcd(X - r i Y, N)  until a nontrivial factor # found.  

M in step 2 is u iquo by Lemma 4 2  Proof 
C =- YZ(modN), by Lemma 4.3 we must have gcd(X - riY, N)  = p for some i. 

It should be noted that revealing r does not seem to compromise the security of the system. 
By Lemma 4.3, we could factor N if we found a L-th root of unity X(mod N) such that 

/ ~ /  # 1. But this corresponds to the case C = l  in Theorem 4.4, so, unless the number 
L - -  

1 represents a special case, the problem of finding X is equivalent in difficulty to factoring 
N. 

It is clear that this algorithm can be used to mount a chosen ciphertext attack if an attacker 
(who generates Y) is able to convince his opponent to decrypt the triple {C, m, n} and is 
somehow able to obtain the corresponding plaintext M and hence X. 

1 If A is such that it can only decrypt a fraction ~ of all messages, then we expect to be 
able to find M and proceed as above after k trials at a value of Y. 

5. Algorithms 

For the implementation of our scheme, we need efficient methods to find r, zr, and g/from 
p and q as well as an algorithm which does not require factoring for evaluating residue 
symbols. 



A PUBLIC-KEY CRYPTOSYSTEM UTILIZING CYCLOTOMIC FIELDS ] 23 

We let the time complexity of  an algorithm refer to the number of  arithmetic integer 
operations (addition, subtraction, multiplication, division with remainder, and comparison 
of two rational integers) it performs; we do not consider the computation time each such 
operation requires. The space complexity of  an algorithm is the number of  bits in the 
binary representation of its largest input. All inputs are rational integers; integers o~ = 
al ( + �9 �9 �9 + az-1 (z -a  e R are represented by their coordinate vectors (al . . . . .  a~- l ) .  

In order to find a primitive )~-th root r (mod N) such that gcd(r - 1, N) ---- 1, and 

_- , ,  w e  noe  n o n  ro i uo  i e 

and   (modq). T h e n  = = for s o m e  i , j  . . . . .  - 11. 

Let k 6 Z be such that ~ i k +  ~ j  =- 0(mode.) and 1 < k < k -  1. Define 

a =- v ~ k ( m o d p ) , b  = wq-~(modq).  Then a = [#]k _ ~.~ ~ l(modTr),  since 
i ,k ~ 0(modZ),  s o a  ~ l (modp),b ~ l (modq) ,  a n d a  z - l ( m o d p ) , b  x ~ l (modq) .  
Use the Chinese Remainder Theorem to compute r such that r -= a (mod  p) and r - 
b (modq) .  Then r ~ l ( m o d p )  and r ~ l (modq) ,  so gcd(r - 1, N)  = 1. Furthermore 
r z -- l (mod p) ,  r z ~ l (modq) ,  so r z = l ( m o d N ) .  Finally, 

= = = ~  = l .  
LYrA 

By a theorem of Bach [1], the least positive Z-th nonresidue v ( m o d p )  satisfies v < 
2(log p)2, assuming the truth of the Extended Riemann Hypothesis (ERH), thus, according 
to this we can find a value of v after at most O( ( l ogp )  2) steps, although we expect to 
find one much faster by trial as the probability of  a successful guess is (p-~)(z-l) Since 
calculating a from v requires O(log p) arithmetic operations on inputs of  at most O(log p) 
bits of  storage, computing r requires O((log N) 3) arithmetic operations at the very worst 
(assuming ERH) and O(log N) operations in practice, as well as space O(log N).  

A method for finding ~r such that N(~r) = p is given in Buchmann & Williams [3] 
and Buchmann & Williams [4]. The algorithm is based on the reduction theory for ideals 
in R. It is easy to show that Jr is a generator of the principal ideal p whose Z-basis is 
p, ( - r, (~" - r )  2 . . . . .  ( (  - r)  z-2. To find n', we first precompute generators for all reduced 
(principal) ideals in the UFD R, using the technique of [2]. Then the reduction method 
of [3] and [4] is applied to the ideal p to find a reduced ideal a and an integer fl such 
that p = fla. Finally, the list of  generators is searched for a generator c~ of a, and we 
set 3r = flol. For fixed k, this algorithm can be shown to require a total of  O(l + log p) 
arithmetic operations and O(l + log p) bits of storage, where 1 is the number of  reduced 
ideals in R. Computations show that I = 1 for Z < 7 (see [3], [4]). 

There is an alternative way to compute rr if F is Euclidean. In general, an algebraic 
number field F (or its ring of integers R) is said to be Euclidean for the norm if for every 
a , b  e R, b # 0, there exist q , r  e R such that a = qb + r and IN(r)l  < [N(b)l, or 
equivalently, for every x e F there exists y c R such that IN(x - Y)I < 1. The process 
of  finding q and r is called Euclidean division. I f  F is Euclidean and we define for any 
a, b 6 R the greatest common divisor d e R of a and b to be a divisor of  both a and b in 
R such that each divisor d '  of  both a and b is also a divisor of  d in R, then d is unique up 
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to multiplication by a unit and can be found using the Euclidean Algorithm 

a = qob + rl, [N(rl)[ < IN(b)l,  

b = qlrl +r2, [N(r2)[ < [N(rt)[,  

rl = qlr2+r3, IN(r3)] < [N(r2)l 

until r,,-1 = q,,r~ + rn+l such that N(r~+l)  = 0, i.e. rn+l = 0. Then rn = gcd(a, b) 
and n = O(logmax{N(a),  N(b)}). It can be shown that rr = gcd(p,  ff - r),  and since 

~_z-1 N(ff - r)  < F , this method requires O(L log p) Euclidean division steps. 

An efficient algorithm for computing the residue symbol for ;~ is crucial for our scheme. 
The techniques used will be analogous to those for evaluating the Jacobi symbol in Z 
without factoring the "denominator" by making use of  Kummer ' s  law of reciprocity plus 
complementaries as well as Euclidean division. 

If  F is a cyclotomic field of  degree L -  1 over Q, then Lenstra [8] proved that F is Euclidean 
for L < 11. McKenzie [11] showed the same for L = 13; his results may be extendable 
to the cases L = 17 and 19, but the technique requires an extensive search and is thus not 
suitable as a practical Euclidean division method. It is known that F is not Euclidean (in 
fact, R is not even a UFD) for )~ > 23. 

Assume now that L is an odd prime < 11. Recall that co = 1 - ~'. A number ~ ~ R is 
defined to be primary (Kummer [5], p. 350, Smith [13], p. 118) if 

i) o~ ~ O(modw) 

ii) o~ - B(mod~o 2) 

iii) ~ = B2(mod,k) 

for some B c Z, where all congruences are taken in R. If  X = 2, then ~ is said to be 
primary ifo~ - l (mod4) .  It can be shown that B - - Tr(o0(mod ;~). Conditions i) and ii) 

to Tr(c~)~  0 ( m o d L ) a n d  Tr ( - ~ )  - 0 ( m o d ; ~ ) ,  where d~ are equivalent, respectively, is 

the derivative of  a as a function of ~. 
If  a ,  fl ~ R are primary, then so is aft, and every ~ E R such that Tr(o0 ~ 0(mod X) 

has a primary associate. In fact, condition ii) can always be achieved by multiplying a by 
a suitable power of r this has no bearing on conditions i) and iii). Furthermore, any two 
primary associates only differ by a factor of a L-th power. Since 1 is primary, it follows that 
every primary unit is a L-th power and thus has residue symbol 1. 

Let 0 # ~ ~ R. We can write ~ = e c o k y  where k > 0, e is a unit, and ~' is primary. 

[] Then for any,6 ~ R relatively prime to o~ and primary, we have ~ = ~ ~ ~ . 

Kummer's L a w o f  Reciproci~.~ ([5], pp. 345ff.; [13],pp. 120f.) s tatesthat  [ ~ ]  = [ ~ ]  for 

/ ~ , y c  R primary and relatively prime. The values of  [~ ]  for units e and [ ~ ]  are given 

by the complementaries ([5], pp. 485ff.; [13], pp. 121ft.). To evaluate [ 9 ]  for ~, r ~ R 
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relatively prime, we first obtain a primary associate/3'  of/3, then use Euclidean division 
to find q, r E R such that ol = q/3i + r and N(r )  < N(/3'). Write i" = ecokF where 
k > 0, e is a unit and y is primary. Using the law of reciprocity and the complementaries 

[ ~ ]  = ~.i, [ ~ ]  = ~') ,0 < i , j  < ) ~ -  1, we obtain [~]  = [~,] ---- [~)] = ~-i+k)[%], 

and we can repeat this process with ]~2~, until we obtain N (F) --- 1, at which point v i s a  
L -  

p imary unit, 
Suppose we have N ( F )  = 1 after l iterations. If  each individual step can be performed 

in constant time and co divides r ki times in iteration i, then the total number of  operations 
required is O(l + kl + . . .  + kt). Let BOO < 1 be a bound on N ( r ) / N ( / 3  ~) given by the 
Euclidean division algorithm. Then N(/3') is reduced by a ~ B(~) factor o~ ~ in each iteration, so 

~'1 +-.-+k! 
I iterations reduce N(/3') by a factor of  at least ~---~Er--. It follows that the overall complexity 

( ~ogN~) _'~ of the algorithm is O k Jog m~,I~.mz)-~l]" Furthermore, the norms of all inputs are bounded 

by max log{N(u),  N(/3)}. 
Our Euclidean division algorithm is based on ideas of  Lenstra [7] and is outlined as 

follows. Define the bilinear form # on F by # (x )  = Tr(x2) = ~)__-11 Io'i(x)] 2 for x E F. 
The fundamental domain D with respect to R is D = {z 6 F I /x(z) _< tx(z - u) for all 

u c R}. Then it can be shown that F = D + R. Lenstra proves in [7] that #(z)  < x~-i 
- -  12 

for all z 6 D. The arithmetic-geometric mean inequality implies N(x)  2 < for 

x 6 F. Hence if for any x 6 F we can find a representation x = z + y where z E D and 

3' c R, then U ( x  - y) <_ B()O, where B()Q = ( - ~ )  ~ , This gives the following bounds 
B(~,) on N ( x  - y): 

)~ 2 3 5 7 11 

l 1 1 8 1 
B ( k )  ~ 5 4 27 

For comparison, a Euclidean division method due to Uspensky ([14], see also Landau [6], 

pp. 228-231) for )v = 5 gives a bound of ( ~ ) 2  on N ( x  - y). Kummer 's  bound ([5], pp. 87-  

91, for details see Lenstra [8]) of  (7712 is slightly better. Williams [16] gives a bound ~801 
19 11 of  �88 for ~ = 3, which can be improved to ~ and ~ ,  using Uspensky's  and Kummer 's  

techniques, respectively. Moreover, none of the classical methods provide bounds for the 
cases ,k = 7 and 11. 

Unfortunately, this technique does not yield a tight bound (BOO < 1) for the case 
,~ = 11. Note that B()~) - l  < )~ for all ~, so this bound yields a running time proportional 

to (log N(/3)) (z@ log 12 ~-1 for the residue symbol algorithm, where the proportionality ~.+1 / 
factor does not depend on )~. 

Now let x q F. The above observations show that computing y ~ R such that x - y ~ D 
,k-I 

is sufficient for Euclidean division, since N ( x  - y) < (z+_!)-T < 1 for ,~ < 7 (and = 1 
for )~ = 11). The following Lemma shows that in order to achieve x - y ~ D, it suffices to 
minimize # ( x  - y). 
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LEMMA 5.1 Let  x ~ F and let y ~ R such that lz(x - y)  is minimal. Then x - y E D. 

P r o o f  We need to show tha t / z (x  - y)  < / z ( x  - y - u) for all u ~ R. Let u 6 R and let 
v = y + u ~ R. Since # ( x  - y)  is minimal ,  we have/~(x  - y)  < # ( x  - v) = / z ( x  - y - u). 

For  reasons of  symmetry,  we will represent  field e lements  as l inear  combina t ions  of  all L 

roots of  uni ty  1, ( ,  . . . .  ( ~- 1 (note that this representation is not  un ique  since" ~i=o~- l ( i  = 0). 
~.-1 Let  x E F and let y ~ R be such tha t /z (x  - y) is minimal .  Let  z = x - y = )-~i=o z i (  ~i 

where zo < "" �9 < zx-1. Then  it is easy to show that z z - i  - z0 < 1. For  if  we assume that 
zx- i  - zo > 1 and set y '  = y - (~o + (~ ,  ~ R, z' = z + (uo _ ( , ,  = x - y '  (i.e. we add 

1 to the smallest  coefficient and subtract 1 f rom the largest coefficient of  z), then a short 

calculat ion shows # ( z )  > / z ( z ' ) ,  contradict ing the min imal i ty  of /z (z ) .  Now we will  show 

that there are only ~. possible candidates for y, all of  which can be easily computed  from x. 

; ~ - 1  . t 1 . 2  l THEOREM 5.2 Let  x = ~ i = 0  x i ( '  E F , z  i = xi - LxiJ f o r  0 < i < L - Le t  zi = zul 

where  0 < Zo < _ ' "  < zz-1 < 1. Set z (~ = ~ i L ~  z l (  i = ~-~i~=-~ z i (  ~', z (y) = z (y-l) q- (~J 
f o r  1 <_ j < L - 1. I f  y E R is such that tz(x  - y)  is minimal, then x - y = z(k) f o r  some 

k E { 0  . . . . .  L - l } .  

~,-1 
P r o o f  Let y ~ R be such tha t /z (w)  is min imal  where to = x - y. Set u = ~ i = o  LxiJ( i ~ 

R, t h e n x  = u + z  (~ = y + w ,  so t o - z  (~ E R. Hence  if to = )-~i~=~wi( r e , t h e n  

tOi - -  Zi = n i  E Z for all i ~ {0 . . . . .  L - 1}. If zi = zj and ni < ny for some i < j ,  then 
swap i and j to obta in  ni > nj .  This does not  violate the order of  the zu (0 < v < L - 1). 

Let  0 <__ i < j ___ L - 1. Then  0 < zj - zi < 1, hence tOi - tOj <_ nj - ni < 1 + wl - w j .  

Now since/z( tO)  is min imal ,  we mus t  have ItOi - wj[ _< 1, so - 1  < ny - n i  < 2 or 
nj - -  n i E { - -  1, 0 ,  1 }. Suppose nj > ni, then n) - n i = 1 and zi < zj by our r enumber ing  of  
the zv, hence toy = ny + z j  > n i +  1 +z i  = toi + 1 in contradict ion to I t o i -  toy I -< I. Therefore 

nj < ni.  It  follows that ny - ni E {0, - 1 }  and 0 > n~ - no > . . .  > n~_~ - no >_ - 1 .  

Define k such that n i  - -  no  -~- 0 f o r  i < k and ni  - -  no  = - - 1  f o r  i >__ k. Then  wi = zl + no 

f o r i  < k a n d t O i = z i + n o - l f o r i  >_k. Hence  

tO 

k - I  L-1 k-1  ~,-1 

= ~ ( Z i - b  no)(  m + ~ ( Z i  + n o -  1)( t z ' =  ~--~(Zi q- 1)(tz' q - ~ Zi( •i 
i=0 i=k i----0 i=k 

L-1 

+ (no - 1) Z ( "  
i=0 

k -1  

= Z(~ + Z ( m  = z(k). 
i=0 

COROLLARY Z (k) E D f o r  some k, 0 < k < L - 1. �9 

The previous theorem and its corollary give rise to the fol lowing Eucl idean  divis ion 
algorithm. 
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Algori thm 5.1. Given x = ~ i = 0  x i ( '  c F, find y 6 R such that x - y 6 D. 

1. For 0 < i < ~. - 1 set Yi = [xiJ and z~ = xi - Yi. Set z = ~iL-~ zi~ i, Y = ~iz=-~ Yi~ i. 

2. Sort the zil in non-descending order, i.e. let zi = z~; and 0 . . . .  < z0 < zl < �9 �9 < zz- t .  

3. While Iz(z) > ~ 2 1 d o  

Set 3' +- Y - ~ uo, z +-- z + ~ tlo. 

Sort the zi in non-descending order, i.e. set 

t = Z0, Z0 ~--- Z t ,  �9 . . ,  Z,~-2 = Z Z - I ,  ZZ-1 ~--- t -]- 1. 

Clearly y 6 R in each step. By Theorem 5.2, the algorithm terminates after at most X 
iterations of  step 3, after which we will have added x-1 ~.i ~ i = 0  = 0 to the value of z in step 1. 
Hence this algorithm produces 3' e R such that N ( x  - y) < 1 using O(~.) arithmetic 
operations. 

-~ = • where Now let or,/3 6 R,/3 :~ 0. Then we apply Algorithm 5.1 to x = ~ N(~i ' 

V = O~r2 (/3)..  �9 ~rX- 1 (/3) 6 R. If  y = ~)-11 ci r i, then the values yi and zi in Algorithm 5.1 
ri ___ i < )~ -- 1). In each are given by ci = y iN( f l )  -k- ri, 0 < Yi < N( f l ) ,  and zi = N~) (1 

iteration, we subtract 1 from the coefficient 3% of ~t~0 in y and add N ( f l ) t o  the coefficient 

of  ~-t~0 in v ' z - I  r ~-i (initially, Y0 = r0 0). Hence 0 < r i < 2N(/3) (1 < i < X 1) ruo Z . - - ~ i  = 1 i b  ~ _ - -  

throughout the algorithm. The largest input is either bounded by 2N(/3) or it is the largest 
coefficient in absolute value of  y. 

For computing the residue s y m b o l / ~ I ,  recall that Euclidean division was used in each 
i .  - - . . i  

iteration to compute q, r 6 R such that o~ = r/3 + r, N ( r )  < N(b ) .  Then we wrote 
r = ewkT, where ~ is a unit and ?' is primary. If the coefficients of  e -1 and co -k are small 
(this is the case for ~. < 5), then our previous analysis shows that the space required in 
each iteration (except the very first one) of  the residue symbol algorithm is no larger than 
O(X log N (/3)). 

For the cryptosystem, the overall time and space complexity is O(log N)  for the modular 

exponentiation plus the complexity of  computing [~-~ ]. 

Since the set of  all T 6 Z such that 0 < T < N, g c d ( T , N ) =  1, and [_Zff] = l i s a  

multiplicative subgroup of ( Z / N Z ) * ,  Bach's Theorem [1] implies that we can find a value 
of  S in the public key such that 0 < S < (2(log N)2) z-1. Hence the number of  bits in the 
public key is bounded by (~. - 1 ) log C + 2 log N + (~ - 1) O (log log N),  where C is an upper 
bound on the absolute value of the largest coefficient of  jrCr. Alternatively, the key could 
be given as {r, S, N ,  e}, requiring space 31ogN + (~. - 1 )O( log logN) .  In this case, the 
encrypter needs to precompute Jr r This can be achieved by employing techniques similar 
to those used for generating zr and ~ ,  i.e. by either computing gcd(N, ~" - r)  or by finding 
a generator of  the principal ideal given by the Z-basis N, ~" - r, (~" - r)  2 . . . . .  (~" - r)  z-2. 

It should be noted here that it is not known whether there exists an efficient method for 
computing residue symbols without using Euclidean division, nor is it known whether we 
can evaluate residue symbols for ideal denominators. 
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6. The  Cases  ~. = 2, 3, 5 

In the case where ;~ = 2, we have p - q ~ 3(rood4),  Jr = p,  @ = q, r = N - I, and 
the public key is K = {S, N, e}. The residue symbol is the Legendre/Jacobi symbol  and 
Euclidean division reduces to the well-known division with remainder in Z. 

As  mentioned before, a slightly modified version of  the case X = 3 was discussed by 
Wil l iams in [16]. Here p,  q = 4, 7(rood9),  and if z r~  = c1( + c2( 2, then we can set 
r ------ - c l c 2 ( m o d  N),  as this implies r - ( (modzr  ~ ) .  In this case, we can set the key to be 

K = {S, Cl,C2, e}. 
The case ;~ = 5 is the first case in which we have units other than the powers of  ( ,  so 

we will illustrate the technique of evaluating residue symbols in more detail. Here F is a 
X-'4 a ~i quartic field over Q. I f ~  = e__~i=l ig c R and we define 

a = a(ot) = al  - a 2  - a 3  + a 4 ,  

b = b(c~) = al  + a2 + a3 + a4 = - Tr(ot), 

c = c(ot) = al + 2a2 + 3a3 + 4a4 = Tr ( ~ ) + 5a,, 

d = d(c0  = a~ - 2a2 + 2a3 - a4, 

then a ,  b, c, d r Z and ~ is primary if and only if  b ~ 0(rood 5) and a - c ~ 0(rood 5), so 
this yields a practical test for a number to be primary. 

The fundamental unit in F is 0 = _ ( ( 2  § (3),  i.e. every unit e c F can be written as 

:L(Jr/k where 0 < j < 4 and k c Z. If  we choose ( = exp ( ~ ) ,  then 0 = L ~ .  In 
the quintic case, Kummer 's  law of  reciprocity and complementaries (explicitly stated by 
Wil l iams [17]) are as follows. 

LEMMA 6.1 Let rr, ~ be primary primes. Then 

a) = , b) T = 1 '  c) = r  

Furthermore, i f  zr = y~4=1 air i, b = E ~ - t  ai , and b* c Z is such that bb* =- t (mod5) ,  

then 

~-~ , : ~ + 3 - - ' T ' - .  

All  properties of  this lemma can be shown to hold for composite primary denominators as 
well. It is easy to find primary associates as follows. 

LEMMA 6.2 Let ot E R be such that Tr(ot) ~ 0(mod 5). Then ot has a primary associate o f  
the.form ~' = r J rl%t where 0 <_ j ,  k < 4. 

Proof  Let t~ = ~ i41  ai(  i and let b = b ( ~ ) , c  = c(c0. Then b ~ 0(rood5).  Now 

~--- ~/4=1 ai(1 -- co) i -~ ~ = 1  ai(1 -- ico) ---- b - cog(modm2), so ot(J --  or(1 - co)J _-- 
c~(1 - j w )  =- b - (c + jb)m(modco2),  hence b(c~(J) - b ~ 0 (mod5)  and c(o!())  -= 
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c + jb (mod  5) for 0 < j _< 4. Since one o f c  + j b  (0 < j <_ 4) must be divisible by 5, we 
have found an associate a '  of  o~ such that b(a ' )  ~ 0(rood 5) and c(a ' )  -- 0(rood 5). 

Assume now b ~ 0(rood5) and c ~- 0(rood5). Let oej = oe/]](0 < j < 4). A 
straightforward calculation yields /]2 = /] + 1, r/3 = 2/] + 1,114 . ~ .  3/] + 2, hence if we 
let n = --y-a-b = --(a2 + a3) , we have a(oto) = a, a(ffl) ---- n, a(~2) = n + a, a(c~3) -= 
2n + a, a(o~4) = 3n + 2a. Furthermore, since/] ~ - 2 ( m o d  co2), it follows that b(aj)  =-- 
( - 2 ) J b  71 0(rood5), c(a]) =_ (-2)Yc _= 0(rood5). 

We need to prove that one of  the ~j is primary, i.e. that a(oq) =- 0(rood5) for some 
j ,  0 < j _< 4. I f a  = 0(rood5), then c~0 is primary and i fn  -= 0(rood 5), then cq is primary. 
So suppose now that an 7~ 0(mod5).  Then i f a  = - n ( m o d 5 ) ,  then a2 is primary, if 
a -= - 2 n ( m o d 5 ) ,  then o13 is primary, and i r a  ~ n(mod5),  then oe4 is primary. The only 
remaining case is a ~ 2n(mod 5), in which case 0 ~ a - 2n -= b(mod 5), a contradiction. 
Hence we have found the required primary associate of  a. II 

We are now ready to present the full algorithm for computing quintic residue symbols. 

Algorithm 6.2. For a, fl 6 R primary, gcd(a, fl) = 1, evaluate [~ ]  = ffs, 0 < s  < 4. 

1. Set s = 0 and compute N(f l ) .  

{Compute g -= ce(modfl), 0 < N(F)  < N(fi)} 

-- a~2(t~)~3(f)~4(~) E F. 2. Compute x -- ? N(t~) 

3. Use Algorithm 5.1 to find y ~ R such that N ( x  - y) < 1/4. 

4. Set y = fl(x - y), then o~ = fly + y and 0 < N(F)  < (1 /4)N(f i ) .  

{Make y primary} 

. 

6. 

Compute b ~ b(fl)(mod 5), b* -= b - l (mod  5), c -= c(fl)(mod25),  d =- d(f l )(mod 5). 

{Factor out ~o} Set i = 0. 

While b(g)  - 0(rood 5) do 

Y 
SetF  +---- ,  i + - - i + 1 .  

o) 

. 

8. 

{Factor out ~ } 

{Factor out/]} 

Set j -= - c ( y ) b * ( y ) ( m o d 5 ) ,  0 _< j < 4. Set y +- yg  j. 

Compute a (y ) (mod5) .  Set k = 0. 

I f  a ( y )  ~ 0(rood 5), then 

a ( v ) - b ( g )  compute n(y)  ~ 2 - - a z ( y )  - a30 ' ) (mod  5). 
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I fO  =-- n(~')(mod5), then setk = 1. 

I f  a(?,) -- -n (y ) (mod5) ,  then setk = 2. 

I f  a ( y )  =-- -2n(y ) (mod  5), then set k = 3. 

I f  a ( y )  -~ n(g)(mod 5), then set k = 4. 

Set y 4- yr/k. 

9. S e t s + - s + i ( 4 b * 5 + 3 N ( ~ ) - + 4 )  

10. Compute N(y) .  

I f  N(~') > 1, then 

N ( ~ )  - 1 4kdb*(mod5) ,  0 < s < 4. 
5 

Set ot 4-/3,/~ <--- y. Goto step 2. 

Recall that once we have N(y)  = 1, then [~]  = 1 as y is primary. For the computation 

of s in step 9, note that i is the power of ~o contained in y, whereas j and k are the powers 
of ~ and t/, respectively, which y needs to be multiplied by to obtain c(?/) -- 0(mod 5) and 
a (y)  - 0(mod 5). Hence we need to add the appropriate multiple of i given by Lemma 6.1 
to s while subtracting the correct multiples of j and k. 

We implemented the case L = 5 on a DECStation 5000. The program was written in the 
language C and employed multiprecise integer arithmetic. On using a 200 digit modulus 
N and exponent e, our cryptosystem required roughly 22 seconds for key generation and 
yielded encryption/decryption rates of 23 chars/sec (~ 183 bits/sec) and 38 chars/sec (~-, 
307 bits/sec), respectively. Note that we expect decryption to be significantly faster than 
encryption, since the encrypter needs to evaluate the residue symbol for each cryptogram. 

The computation of the residue symbol whose numerator and denominator had norms of 
approximately 200 digits required 1.1 to 1.2 seconds of CPU time for both our Euclidean 
division method and the classical algorithms. Finding a prime divisor of a I00 digit rational 
prime took 2.4 to 2.5 CPU seconds, again for all three Euclidean division methods. This 
proves that the performance of the classical algorithms is very similar to that of the algorithm 
given here despite the significantly worse bounds. 

Our scheme is noticeably slower than commercial RSA applications. This is primarily 
due to the residue symbol computation required for encryption. Furthermore, our imple- 
mentation was entirely done in software, whereas many commercial RSA packages use 
hardware for their modular exponentiation. Thus it appears that our cryptosystem, while 
making use of a number of mathematically interesting concepts and algorithms, pays the 
price of loosing some of its practicality in comparison to RSA and the quadratic schemes 
of Rabin and Williams. 
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Notes 

1. In an a•gebraic number•e•d• every integra• ideal a in • has a unique fact•rizati•n int• p•wers •f prime idea•s. 

In general, we can define [ ~ ] ~ = ~ where p is a prime ideal not containing ot andc~ x -= ~k(modp), 0 < 
r r e i 

k < L - 1. Similarly, [~  ] = ]-Ii=] [~Tj ] e ,  where, a = I-Ii=l p i .  

2. For a real number a, [aJ denotes the floor of a, i.e. the integer n such that n _< a < n + 1. 
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