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Abstract

This paper provides verification procedures for a number of decision problems in quadratic function
fields of odd characteristic, thereby establishing membership of these problems in both NP and co-NP.
The problems include determining the ideal and divisor class numbers of the field, the regulator of the
field (in the real case), a generating system of the ideal class group, a basis of the ideal class group, the
pricipality of an ideal, the equivalence of two ideals, the discrete logarithm of an ideal class with respect
to another ideal class, and the order of a class in the ideal class group. While several of these problems
belong to the aforementioned complexity classes unconditionally, others require a certain assumption to
ensure that the verification procedures can be done in polynomial time; so far, this assumption has only
been verified for fields of high genus.

1 Introduction

A number of invariants of quadratic function fields, such as the ideal and divisor class number and, in the
real case, the regulator, can currently only be determined in exponential or, at best, subexponential time
(see [1, 2, 16]). The same is true for certain computations involving ideals in quadratic function fields, such
as extracting discrete logarithms in the ideal class group and, in the real setting, finding a generator of a
principal ideal. It is therefore natural to pose the following question: Suppose an all-knowing entity (or
number theorist) provides a candidate for one of these quantities, how difficult is it to verify the correctness
(or falseness if the number theorist is mean-spirited) of this answer? A number of analogous problems in
quadratic number fields have previously been shown to belong to both the complexity classes NP and co-NP
under the assumption of the extended Riemann hypothesis ([5, 6, 9]).

We investigate the following nine decision problems in quadratic function fields:

(P) Is a given ideal principal?
(E) Are two given ideals equivalent (i.e. do they belong to the same ideal class)?
(DL) Given two ideal classes [a] and [b], is there a “discrete logarithm” l ∈ N0 such that [a]l = [b]?
(O) Given l ∈ N0 and an ideal class [a], is l the order of [a]?
(R) Is R ∈ N the regulator of the field (for real fields only)?
(IC) Is h′ ∈ N the ideal class number of the field?
(DC) Is h ∈ N the divisor class number of the field?
(G) Does a given set of ideal classes generate the ideal class group?
(B) Does a given set of ideal classes form a basis of the ideal class group?

In imaginary quadratic function fields, the unique identification of an ideal class by its reduced representative
trivially implies that (P), (E) ∈ P, DL ∈ NP, and (O) ∈ NP ∩ co-NP. In [13], it was shown that (P), (E),
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(DL) ∈ NP in the real setting. We will establish that (R) ∈ NP ∩ co-NP and, for a certain infinite class of
quadratic function fields, that (P), (E) ∈ co-NP and (O) in NP ∩ co-NP in the real case. In addition, for
these fields (both real and imaginary), we show that (DL) ∈ co-NP and (DC), (IC), (G), (B) ∈ NP ∩ co-NP.
The conditional results require that a generating system of polynomial size for the ideal class group of the
field be known. For quadratic number fields, such a generating system is given by all the non-inert prime
ideals whose norm is bounded by 12(logD)2 (see [4]), provided the extended Riemann hypothesis holds. In
the function field case, an analogous generating system is available, but it is proven to be of polynomial size
only in fields of very large genus.

In the next section, we reiterate some basics about quadratic function fields. Section 3 establishes some
required facts about lattices and finite Abelian groups. Our complexity results are given in Section 4. All
our conclusions are summarized in Tables 1 and 2 at the end of the paper.

2 Quadratic Function Fields

For an introduction to algebraic function fields, we refer the reader to [18]. Quadratic function fields are
discussed in considerable detail in [3, 15, 17]. Let k = Fq be a finite field of odd characteristic with q elements
and let x be an element that is transcendental over k. Denote by k(x) and k[x], respectively, the rational
function field and the ring of polynomials over k in the indeterminate x. For ease of notation, we omit the
variable x in rational functions and polynomials, writing F = F (x). For F = G/H ∈ k(x) with G,H ∈ k[x]
and H 6= 0, set degF = degG − degH and |F | = qdegF where deg f denotes the degree of a polynomial
f ∈ k[x].

A quadratic function field is a quadratic extension K of k(x), i.e. K = k(x, ρ) = {A + Bρ | A,B ∈ k(x)}
where ρ2 = D with D ∈ k[x] squarefree. K is (a) real (quadratic function field) if degD is even and the
leading coefficient sgnD of D is a square in k. K is (an) imaginary (quadratic function field) otherwise; that
is, K is imaginary if degD is odd or degD is even and sgnD is not a square in k. In the latter case, K is
real quadratic over a quadratic extension of k (i.e. over Fq2), so we will henceforth exclude this case.If g ∈ N
denotes the genus of K, then degD = 2g + 2 if K is real and degD = 2g + 1 if K is imaginary. While a
quadratic number field Q(

√
D) is either real (D > 0) or imaginary (D < 0), a quadratic function field K can

have both a real and an imaginary representation over the same field of rational functions k(x), depending
only on the plane curve defining K; in fact, a real representation is always possible, but not every quadratic
function field has an imaginary representation. In the real case (with a choice of ρ fixed), deg ρ = g + 1 is
a positive integer, so the notions of degree and absolute value naturally generalize to elements in K. For
α = A+Bρ ∈ K, the conjugate of α is α = A−Bρ ∈ K and the norm of α is N(α) = αα = A2 −B2D.

The algebraic closure of k[x] in K is O = k[x, ρ] = {A+Bρ | A,B ∈ k[x]}. The units (divisors of 1) in O form
a group O∗. If K is imaginary, then O∗ = k∗, the set of nonzero constants; however, if K is real, then O∗/k∗

is an infinite cyclic group. In this case, a generator of O∗ is a fundamental unit of K. If η is a fundamental
unit of positive degree (unique up to nonzero constant factors), then the integer R = deg η ≥ g + 1 is the
regulator of K. If K is imaginary, we set R = 1.

Every nonzero ideal in O is a k[x]-module of rank 2 with a unique standard basis {SQ, S(P + ρ)} where
S,Q, P ∈ k[x], SQ 6= 0, S and Q are monic, Q divides D − P 2, and |P | < |Q|. Henceforth, all ideals are
assumed to be nonzero (so the term “ideal” will always be synonymous with “nonzero ideal”) and given
in this standard representation; write a = S(Q,P ). An ideal a is primitive if S = 1, and a primitive ideal
a = (Q,P ) is reduced if degQ ≤ g, or equivalently, |Q| < |D|1/2. The norm of a is N(a) = S2Q ∈ k[x] and
the absolute norm is |N(a)|. The conjugate ideal of an ideal a = S(Q,P ) is the ideal a = S(Q,−P ); we have
aa = (N(a)) is a principal ideal with generator N(a). If K is real, then every nonzero principal ideal a in
O has a small generator, i.e. a generator α with 0 ≤ degα < R. α is unique up to nonzero constant factors
and is always assumed to be given in compact representation (see [13]).

A fractional (O-)ideal a is a subset of K such that Ga = {Gα | α ∈ a} is an ideal for some nonzero G ∈ k[x];
if G = 1 satisfies this condition, we often omit the attribute “fractional”. Let I be the infinite Abelian group
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of fractional ideals under ideal multiplication with identity O, and denote by H the infinite subgroup of I of
fractional principal ideals. Then the factor group C = I/H is the ideal class group of K; its order h′ = #C
is finite and is the ideal class number of K. Two fractional ideals are equivalent if they belong to the same
coset of C, i.e. differ by a factor that is a principal fractional ideal. If K is imaginary, then each coset of C
has a unique reduced representative; however, if K is real, then there can be as many as Ω(qg) (but always
finitely many) reduced representatives in each ideal class.

For K any quadratic function field, let D denote the group of divisors of K/k, D0 the subgroup of D of
divisors of degree 0, and P the subgroup of D0 of principal divisors. The factor group Z = D0/P is the zero
class group of K; it is isomorphic to the group of k-rational points on the Jacobian of K. Its order h = #Z
is finite and is the (divisor) class number of K. We have h = Rh′; in fact, if K is imaginary, then Z is
isomorphic to the ideal class group C of K, so h = h′ and the problems (DC) and (IC) defined in Section
1 are identical. From the Hasse-Weil bound (see Theorems V.1.15, p. 166, and V.2.1, p. 169, of [18]), it is
easy to infer that h = O(|D|1/2); more exactly

(
√
q − 1)2g ≤ h ≤ (

√
q + 1)2g. (2.1)

3 Properties of Lattices and Finite Groups

In this section, we summarize some well-known results about lattices and finite Abelian groups. These ideas
underly the index calculus techniques used on a variety of problems in computational number theory, such as
factoring integers, extracting discrete logarithms over finite fields, and computing class groups of quadratic
number fields. We will make use of them here for the purpose of verifying invariants of quadratic function
fields.

Let m,n ∈ N with m ≤ n. A matrix H = (hij) ∈ Matm×n(Z) is in Hermite Normal Form (HNF) if hii > 0
for 1 ≤ i ≤ m, 0 ≤ hij < hii for 1 ≤ i < j ≤ m, and hij = 0 otherwise. In particular, H has the following
form:

H =


h11 . . . h1,m−1 h1m 0 . . . 0

...
. . .

...
...

...
...

0 0 hm−1,m−1 hm−1,m 0 . . . 0
0 0 0 hmm 0 . . . 0

 .

Every matrix A = (aij) ∈ Matm×n(Z) of rank m can be converted to a unique matrix in HNF by means of
a sequence of unimodular column transformations. The time required to do this is polynomial in m, n, and
log ||A|| where ||A|| = max{|aij | | 1 ≤ i ≤ m, 1 ≤ j ≤ n} [10].

A nonsingular square matrix S = (sij) ∈ Matm×m(Z) is in Smith Normal Form (SNF) if S = diag(s1, s2, . . . ,
sm) is a diagonal matrix with positive diagonal entries s1, s2, . . . , sm such that si divides si+1 for 1 ≤ i < m.
Every nonsingular matrix A ∈ Matm×m(Z) can be converted to a unique matrix in SNF by means of a
sequence of unimodular row and column transformations. The time required to do this is polynomial in m
and log ||A|| [10].

A lattice Γ is an additive subgroup of Zm. Γ has finite index in Zm if and only if the rank of Γ as a group
is m. In this case, let {x1,x2, . . . ,xm} be a basis of Γ where xj = (x1j , x2j , . . . , xmj) ∈ Zm for 1 ≤ j ≤ m.
The determinant of Γ is det(Γ) = |det(xij)|; it is independent of the basis of Γ. If Γ1 and Γ2 are two lattices
of finite index in Zm so that Γ1 is a sublattice of Γ2, then det(Γ2) divides det(Γ1).

Let G be a finite Abelian group of order l and let {g1, g2, . . . , gm} be a generating system for G, i.e. every
g ∈ G has a (not necessarily unique) representation g = ge11 g

e2
2 · · · gemm with (e1, e2, . . . , em) ∈ Zm. Then the

map
ϕ = ϕ{g1,g2,...,gm} : Zm → G via ϕ(e1, e2, . . . , em) = ge11 g

e2
2 · · · gemm (3.2)

is a surjective group homomorphism whose kernel Γ is a sublattice of Zm. Thus, the factor group Zm/Γ is iso-
morphic to G, so det(Γ) = l. Let {x1,x2, . . . ,xn} be a generating system of Γ where xj = (x1j , x2j , . . . , xmj) ∈
Z
m for 1 ≤ j ≤ n, and let X ∈ Matm×n(Z) be the matrix whose columns are the vectors x1,x2, . . . ,xn (note
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that m ≤ n). If H = (hij) ∈ Matm×n(Z) is the matrix obtained by converting X into HNF, then the columns
of H also form a generating system of Γ; in fact, the first m columns of H form a basis of Γ and we have

l = det(Γ) = |det(hij)1≤i,j≤m| =
m∏
i=1

|hii|,

so l can be found by converting X into HNF. Let S = diag(s1, s2, . . . sm) be the SNF of the submatrix
(hij) ∈ Matm×m(Z). Then Zm/Γ (and hence G) is isomorphic to Z/s1Z× Z/s2Z× · · · × Z/smZ. If t is the
smallest index with st 6= 1, then st, st+1, . . . , sm are the elementary divisors of the finite Abelian group G,
and G has rank m− t+ 1. Thus, g1, g2, . . . , gm is a basis of G if and only if t = 1, i.e. s1 6= 1.

4 Complexity Results

We are now ready to prove our complexity results. Rather than using the terminology of language recognition,
we employ a somewhat less formal model for establishing membership in NP or co-NP of a given problem.
A prover Peggy provides a certificate to a verifier Vic, who subsequently verifies the correctness of this
certificate in time that is polynomial in the length of the inputs given by the question. We let K = k(x, ρ)
be a quadratic function field and O = k[x, ρ] be the algebraic closure of k[x] in K. Any polynomial G ∈ k[x]
is assumed to be given by a list of its coefficients and hence requires Ω(log |G|) bits of storage; in particular,
the field K, represented by q and D, has size Ω(log |D|). The standard basis of an ideal a = S(Q,P ) needs
Ω(log |SQD|) bits and Ω(log |D|) bits if a is reduced. If K is real and α is a small generator of a principal
ideal a, then the compact representation of α is polynomially bounded by the standard representation of
a. Hence, the size of the compact representation of a small generator of a reduced principal ideal (and in
particular, that of a fundamental unit η of positive degree) is polynomially bounded in log |D| (see [13]).

The following ideal computations can be carried out in polynomial time (see [7, 15, 12, 14] for the exact
algorithms). All input and output ideals are assumed to be in standard representation.

1. The product of two ideals.
2. A reduced ideal red(a) equivalent to a given ideal a.
3. A reduced ideal red(a, b) equivalent to the product ideal ab, given two ideals a and b.
4. A reduced ideal red(a, n) equivalent to an, given n ∈ N and an ideal a.
5. The reduced principal ideal bel(l) below l for l ∈ N; that is, the unique reduced principal ideal a = (α)

such that degα ≤ l and l − degα is minimal (real case only).
6. The standard basis of a reduced principal ideal a, given a small generator of a in compact representation

(real case only).

We begin with some unconditional complexity results. We first note that the uniqueness of a reduced
representative in each ideal class (or equivalently, each divisor class) in the imaginary setting immediately
implies (P), (E) ∈ P, DL ∈ NP, and (O) ∈ NP ∩ co-NP. For the last result, we observe that an ideal class [a]
has order l ∈ N if and only if red(a, l) = O and red(a, l/p) 6= O for each prime divisor p of l. For l = 1, the
verification is simply a principality test for red(a). If l > 1, Peggy provides Vic with the prime factorization
of l and a certificate of primality for each prime divisor of l. An analogous technique can be turned into a
test for the regulator R of a real quadratic function field K:

Lemma 4.1 Let K be real and let R̃ ∈ Z, R̃ ≥ 2. Then R̃ = R if and only if R̃ is a multiple of R and
bel(R̃/p) 6= O for every prime divisor p of R̃ with R̃/p > g.

Proof: If R̃ = R, then clearly R divides R̃. Let p be a prime divisor of R̃ as in the Lemma. Then bel(R̃/p) 6= O
follows from the fact that there exists a nontrivial reduced principal ideal with a small generator of degree
g + 1 ≤ R̃/p < R. Conversely, assume R̃ = nR with n ∈ N and bel(R̃/p) 6= O for every prime divisor p of
R̃ with R̃/p > g. Suppose n 6= 1 and let p be a prime divisor of n. Then R divides R̃/p, so bel(R̃/p) = O,
implying R̃/p ≤ g. But then g < R ≤ Rn/p = R̃/p ≤ g, a contradiction. 2
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Corollary 4.2 If K is real, then (R) ∈ NP ∩ co-NP.

Proof: Vic computes the regulator R of K as follows. Peggy provides a fundamental unit η of positive degree
in compact representation and the unique prime factorization of R̃ = deg η with the appropriate verification
information. Vic verifies this prime factorization and checks that the standard representation of the ideal
(η) is (η) = O = (1, 0); this proves that η is a unit, so R divides R̃. By the previous Lemma, R̃ = R if and
only if bel(R̃/p) 6= O for each prime p dividing R̃ with R̃/p > g. 2

For our remaining complexity results, we require the following assumption about the ideal class group C of
K:

(A) A generating system of polynomial size for C is known.

(2.1) implies that the rank of C is O(log |D|), so since each ideal class has a reduced representative, such
a generating system always exists, but there is no easy way to explicitly find one or even verify a given
generating system as such. There is however an infinite number of quadratic function fields for which (A)
holds:

Lemma 4.3 Let

d =
⌈

2 log(4g − 2)
log q

⌉
.

Then the set F consisting of the classes of nonprincipal prime ideals whose absolute norm is at most qd form
a generating system of C. Furthermore, #F < 4dqd.

Proof: Follows from Corollary 1 of [11] and Theorem 5.4.3 and Lemma 6.2.3 of [16]. 2

Corollary 4.4 If q is bounded by a polynomial in g, then assumption (A) holds for K.

Proof: Let F and d be as in the previous Lemma. Since d < (2 log(4g − 2)/ log q)+1, we have qd < (4g−2)2q
which is polynomially bounded in g. Hence, #F is polynomial in g under these bounds. By [3], each
nonprincipal prime ideal p of K has a standard representation p = (Q,P ) where Q is irreducible and
P 2 ≡ D (mod Q). Hence for each p ∈ F , we have |P | < |Q| = |N(p)| ≤ qd. 2

Proposition 4.5 Under assumption (A), (G) ∈ NP.

Proof: Let [a1], [a2], . . . , [am] be a set of ideal classes. Vic wishes to verify that these classes generate
C. Let [b1], [b2], . . . , [bn] be a known generating system of C of polynomial size. Peggy provides a matrix
X = (xij) ∈ Matm×n(Z) where

[bj ] = [a1]x1j [a2]x2j · · · [am]xmj for j = 1, 2, . . . , n (4.3)

and 0 ≤ xij < h′ for 1 ≤ i ≤ m and 1 ≤ j ≤ n. By (2.1), the size of X is O(mn log |D|). For each
j ∈ {1, 2, . . . , n}, Vic computes the following reduced ideals in the order given:

rij = red(ai, xij) for i = 1, 2, . . . ,m,
s1j = r1j , sij = red(si−1,jrij) for i = 2, 3, . . . ,m,
tj = red(smjbj).

Note that for j = 1, 2, . . . , n, smj is a reduced ideal equivalent to a
x1j
1 a

x2j
2 · · · axmjm , so (4.3) holds if and only

if tj is principal. If K is imaginary, Vic verifies that each tj = O; if K is real, then Peggy provides a small
generator θj for each tj . By computing the standard representations (Qj , Pj) of each (θj), Vic can easily
check whether tj = (Qj , Pj) for j = 1, 2, . . . , n, thereby verifying (4.3). 2
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Several of our verification procedures require computations similar to the one in the previous proposition;
in particular, Vic oftentimes needs to establish a reduced ideal as being principal. If K is real, we always
assume that Peggy provides a small generator of the ideal in question.

Proposition 4.6 Under assumption (A), (IC) ∈ NP ∩ co-NP.

Proof: Vic computes the ideal class number h′ of K as follows. Let a1, a2, . . . , am be a polynomial size set
of ideals for which it is known (or has been verified) that their classes generate C. Peggy provides a matrix
X = (xij) ∈ Matm×n(Z) whose columns generate the kernel Γ of the map ϕ : Zm → C of (3.2) with respect
to the given generating system. Here, 0 ≤ xij < h′ (1 ≤ i ≤ m, 1 ≤ j ≤ n) as before. Then a

x1j
1 a

x2j
2 · · · axmjm

is principal for j = 1, 2, . . . , n. Vic computes the ideals rij and sij (1 ≤ i ≤ m, 1 ≤ j ≤ n) as in the previous
proposition and checks that smj is principal for j = 1, 2, . . . , n.

The principality of the ideals sm1, sm2, . . . , smn proves to Vic that the columns of X lie in fact in the kernel
Γ of ϕ, so they generate a sublattice Γ′ of Γ. Let H = (hij) ∈ Matm×n(Z) be the matrix obtained by
converting X to HNF. Then Vic knows that ĥ′ = det(Γ′) = |h11h22 · · ·hmm| is a multiple of h′.

If K is real, Peggy provides the regulator R of K, together with a verification certificate. Vic verifies the
value of the regulator and, for both the real and the imaginary setting, computes the multiple ĥ = Rĥ′ of
h (ĥ = ĥ′ if K is imaginary) as well as a real number t such that t < h < 2t. A suitable value of t is
given in Theorem 6.2.1 of [16] and can be computed in time polynomial in log |D|. Then ĥ = h if and only
if t < ĥ < 2t. This is the case if and only if ĥ′ = h′ (which in turn is the case if and only if the vectors
x1,x2, . . . ,xn generate all of Γ). 2

Corollary 4.7 Under assumption (A), (DC) ∈ NP ∩ co-NP.

Proof: This is clear in the imaginary case. In the real case, simply verify R and h′, then h = Rh′. 2

Proposition 4.8 Under assumption (A), (B) ∈ NP.

Proof: Let a1, a2, . . . , am be a set of ideals. Vic wishes to find out whether the classes containing these ideals
form a basis of C. Peggy provides Vic with information to verify that the classes of a1, a2, . . . , am generate
C. She also supplies the matrix X of the proof of Proposition 4.6. Vic proceeds as in the proof of that
proposition, i.e. he computes the matrix H and the ideal class number h′. Finally, he determines the SNF
S = diag(s1, s2, . . . , sm) of the submatrix (hij)1≤i,j≤m of H. Then the classes containing a1, a2, . . . , am form
a basis of C if and only if s1 6= 1. 2

Proposition 4.9 If K is real, then under assumption (A), (O) ∈ NP ∩ co-NP.

Proof: Let a be an ideal. Vic determines the order of the class [a] in C as follows. Peggy provides a polynomial
size set of ideals a1, a2, . . . , am whose classes form a basis of C. She also gives the order hi of the class of
ai for 1 ≤ i ≤ m and the ideal class number h′. Vic can verify the orders hi by checking that hi > 1,
red(ai, hi) is principal (i = 1, 2, . . . ,m), and h1h2 · · ·hm = h′. Peggy now supplies a vector (e1, e2, . . . , em)
such that the product ae11 ae22 · · · aemm is equivalent to a; Vic checks this by computing ri = red(ai, ei) s1 = r1,
si = red(si−1ri) (2 ≤ i ≤ m), and verifying that red(sma) is principal. Then the order of [a] in C is

lcm
(

h1

gcd(h1, e1)
,

h2

gcd(h2, e2)
, . . . ,

hm
gcd(hm, em)

)
.

2

Corollary 4.10 If K is real, then under assumption (A), (P) ∈ co-NP and (E) ∈ co-NP.

6



Proposition 4.11 Under assumption (A), (B) ∈ co-NP.

Proof: Suppose that Vic wishes to verify that the classes represented by the ideals a1, a2, . . . , am do not
form a basis of C. If these ideal classes are dependent, Peggy provides a vector (e1, e2, . . . , em) such that
ae11 ae22 · · · aemm is principal. Suppose now that the ideal classes are independent. Then they generate a
subgroup of C. Peggy provides the value of h′ and for i = 1, 2, . . . ,m the order hi of the class of ai, together
with certificates to verify the correctness of these values. Then the ideal classes in question do not form a
basis if and only if the product h1h2 · · ·hm is a proper divisor of h′. 2

Proposition 4.12 Under assumption (A), (G) ∈ co-NP.

Proof: Let b1, b2, . . . , bn be ideals. Vic wants to ensure that the classes represented by these ideals do not
generate the ideal class group C. Peggy provides a polynomial size set of ideals a1, a2, . . . , am whose classes
form a basis of C. She also gives the order hi of [ai] for i = 1, 2, . . . ,m and a matrix X = (xij) ∈ Matm×n(Z)
such that [bj ] = [a1]x1j [a2]x2j · · · [am]xmj for 1 ≤ j ≤ n. Now there must exist an index l (which Peggy
provides) such that the class of al is not contained in the subgroup generated by the classes of the bj for
1 ≤ j ≤ n. Consider the system of linear diophantine equations

n∑
j=1

xijyj + hiyn+i = δil (1 ≤ i ≤ m) (4.4)

in the unknowns y1, . . . , yn, yn+1, . . . , yn+m where δil = 1 if i = l and 0 otherwise. (4.4) has an integer
solution if and only if

n∑
j=1

xijyj ≡ δil (mod hi) for i = 1, 2, . . . ,m,

which is the case if and only if

[al] =
m∏
i=1

[ai]δil =
m∏
i=1

[ai]
∑n
j=1 xijyj =

n∏
j=1

m∏
i=1

[ai]xijyj =
n∏
j=1

[bj ]yj ,

contradicting the fact that the class of al is not a combination of the classes of b1, b2, . . . , bn. So Vic simply
needs to verify that (4.4) has no solutions. This can be done in polynomial time using the methods of [8] or
[10]. 2

Finally, to show that DL ∈ co-NP, we make use of the following elementary number theoretic lemma.

Lemma 4.13 Let a, b ∈ Z and m,n ∈ N. Then the system of linear congruences

x ≡ a (mod m) (4.5)
x ≡ b (mod n)

has a solution if and only if d = gcd(m,n) divides a − b. In this case, if z is a solution of (4.5), then all
other solutions of (4.5) are given by the congruence class z + lcm(m,n)Z.

Proof: If z is a solution of (4.5), then z = a+ sm = b + tn for some s, t ∈ Z, so d divides tn− sm = a− b.
Clearly, z+l·lcm(m,n) is a solution of (4.5) for any l ∈ Z. If z̃ is another solution of (4.5), then z ≡ z̃ (mod m)
and z ≡ z̃ (mod n), so lcm(m,n) divides z − z̃.

Conversely, suppose d divides a − b, say a − b = ud with u ∈ Z. Let v, w ∈ Z with d = vm + wn. Set
z = a− uvm, then z ≡ a (mod m) and z ≡ a− ud+ uwn ≡ b− uwn ≡ b (mod n). 2

7



Proposition 4.14 Under Assumption (A), (DL) ∈ co-NP.

Proof: Let a, b be ideals. The question is whether there exists l ∈ N so that al is equivalent to b. Peggy pro-
vides a polynomial size basis [a1], [a2], . . . , [am] of C, together with the orders hi of [ai] (1 ≤ i ≤ m) and vectors
(a1, a2, . . . , am) and (b1, b2, . . . , bm) (0 ≤ ai, bi < hi for i = 1, 2, . . . ,m) such that [a] = [a1]a1 [a2]a2 . . . [am]am
and [b] = [a1]b1 [a2]b2 . . . [am]bm . Now [a]l = [b] for some l ∈ Z if and only if ala1−b1

1 ala2−b2
2 · · · alam−bmm is

principal, or equivalently, lai ≡ bi (mod hi) for i = 1, 2, . . . ,m. A necessary condition for this system of
linear congruences to have a solution l is that di = gcd(ai, hi) divides bi for i = 1, 2, . . . ,m, so failure of
this condition for some i ∈ {1, 2, . . . ,m} finishes the verification. Suppose that di divides bi for all i and set
a′i = ai/di, b′i = bi/di, and h′i = hi/di (1 ≤ i ≤ m). Also, define integers ci via a′ici ≡ b′i (mod h′i). It then
suffices to show that the system of linear congruences

x ≡ ci (mod h′i) (1 ≤ i ≤ m) (4.6)

has no solution. By Lemma 4.13, (4.6) has a solution if and only if for all j ∈ {2, 3, . . . ,m} the following
holds. Suppose inductively that lj−1 is a solution to the first j−1 congruences of (4.6). Then by Lemma 4.13,
the first j congruences of (4.6) have a solution lj if and only if gcd(lcm(h′1, h

′
2, . . . , h

′
j−1), h′j) divides lj−1−cj .

So an index j ∈ {2, 3, . . . ,m} such that this divisibility condition is not satisfied proves the nonexistence of
l. 2

We summarize our results in the two tables below.

Unconditional Complexity Results

Problem Real Fields Imaginary Fields
(P) NP P
(E) NP P
(DL) NP NP
(O) NP ∩ co-NP
(R) NP ∩ co-NP —

Complexity Results Assuming (A)

Problem Real Fields Imaginary Fields
(IC) NP ∩ co-NP NP ∩ co-NP
(DC) NP ∩ co-NP NP ∩ co-NP
(G) NP ∩ co-NP NP ∩ co-NP
(B) NP ∩ co-NP NP ∩ co-NP
(P) NP ∩ co-NP P
(E) NP ∩ co-NP P
(DL) NP ∩ co-NP NP ∩ co-NP
(O) NP ∩ co-NP NP ∩ co-NP

Acknowledgement. The author wishes to thank an anonymous referee for his or her helpful suggestions,
including pointing out an error (and offering a correction) in the proof of Lemma 4.1 as well as providing a
stronger version of Corollary 4.4.
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