Corrigendum to the proof of Lemma 4.2 of "Ideal arithmetic and infrastructure in purely cubic function fields"

R. Scheidler

Lemma 4.2 Let $\mathfrak{a}=[L(\mathfrak{a}), \mu, \nu]$ be a primitive ideal where $\mu=m_{0}+m_{1} \rho+m_{2} \omega, \nu=n_{0}+n_{1} \rho+n_{2} \omega$ with $m_{0}, m_{1}, m_{2}, n_{0}, n_{1}, n_{2} \in k[x]$. Then \mathfrak{a} has a triangular basis which can be obtained as follows. Set

$$
s^{\prime \prime}=\operatorname{gcd}\left(m_{2}, n_{2}\right), \quad s^{\prime}=\left(m_{1} n_{2}-n_{1} m_{2}\right) / s^{\prime \prime}, \quad s=L(\mathfrak{a})
$$

and let $a^{\prime}, b^{\prime}, t \in k[x]$ satisfy $a^{\prime} m_{2}+b^{\prime} n_{2}=s^{\prime \prime}$ and $s^{\prime} t \equiv a^{\prime} m_{1}+b^{\prime} n_{1}\left(\bmod s^{\prime \prime}\right)$. Set $a=a^{\prime}-t n_{2} / s^{\prime \prime}$, $b=b^{\prime}+t m_{2} / s^{\prime \prime}$,

$$
u=\frac{m_{0} n_{2}-n_{0} m_{2}}{s^{\prime} s^{\prime \prime}}, \quad v=\frac{a m_{0}+b n_{0}}{s^{\prime \prime}}, \quad w=\frac{a m_{1}+b n_{1}}{s^{\prime \prime}}
$$

Then $\left\{s, s^{\prime}(u+\rho), s^{\prime \prime}(v+w \rho+\omega)\right\}$ is a triangular basis of \mathfrak{a}.
Proof: Let $U=\left(m_{0} n_{2}-n_{0} m_{2}\right) / s^{\prime \prime}, V=a^{\prime} m_{0}+b^{\prime} n_{0}$, and $W=a^{\prime} m_{1}+b^{\prime} n_{1}$. Then $U, V, W \in k[x]$, and if $\alpha=\left(n_{2} \mu-m_{2} \nu\right) / s^{\prime \prime}=U+s^{\prime} \rho$ and $\beta=a^{\prime} \mu+b^{\prime} \nu=V+W \rho+s^{\prime \prime} \omega$, then $\{s, \alpha, \beta\}$ is a basis of \mathfrak{a}.

Since $\alpha \rho, \alpha \omega, \beta \rho, \beta \omega \in \mathfrak{a}$, each of these four elements can be written as a $k[x]$-linear combination of α and β. By considering the coefficient of ω in these linear combinations, we see that $s^{\prime \prime}\left|H s^{\prime}, s^{\prime \prime}\right| U, s^{\prime \prime} \mid W H$, and $s^{\prime \prime} \mid V$. Moreover, by writing $\alpha \rho=A \alpha+B \beta$ with $A, B \in k[x]$ and considering the coefficients of ω and ρ, we obtain $B=H s^{\prime} / s^{\prime \prime}$ and $U=A s^{\prime}+B W=s^{\prime}\left(A+H W / s^{\prime \prime}\right)$. It follows that $s^{\prime} \mid U$, implying $u=U / s^{\prime} \in k[x]$.
We claim that $\operatorname{gcd}\left(s^{\prime}, s^{\prime \prime}\right)=1$. To that end, write $\beta \rho=C \rho+E \omega$ with $C, E \in k[x]$. Considering again the coefficients of ω and ρ in $\beta \rho$ shows that $E=H W / s^{\prime \prime}$ and $V=C s^{\prime}+E W$. Let $d=\operatorname{gcd}\left(s^{\prime}, s^{\prime \prime}\right)$. Then $d\left|s^{\prime}\right| U$ and $d\left|s^{\prime \prime}\right| V$. Furthermore, $N(\mathfrak{a})=s s^{\prime} s^{\prime \prime} \mid L(\mathfrak{a})^{2}=s^{2}$ implies $s^{\prime} s^{\prime \prime} \mid s$, so $d \mid s$. Thus, $\operatorname{gcd}(d, W)=1$ since \mathfrak{a} is primitive. Then $s^{\prime} \mid V-E W$ yields $d \mid E W$, and hence $d \mid E=H W / s^{\prime \prime}$. Then $d^{2}\left|d s^{\prime \prime}\right| H W$, so $d^{2} \mid H$. Since H is squarefree, we must have $d=1$.

It follows that t as defined in the Lemma exists, and $W \equiv s^{\prime} t\left(\bmod s^{\prime \prime}\right)$. Set $\gamma=\beta-t \alpha$. Then $\{s, \alpha, \gamma\}$ is a basis of $\mathfrak{a}, \alpha=s^{\prime}(u+\rho), s^{\prime \prime} \mid \gamma$, and a simple computation shows that $\gamma=s^{\prime \prime}(v+w \rho+\omega)$.

