
Chapter 4
Construction of All Cubic Fields
of a Fixed Fundamental Discriminant
(Renate Scheidler)

4.1 Introduction

In 1925, Berwick [19] described an approach for generating all cubic fields of a
given discriminant Δ . When Δ is fundamental, Berwick’s observation, expressed
in modern terminology, was that every cubic field of discriminant Δ arises from a
3-virtual unit in the quadratic resolvent field L

′ = Q(
√
Δ ′) of (also fundamental)

discriminant Δ ′ = −3Δ/gcd(3,Δ)2. A 3-virtual unit of L′ is defined to be a gen-
erator of a principal ideal that is the cube of some ideal in the maximal order OL′

of L′. Suppose λ = (G+H
√
Δ ′)/2, with G,H ∈ Z non-zero, is a 3-virtual unit that

is not itself a cube in L
′. Put λ = (G−H

√
Δ ′)/2 and λλ = A3 with A ∈ Z. Then

f (x) = x3 −3Ax+G is the generating polynomial of a cubic field of discriminant Δ
or −27Δ ′, and every cubic field of discriminant Δ arises in this way. Moreover, two
3-virtual units λ1,λ2 ∈ OL′ give rise to the same cubic field up to Q-isomorphism
if and only if λ1/λ2 or λ1/λ 2 is a cube in L

′. In this case, if λi is a generator of
the OL′-ideal a3

i for i = 1,2, then a1 is equivalent to a2 or to a2, i.e., a1 = (α)a2

or a1 = (α)a2 for some non-zero α ∈ L
′. Cubic fields of fundamental discriminant

Δ can therefore be obtained from 3-virtual units in the quadratic resolvent field of
discriminant Δ ′, or more exactly, via the cube roots of ideals belonging to 3-torsion
classes in the class group of L′. Care must be taken that this construction produces
the complete collection of triples of conjugate cubic fields of discriminant Δ , that it
yields each such field exactly once, and that any fields of discriminant −27Δ ′ are
detected and eliminated.

A major problem with Berwick’s approach is that the generating polynomials
thus obtained can have extremely large coefficients, particularly when Δ < 0, in
which case L

′ is a real quadratic field. An ingenious solution to this problem was
devised by Shanks who proposed a 3-virtual unit construction that produces generat-
ing polynomials with remarkably small coefficients. For example, for the 13 triples
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of conjugate cubic fields of discriminant Δ = 44806173, Shanks’ algorithm pro-
duces the following generating polynomials:

f1(x) = x3 −61x2 +697x−330,

f2(x) = x3 −279x2 +441x−170,

f3(x) = x3 −63x2 +423x−8,

f4(x) = x3 −69x2 +435x−216,

f5(x) = x3 −63x2 +603x−494,

f6(x) = x3 −83x2 +297x−54,

f7(x) = x3 −63x2 +837x−494,

f8(x) = x3 −257x2 +477x−216,

f9(x) = x3 −87x2 +273x−36,

f10(x) = x3 −62x2 +546x−261,

f11(x) = x3 −60x2 +660x−97,

f12(x) = x3 −165x2 +273x−90,

f13(x) = x3 −127x2 +185x−62.

(4.1)

In particular, in the computationally more interesting case of negative cubic dis-
criminants, all computations are conducted in the set of reduced ideals in each
3-torsion ideal class of the class group of L

′, known as the infrastructure of the
class. Shanks therefore assigned his algorithm the six-letter FORTRAN designator
CUFFQI, pronounced “cuff-key,” an acronym derived from the phrase Cubic Fields
From Quadratic Infrastructure. Shanks’ work is described in his talks [170, 172]
and in a manuscript [171] dating back to 1987, but was never published.

In his 1990 doctoral dissertation, Fung [77] presented CUFFQI in a computa-
tionally more suitable form and implemented it in FORTRAN on an Amdahl 5870
mainframe computer. Evidence of the efficiency of Fung’s version of CUFFQI is
provided by his impressive (for the late 1980s) computation of all 364 non-conjugate
cubic fields of the 19-digit discriminant Δ = −3161659186633662283 in under 3
CPU minutes. This chapter provides a modern description of the previously unpub-
lished Shanks-Fung CUFFQI algorithm for constructing all cubic fields of a given
fundamental discriminant Δ .

4.2 The Quadratic Fields Associated with a Cubic Field

Let K be a cubic field of discriminant Δ . Recall from §1.6 that there are two fields as-
sociated with K, namely L=Q(

√
Δ) and its dual (or mirror) field L

′ =Q(
√
−3Δ)
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which is the resolvent field of K. If D is the (fundamental) discriminant of L, related
to Δ via (1.68), then the discriminant of L′, termed the dual discriminant, is

D′ =
−3D

gcd(D,3)2 =

{
−3D if 3 � D,

−D/3 if 3 | D,
(4.2)

Note that {D,D′}= {1,−3} if and only if one of L, L′ is Q; otherwise, both L and
L

′ are quadratic extensions of Q.
If Δ is a fundamental discriminant, then D = Δ , and the number of cubic fields

of discriminant D is related to L as follows [95, Satz 7, p. 587]:

Theorem 4.1. Let L be a quadratic field of discriminant D, and r the 3-rank of the
class group of L. Then the number of non-conjugate cubic fields of discriminant D
is (3r −1)/2.

For example, the class group of the real quadratic field L = Q(
√

44806173) has 3-
rank 3, so there are (33 −1)/2 = 13 non-conjugate cubic fields of that discriminant,
generated by the 13 polynomials listed in (4.1). Quer [156] determined that the
class group of L = Q(

√
−3161659186633662283) has 3-rank 6, so there are 364

non-conjugate cubic fields with this discriminant, for which Fung found generating
polynomials in [77].

The 3-ranks of the ideal class groups of L and its dual field L
′ are closely related

through a theorem due to [165]:

Theorem 4.2. Let D and D′ be dual fundamental discriminants with D < 0, and let
r and r′ denote the respective 3-ranks of the ideal class groups of the imaginary
quadratic field L = Q

√
D) and the real quadratic field L

′ = Q(
√

D′). Then r = r′

or r = r′+1.

The first of these two cases is referred to as non-escalatory, whereas the second
case is labelled escalatory [173]. For example, the field L=Q(

√
−14935391) and

its dual L′ = Q(
√

44806173) both have class groups of 3-rank 3 and hence belong
to the non-escalatory case. Larger examples include the escalatory quadratic field

L=Q(
√
−35102371403731)

of 3-rank 5 and the non-escalatory field

L=Q(
√
−250930267537731)

of 3-rank 4; see Section 5.9 of [77]. More recently, Kishi [111] characterized the
escalatory scenario by linking it to the existence of cubic fields with certain prop-
erties and to solutions of norm equations in L. Among other criteria, he proved
that r = r′ + 1 if and only if there does not exist a triple (x,y,z) ∈ Z

3 such that
gcd(x,y) = 1, x2 ≡ 1 or 7 (mod 9), y ≡ 1 (mod 3), z �= 0, and x2−3z2d = 4y3. Here
d > 0 is the square-free part of −D, i.e., d = −D if D ≡ 1 (mod 4) and d = −D

4
otherwise.
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The resolvent field L
′ is further related to the cubic field K through the roots of

a generating polynomial. As seen in §1.4, there exists a generating polynomial of K
of the form

f (x) = x3 −3Ax+G (4.3)

with A,G ∈ Z. The discriminant of f (x) is D f = 27(4A2 −G3). Recall from (1.52)
that the roots βi, i = 0,1,2, of f (x) are given by

βi = η i 3
√
μ+η−i 3

√
ν , i = 0,1,2,

where η is a primitive cube root of unity and μ ,ν are given by (1.51). Put

λ =−ν =
G+

√
G2 −4A3

2
. (4.4)

Then the minimal polynomial of λ over Q is R(x) = x2 −Gx+A3 of discriminant
DR = G2 −4A3 =−D f /27. Since DR/D′ is a square, it follows that λ ∈ L

′, and we
have

βi =−η iκ− A
η iκ

with κ3 = λ , i = 0,1,2 . (4.5)

In this way, every cubic field K, through a generating polynomial of the form (4.3),
defines an element λ in the maximal order OL′ of the resolvent field L of K. Fol-
lowing the terminology of Berwick [19], we call λ a (quadratic) generator of K.
Note that both λ and λ are quadratic generators of each of the three conjugate cubic
fields Q(βi), i = 0,1,2.

We will make use of the following useful auxiliary result. Recall that the Galois
closure of K is obtained by adjoining any of the three roots βi, i = 0,1,2, to L. The
analogous construction over L′ yields three different cubic extensions of L′, and we
have the following field equalities:

Lemma 4.1. Let κ and βi (i = 0,1,2) be given by (4.5). Then L
′(βi) = L

′(η iκ).

Proof. By (4.5), βi ∈Q(η iκ)⊂ L
′(η iκ). For the other inclusion, note that the two

identities (η iκ)2 −βi(η iκ)+A = 0 and (η iκ)3 = λ ∈ L
′ yield

η iκ =
λ +Aβi

β 2
i −A

∈ L
′(βi). 
�

Given a fundamental discriminant D, the CUFFQI algorithm produces all non-
conjugate cubic fields K of discriminant either D or −27D′ from appropriate ele-
ments λ ∈ L

′ via the quadratic generator construction. In this context, it is unneces-
sary to consider the exceptional case {D,D′}= {1,−3}. There are no cubic fields of
discriminant D = −3 or −27D′ = −27; in particular, since L �= Q(

√
−3), we only

need to consider polynomials of the form (4.3) with A �= 0, i.e., fields that are not
pure cubic. There is obviously also no cubic field of discriminant D = 1; however,
there is one cubic field of discriminant −27D′ = 81, namely the cyclic cubic field
generated by f (x) = x3 −3x−1 which is the smallest of the simplest cubic fields.
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In the next section, we will investigate which elements of O′
L′ are quadratic gen-

erators of some cubic field K, and which of these cubic fields have discriminant D.
We restrict to discriminants D with {D,D′} �= {1,−3}.

4.3 From Quadratic Generators in OL′ to Cubic Fields

Let D ∈ Z \ {1,−3} be a fundamental discriminant with dual discriminant D′ as
given in (4.2), and put L′ =Q(

√
D′). Recall from (1.70) that the maximal order O′

L′

of L′ is a Z-module of rank 2 with basis B = {1,ω}, where ω = (s+
√

D′)/2 and
s ∈ {0,1} is the remainder of D′ modulo 4. Hence every element λ ∈ OL′ can be
uniquely expressed in the form

λ =
G+H

√
D′

2
,

where G,H ∈Z, G is even when D′ ≡ 0 (mod 4), and G ≡ H (mod 2) when D′ ≡ 1
(mod 4). To distinguish conjugation in L

′ from conjugation in K, we denote the
conjugate of λ by λ = (G − H

√
D′)/2 ∈ OL′ . Then λ + λ = G ∈ Z and λλ =

(G2 −H2D′)/4 ∈ Z.
Every λ ∈ OL′ defines a cubic polynomial

fλ (x) = x3 −3(λλ )1/3x+(λ +λ ), (4.6)

with real coefficients, where (λλ )1/3 is the unique real cube root of λλ . It is clear
that fλ (x) has integer coefficients if and only if λλ is a cube in Z.

For any λ ∈OL′ , denote by (λ ) = λOL′ the principal OL′-ideal generated by λ .
An element λ ∈ OL′ is said to be a 3-virtual unit if (λ ) = a3 for some non-zero
ideal a of OL′ . Note that λ is a 3-virtual unit if and only if λ is a 3-virtual unit,
since λ is a generator of a3 where a = {α | α ∈ a} is the conjugate ideal of a. For
any OL′-ideal a, we have aa = (N(a)) where N(a) ∈ N is the norm of a, i.e., the
index of a in OL′ as an additive subgroup.

Proposition 4.1. Let λ ∈OL′ be non-zero, and let fλ (x) be defined as in (4.6). Then
the following hold:

1. fλ (x) has integer coefficients if and only if λ is a 3-virtual unit.
2. If λ ∈ OL′ is a 3-virtual unit, then fλ (x) is irreducible over Q if and only if λ

is not a cube in OL′ . In that case, both λ and λ are quadratic generators of the
field K whose generating polynomial is fλ (x).

Proof. If λ is a 3-virtual unit, say (λ ) = a3 for some ideal a of OL′ , then (λλ ) =
(N(a))3, so λλ = ±N(a)3 is a cube in Z. Conversely, by considering the prime
ideal factorization of b = (λ ) in OL′ , one sees that λλ is a cube in Z only when b

is an ideal cube. This proves part 1.



178 4 Construction of All Cubic Fields of a Fixed Fundamental Discriminant (Renate Scheidler)

For part 2, note that the zeros of fλ (x) are β0,β1,β2 as given in (4.5). Now λ
is a cube in OL′ if and only if η iκ ∈ OL′ for some i ∈ {0,1,2}. By Lemma 4.1,
this is the case if and only if βi ∈ L

′, which in turn holds if and only if fλ (x) has a
quadratic factor with rational coefficients.

Finally, if fλ (x) is irreducible over Q, then it is the generating polynomial of a
cubic field K for which λ is a quadratic generator. Since fλ (x) = fλ (x), λ is also
quadratic generator of K. 
�

Corollary 4.1. If fλ (x) is irreducible, then λ /∈ Z.

Proof. If λ ∈ Z, then λ 2 = λλ , which is a cube in Z, forcing λ to be a cube in Z.
By Proposition 4.1, fλ (x) is reducible. 
�

Part 2 of Proposition 4.1 shows that every 3-virtual unit λ ∈ OL′ \ O3
L′ is a

quadratic generator of some cubic field K. More exactly, λ and λ are quadratic gen-
erators of the triple of conjugate cubic fields whose generating polynomial is fλ (x).
This triple of cubic fields can have many quadratic generators; this is made more
precise in the next theorem.

Theorem 4.3. Two 3-virtual units λ1,λ2 ∈ OL′ \ O3
L′ are quadratic generators of

the same triple of conjugate cubic fields if and only if λ1 = α3λ2 or λ1 = α3λ 2 for
some non-zero α ∈ L

′.

Proof. For j = 1,2, write fλ j
(x) = x2 −3A jx+G j, and let β j0,β j1,β j2 be the zeros

of fλ j
(x). By (4.5), β ji = η iκ j +A j/η iκ j for i = 0,1,2 and j = 1,2 where κ3

j = λ j.
Suppose first that Q(β10) = Q(β2i) for some i ∈ {0,1,2}. Then L

′(β10) =
L

′(β2i), and hence L′(κ1) =L
′(η iκ2) by Lemma 4.1. Put E=L

′(η). Then E(κ1) =
E(η iκ2) = E(κ2) is a Kummer extension of E. Standard results on generators of
Kummer extensions (see, for example, Exercise 7 (c), p. 636, of [68]) imply that
λ1 = γ3λ2 or λ1 = γ3λ 2

2 = (γλ2/A2)
3λ 2 for some γ ∈ E.

It remains to show γ3 has a cube root in L
′. To that end, note that [L′(γ) : L′] ≤

[E′ : L′]≤ 2 and γ3 ∈ L
′. So the polynomial x3 − γ3 ∈ L

′[x] is reducible over L′ and
hence must have a root in L

′.
Conversely, suppose that λ1 = α3λ2 or λ1 = α3λ 2 = (αA2)

3/λ2 for some non-
zero α ∈ L

′. Then κ1 = η iακ2 or κ1 = αA2/η iκ2 for some i ∈ {0,1,2}. It follows
that L′(κ1) = L

′(η iκ2). By Lemma 4.1, L′(β10) = L
′(β2i), and hence Q(β10) ⊆

L
′(β2i). Then

6 = [L′(β2i) : Q] = [L′(β2i) : Q(β10)][Q(β10) : Q] = 3[L′(β2i) : Q(β10)],

so [L′(β2i) : Q(β10)] = 2. Since Q(β2i,β10) is a subfield of L
′(β2i) that contains

Q(β10), we have [Q(β2i,β10) : Q(β10)]≤ 2. Now β2i is a root of the cubic equation
fλ2

(x)= 0 over Q(β10), so fλ2
(x) is reducible over Q(β10), but not over Q. It follows

that fλ2
(x) has a root in Q(β10). Thus, β2 j ∈Q(β10) for some j ∈{0,1,2}, and hence

Q(β2 j) = Q(β10). 
�



4.4 From Primitive 3-Torsion Ideals of OL′ to Cubic Fields 179

4.4 From Primitive 3-Torsion Ideals of OL′ to Cubic Fields

Analogous to the terminology of §2.3, an ideal a of OL′ is said to be primitive if
there exists no rational integer k �=±1 such that every element of a is a multiple of
k. It is clear that every ideal of OL′ is equivalent to a primitive ideal. A 3-virtual
unit λ ∈ OL′ is said to be primitive if (λ ) = a3 for some primitive OL′-ideal a.
The following lemma shows that we may restrict our investigation of cubic fields to
primitive 3-virtual units.

Lemma 4.2. Every cubic field with quadratic resolvent field L
′ has a quadratic gen-

erator that is a primitive 3-virtual unit.

Proof. Let K be a cubic field, μ ∈ OL′ a quadratic generator of K, and b the ideal
of OL′ such that b3 = (μ). Then b = (k)a where a is a primitive ideal of OL′ and
k ∈Z. Put λ = μ/k3. Then (λ ) = a3, so λ ∈OL′ , and λ is also a quadratic generator
of K by Theorem 4.3. 
�

The next lemma provides a simple necessary condition on primitive 3-virtual
units. As before, for any N ∈ Z and any rational prime p, let vp(N) denote the exact
power of p dividing N.

Lemma 4.3. Let λ =(G+H
√

D′)/2∈OL′ \O3
L′ be a primitive 3-virtual unit, and a

the ideal of OL′ such that a3 = (λ ). Put A3 = λλ . Then for all primes p ∈ N divid-
ing A, either p � GHD′ or p | D′ and 1 = vp(A) = vp(H)< vp(G).

Proof. Note that aa = (A). Since a is primitive, a is also primitive, so no prime
factor p of A can be inert, as otherwise every element in a or a would be a multiple
of p.

Suppose p splits in OL′ , and let p be a prime ideal above p in OL′ . Then p

divides exactly one of a, a, so p divides exactly one of the principal ideals (λ ),
(λ ). It follows that p does not divide (λ + λ ) = (G); similarly, p does not divide
(λ −λ ) = H

√
D′. Thus, p � GHD′.

Finally, assume that p is ramified in OL′ , and write (p) = p2 where p is a prime
ideal of OL′ . Then p | a, but p2 = (p) � a as a is primitive. Similarly, p | a, p2

� a. It
follows that 2 = vp(A) = 2vp(A), and hence vp(A) = 1.

Now p3 | a3 = (λ ) and p3 | a3 = (λ ), so p3 | (λ+λ ) = (G). It follows that p3 | G2,
and hence vp(G)≥ 2.

Similarly, p3 | (λ −λ )2 = H2D′. We have

G2 −H2D′ = 4A3. (4.7)

Note that p | D′ as p is ramified in OL′ . If p is odd, then vp(D′) = 1, so vp(H2D′)
is odd. Since vp(A) = 1 and vp(G)≥ 2, (4.7) forces vp(H2D′) = 3, so 1 = vp(A) =
vp(H)< vp(G) as asserted.
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For p = 2, we have v2(4A3) = 5 and v2(G2) ≥ 4, so v2(H2D′) ≥ 4 by (4.7).
Since v2(D′) ∈ {2,3}, we have p | H. If v2(G) ≥ 3, then v2(H2D′) = v2(4A3) = 5,
which forces v2(D′) = 3 and v2(H) = 1 as asserted. If v2(G) = 2, then v2(H2D′) =
v2(G2) = 4, in which case v2(D′) = 2 and v2(H) = 1, again as claimed. 
�

In fact, it can be shown that if a as in Lemma 4.3 is primitive, then the elements
A and λ/gcd(G,A) form an OL′-basis of a. For the case when gcd(A,G) = 1, this is
stated in the proof of Theorem 3.3. However, this stronger result is not needed here.

For convenience, we say that a polynomial f (x) = x3 −Ex+G ∈ Z[x] is in stan-
dard form with respect to a prime p if p2

� E or p3
� G. So f (x) is in standard form in

the sense of Section 1.3 if and only if f (x) is in standard form with respect to every
prime p ∈ Z.

Corollary 4.2. Let λ ∈ OL′ \O3
L′ be a primitive 3-virtual unit. Then the following

hold:

1. The polynomial fλ (x) of (4.6) is in standard form with respect to every prime
p �= 3.

2. If the discriminant of the field generated by fλ (x) is divisible by 3, then fλ (x) is
in standard form with respect to 3.

3. If fλ (x) is not in standard form with respect to 3, then the polynomial

gλ (x) = x3 − A
3

x+
G
27

has integer coefficients, is in standard form, and generates the same field as
fλ (x).

Proof. We have fλ (x) = x2 − 3Ax + G where λ + λ = G and λλ = A3. By
Lemma 4.3, vp(3A) ≤ 1 for all rational primes p �= 3, so fλ (x) is in standard
form with respect to every prime p �= 3.

By part 2 of Proposition 4.1, λ is a quadratic generator of some cubic field K.
Since gλ (x) = fλ (3x)/27, it is clear that gλ (x) is also a generating polynomial of K.
If fλ (x) is not in standard form with respect to 3, then gλ (x) has integer coefficients.
In that case, v3(3A) = 2 by Lemma 4.3, and hence v3(A/3) = 0. It follows that gλ (x)
is in standard form (with respect to all primes). Theorem 2.14 now implies that the
discriminant of K is not divisible by 3. 
�

Given a 3-virtual unit λ ∈ OL′ \O3
L′ , it remains to determine the discriminant of

the cubic field generated by fλ (x).

Theorem 4.4. If λ ∈ OL′ \ O3
L′ is a primitive 3-virtual unit, then the polynomial

fλ (x) generates a cubic field K of discriminant D or −27D′.

Proof. Write λ = (G+H
√

D′)/2 with G,H ∈ Z, and put A3 = λλ . Then the dis-
criminant of fλ (x) is
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D fλ = 27(4A3 −G2) =−27H2D′ =

{
(9H)2D if 3 | D′,

(3H)2D if 3 � D′,
(4.8)

where D and D′ are related via (4.2). So the unique quadratic subfield L of the
Galois closure of K has discriminant D. By Theorem 2.16, the discriminant of K is
of the form Δ = D(3mg)2 where m ∈ {0,1,2}, g is square-free, and gcd(g,3D) = 1.
Let p be a prime divisor of Δ . We use Theorem 2.14 to show that vp(Δ) = vp(D) or
vp(Δ) = vp(−27D′).

For p �= 3, we have vp(D) = vp(−27D′), and this quantity is equal to vp(Δ) if
and only if p � g. By way of contradiction, suppose some prime divisor p �= 3 of Δ
divides g. Then vp(Δ) = 2. By Theorem 2.14, 1 ≤ vp(G)≤ vp(3A) or, in the case of

p = 2 only, D fλ /2v2(D fλ ) ≡ 3 (mod 4). The first of these two conditions contradicts
Lemma 4.3. To see that the second condition is also impossible when p = 2, note
that 2 | g and gcd(g,3D) = 1 together imply that D′ is odd. Thus, D′ ≡ 1 (mod 4),
and v2(D fλ ) = 2v2(H) by (4.8). It follows that

D fλ

2v2(D fλ )
=−27D′

(
H

2v2(H)

)2

≡ 1 (mod 4).

Now consider the case when p = 3. Since 3 | Δ , fλ (x) is in standard form with
respect to 3 by Corollary 4.2. As before, Lemma 4.3 precludes 1 ≤ v3(G)< v3(3A)
and thus eliminates the case v3(Δ) = 5. If v3(Δ) is odd, then 3 | D, so either v3(Δ) =
1= v3(D) or v3(Δ)= 3= v3(9D)= v3(−27D′). If v3(Δ) is even, then 3 �D, in which
case v3(Δ) = 4 = v3(81D) = v3(−27D′). This concludes the proof. 
�

We use Theorem 2.14 to distinguish the cubic fields of discriminant D from those
of discriminant −27D′.

Theorem 4.5. Let λ ∈OL′ \O3
L′ be a primitive 3-virtual unit, and let K be the field

generated by fλ (x) = x3 −3Ax+G where λ +λ = G and λλ = A3.

• If fλ (x) is not in standard form with respect to 3, then 3 � D and K has discrim-
inant D.

• If fλ (x) is in standard form with respect to 3 and 3 � D, then K has discrimi-
nant D if and only if A ≡ 1 (mod 3) and G2 ≡ 3A+1 (mod 27).

• If fλ (x) is in standard form with respect to 3 and 3 | D, then K has discrimi-
nant D if and only if one of the following conditions holds:

3 � A and 9 | G or
A �≡ 1 (mod 3) and G2 ≡ 3A+1 (mod 9) or
A ≡ 1 (mod 3) and G2 ≡ 3A+1 (mod 27).

Proof. Let Δ be the discriminant of K. By Theorem 4.4, Δ ∈ {D,−27D′}. Since
v3(−27D′)≥ 2, we have Δ = D if and only if v3(Δ)≤ 1.

By Lemma 4.3, v3(A) ≤ 1, and by Corollary 4.2, fλ (x) is in standard form with
respect to all primes p �= 3. Moreover, if fλ (x) is not in standard form with respect
to 3, then v3(Δ) = 0, and hence v3(D) = 0 by Theorem 2.16. In this case, Δ = D.
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Suppose now that fλ (x) is in standard form. If 3 � D, then Δ = D if and only
if v3(Δ) = 0. Since 3 | 3A, Theorem 2.14 yields that Δ = D if and only if 3A ≡ 3
(mod 9) and G2 ≡ 3A+1 (mod 27). If 3 | D, then Δ = D if and only if v3(Δ) = 1.
Again by Theorem 2.14, Δ = D if and only if

1 = v3(3A)< v3(G) or
3 | 3A, 3A �≡ 3 (mod 9) and G2 ≡ 3A+1 (mod 9) or
3A ≡ 3 (mod 9) and G2 ≡ 3A+1 (mod 27). 
�

Theorem 4.5 is the basis for the following algorithm that converts an input poly-
nomial f (x) = fλ (x) as given in the theorem to standard form if necessary, and
detects whether it generates a field of discriminant D or −27D′.

Algorithm 4.1 (Detecting the Field Discriminant).
Input: An irreducible polynomial g(x) = x3 − 3Ax+G ∈ Z[x] that is in standard
form except possibly with respect to 3 and generates a field K of discriminant D
or −27D′.
Output: A pair ( f (x),HasDiscD) where f (x) is a generating polynomial of K in
standard form and HasDiscD ∈ {0,1} is 1 if K has discriminant D and 0 other-
wise.
Algorithm:

1. Put HasDiscD= 0.
2. If 3 � D and 3 | A and 27 | G, then

a. Replace g(x) by f (x) = x3 − (A/3)x+G/27.
b. Put HasDiscD= 1.

else if 3 | D and either 3 � A and 9 | G or A �≡ 1 (mod 3) and G2 ≡ 43A+ 1
(mod 9), then

c. Put f (x) = g(x).
d. Put HasDiscD= 1.

else if A ≡ 1 (mod 3) and G2 ≡ 3A+1 (mod 27), then
e. Put f (x) = g(x)
f. Put HasDiscD= 1.

3. Return ( f (x),HasDiscD).

By Corollary 4.2, in all three cases in Step 2, the polynomial f (x) has integer co-
efficients, is in standard form, and generates K. Moreover, Theorem 4.5 shows that
the algorithm sets HasDiscD to 1 if and only if K has discriminant D.

We remark that in some cases, it is possible to apply transformations to a cubic
polynomial f (x) = x3 −3Ax+G that decrease the size of the discriminant of f (x).
For example, if A ≡ 1 (mod 3) and G ≡ 3A−1 (mod 27), put

g(x) =
1

27
f (3x+1) = x3 + x2 −Wx+

1
3
(V −W ),

where W = (A − 1)/3 and V = (G − 2)/9. Then W ∈ Z and (V −W )/3 = (G −
3A+ 1)/27 ∈ Z, so g(x) has integer coefficients, and Dg = D f /27. Certain trans-
lations of x by integer values can also reduce the size of the discriminant of D f ;
see [171] and Theorems 5.8.1 and 5.8.2 of [77]. Our aim, however, is to find cubic
polynomials with small coefficients rather than small discriminant.
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4.5 From 3-Torsion Ideal Classes of L′ to Cubic Fields

Proposition 4.1 and Theorem 4.4 established that every primitive 3-virtual unit λ ∈
OL′ \ O3

L′ , along with its conjugate λ , is a quadratic generator of a cubic field K

of discriminant D or −27D′. Let a be the OL′-ideal such that a3 = (λ ), b an ideal
equivalent to a, and α ∈ L

′ with b = (α)a. Then b3 = (α3λ ), so α3λ is also a
quadratic generator of K by Theorem 4.3. It therefore suffices to consider 3-torsion
ideal classes, paired up with their conjugate (i.e., inverse) classes, for the quadratic
generator construction of cubic fields. We will see that each such pair of ideal classes
of order exactly 3 gives rise to precisely one cubic field up to conjugation when
D > 1, and three distinct such fields when D < −3. The principal ideal class of L′

produces no cubic field when D > 1 and one triple of conjugate cubic fields when
D <−3.

To that end, we introduce a map that is defined on triples of conjugate cubic
fields of discriminant D or -27D′ and takes on values consisting of 3-torsion ideal
classes, paired with their inverses. This map bears similarities to the exact sequence
of Theorem 3.3. For brevity, we define the following sets:

• KΔ , the set of triples of conjugate cubic fields {K,K′,K′′} of discriminant Δ ;
• ID′ , the set of pairs {C,C} where C is an ideal class of L′ of order 3.

Our goal is to construct generating polynomials of all elements in KD via the map

Φ : KD ∪K−27D′ −→ ID′ ∪ {[OL′ ], [OL′ ]}
{K,K′,K′′} �−→ {[a], [a]},

(4.9)

where a is a primitive ideal of OL′ such that a3 = (λ ) for some quadratic generator
λ of K.

Proposition 4.2. The map Φ given in (4.9) is well defined.

Proof. Firstly, note that every cubic field K of discriminant D or −27D′ has
quadratic resolvent field L

′ = Q(
√

D′). So any quadratic generator λ of K is an
element of OL′ and generates an ideal of the form a3 where a is an ideal of OL′ .
Moreover, by Lemma 4.2, there exists a quadratic generator λ of K for which a

is primitive. So the pair {[a], [a]} as described above is a valid image of the triple
{K,K′,K′′} under Φ .

To establish that this image is unique, let {[a], [a]} and {[b], [b]} be pairs in
ID′ ∪ {[OL′ ], [OL′ ]} such that a3 = (λ ), b3 = (μ) and both λ and μ are quadratic
generators of the same triple {K,K′,K′′} ∈KD∪K−27D′ . By Theorem 4.3, λ =α3μ
or λ = α3μ for some non-zero α ∈ L

′. It follows that a= (α)b or a= (α)b, so a is
equivalent to b or b. Thus, {[a], [a]}= {[b], [b]}. 
�

We will see that Φ is a bijection onto ID′ when D′ <−3, while Φ is one-to-one
onto the pair {[OL′ ], [OL′ ]} and three-to-one onto ID′ when D′ > 1.

Lemma 4.4. Every element in ID′ has a non-empty pre-image under Φ .
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Proof. Let {C,C} ∈ ID′ . Let a ∈ C be primitive, and let λ be a generator of a3.
Since C is not the principal class, λ is not a cube in OL′ . By part 2 of Proposition 4.1,
fλ (x) is the generating polynomial of cubic field K, for which λ is a quadratic
generator. By Theorem 4.4, the triple {K,K′,K′′} belongs to KD ∪K−27D′ , and
Φ({K,K′,K′′}) = {C,C}. 
�

Note that pre-images of elements in ID′ under Φ may contain more than one
triple of fields. Let a be an ideal of OL′ such that a3 is principal. If a3 has two genera-
tors λ1 and λ2 such that neither λ1/λ2 nor λ1/λ 2 is a cube in L

′, then Φ−1({[a], [a]})
contains at least two elements by Theorem 4.3. To obtain the cardinality of each such
pre-image, we briefly recall the structure of the unit group O∗

L′ of OL′ .
When D′ < 0, the only units of OL′ are roots of unity; these are {±1} and, in the

case when D′ = −4, the additional fourth roots of unity {±i} with i2 = −1. Note
that every unit in L

′ =Q(
√
−4) is a cube as ±i =∓i3. (There are also roots of unity

when D′ =−3, but recall that we disallow this case here.)
When D′ > 1, the unit group O∗

L′ is an infinite group of rank 1 with torsion
part {±1}. We denote by ε = εL′ the fundamental unit of L′, i.e., the unique genera-
tor of the torsion-free part of O∗

L′ that exceeds 1. Then every coset of (L′)∗/O∗
L′ has

a unique normalized representative, i.e., a representative λ with 1 ≤ λ < ε . Since
any two elements of OL′ generate the same OL′-ideal if and only if they differ by a
factor that is a unit, every non-zero principal ideal has a unique normalized genera-
tor.

Theorem 4.6. Let D > 1 be a fundamental discriminant and D′ < −3 its dual dis-
criminant. Then the pair {[OL′ ], [OL′ ]} has no pre-image under Φ , and Φ is a
bijection onto ID′ .

Proof. Let a be a primitive principal ideal of OL′ and α a generator of a. Then
every generator λ of a3 is of the form λ = υ3α3 for some unit υ , and is hence a
cube in OL′ . By part 2 of Proposition 4.1, no triple of fields in KD ∪K−27D′ maps
to {[OL′ ], [OL′ ]} under Φ .

By Lemma 4.4, Φ is surjective onto ID′ . To establish injectivity, let {C,C}∈ ID′ ,
and let {K1,K

′
1,K

′′
1},{K2,K

′
2,K

′′
2} ∈ KD ∪K−27D′ be pre-images of {C,C} under

Φ . Let λ1,λ2 be quadratic generators of K1,K2, respectively, where (λ1) = a3
1 and

λ2 = a3
2 with primitive ideals a1,a2 of OL′ . Then {[a1], [a1]}= {[a2], [a2]}= {C,C},

so a1 is equivalent to a2 or to a2. Thus, there exists a non-zero α ∈ L
′ such that

a1 = (α)a2 or a1 = (α)a2. It follows that (λ1) = (α3λ2) or (λ1) = (α3λ 2), so
λ1 = υ3α3λ2 or λ1 = υ3α3λ 2 for some υ ∈O∗

L′ . By Theorem 4.3, {K1,K
′
1,K

′′
1}=

{K2,K
′
2,K

′′
2}. 
�

Theorem 4.7. Let D < −3 be a fundamental discriminant and D′ > 1 its dual dis-
criminant. Then the pair {[OL′ ], [OL′ ]} has a unique pre-image under Φ , and Φ
is three-to-one onto ID′ , i.e., every element in ID′ has three distinct pre-images
under Φ .
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Proof. The fundamental unit ε of L′ generates the principal ideal OL′ and is not a
cube in OL′ . So by Theorem 4.4, it is a quadratic generator of some cubic field K0

of discriminant D or −27D′. Thus, Φ({K0,K
′
0,K

′′
0}) = {[OL′ ], [OL′ ]}.

To see that {K0,K
′
0,K

′′
0} is the unique pre-image of {[OL′ ], [OL′ ]} under Φ , let

K be another cubic field of discriminant D or −27D′ such that Φ({K,K′,K′′}) =
{[OL′ ], [OL′ ]}. Then there exists a primitive principal ideal b and a generator λ of b3

such that λ is a quadratic generator of K. Let β be a generator of b. Then λ =±εmβ 3

for some m ∈ Z. Write m = 3q+ r with |r| ≤ 1. Then λ = (±εqβ )3εr. Part 2 of
Proposition 4.1 forces r �= 0, and Theorem 4.3 yields {K,K′,K′′} = {K0,K

′
0,K

′′
0}

when r = 1. Finally, ε−1 = ε/εε =±ε . So λ = (±εqβ )3ε when r =−1, in which
case Theorem 4.3 once again establishes that {K,K′,K′′}= {K0,K

′
0,K

′′
0}.

Now let {C,C} ∈ ID′ , so C has order 3. By Proposition 4.4, the pre-image
Φ−1({C,C}) contains some triple {K,K′,K′′} ∈KD∪K−27D′ . Let λ be a quadratic
generator of K. Then (λ ) = a3 for some primitive ideal a that belongs to C or to C.
The elements ε iλ with −1 ≤ i ≤ 1 are all generators of a and are quadratic gener-
ators of three distinct cubic fields Ki, i = −1,0,1, by Theorem 4.3. So the triples
{Ki,K′

i ,K
′′
i }, i =−1,0,1, are three distinct pre-images of {C,C} under Φ .

To see that {C,C} has no other pre-images, let K be another cubic field of dis-
criminant D or −27D′ such that Φ({K,K′,K′′})= {C,C}. Then there exists a prim-
itive ideal b in C or in C, and a generator μ of b3 such that μ is a quadratic gen-
erator of K. Now b is equivalent to a or to a so b = (α)a or b = (α)a for some
non-zero α ∈ L

′. It follows that μ =±εmα3λ or μ =±εmα3λ for some m ∈ Z. In
the first case, K ∈ {Ki,K

′
i,K

′′
i } where i ≡ m (mod 3) with |i| ≤ 1. Otherwise, we

have μ = ±ε−mα3λ , so K ∈ {Ki,K
′
i,K

′′
i } where i ≡ −m (mod 3) with |i| ≤ 1. In

either case, {K,K′,K′′}= {Ki,K
′
i,K

′′
i } for some i ∈ {−1,0,1}. 
�

The proofs of Theorems 4.6 and 4.7 provide a road map for finding generating
polynomials of all cubic fields of discriminant D or −27D′, with D /∈ {1,−3}:

1. Compute primitive representatives a of all ideal classes C with {C,C} ∈ ID′ .
2. If D <−3, compute the fundamental unit ε of L′ and output fε(x).
3. For each a with {[a], [a]} ∈ ID′ , do the following:

a. Compute a generator λ of a3.
b. If D > 1, output fλ (x).
c. If D <−3, output fλ (x), fελ (x), fελ (x).

4.6 Small 3-Virtual Units and Reduced Ideals in OL′

Clearly the method described at the end of the previous section produces all triples
of conjugate cubic fields of discriminant D or −27D′, and finds exactly one generat-
ing polynomial for each such triple. Unfortunately, the quadratic generators obtained
in this way can give rise to generating polynomials with very large coefficients, es-
pecially when D < 0. For example, Step 2 outputs fε(x) = x3 ± 3x+(ε + ε). Let
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R = RL′ = log(ε) be the regulator of L′. Then the analytic class number formula
(see Definition 8.32 and Corollary 8.35.1 of [106]) yields

2Rh = L(1,χD′)
√

D′,

where h is the class number of L′,

L(s,χD′) = ∑
n∈N

χD′(n)
ns

is the Dirichlet L-function of L′, and χD′(n) = (D′/n) is the Kronecker symbol (see
Definition 1.12 of [106]). By the Cohen-Lenstra heuristic [44], the odd part of h is
generally small; e.g., we expect that it is one for approximately 75 percent of all
real quadratic fields. Moreover, under the assumption of the generalized Riemann
hypothesis for L′, we have L(1,χD′)>C/ log log(D′) where C ≈ 0.577 [131]. Thus,
R is frequently of magnitude

√
D′, and since |ε | = |ε−1| is very small, we have

|ε + ε | ≈ ε ≈ exp(
√

D′). So even for discriminants of modest size, the constant
coefficient of fε(x) is far too large to even just write down or store in memory, let
alone be computationally suitable.

In general, (4.6) shows that it is computationally desirable to find 3-virtual
units λ such that both λλ and λ + λ are reasonably small in absolute value. To
that end, an element λ ∈ OL′ is defined to be small if

|λ |< (|D′|/3)3/4 when D′ <−3,

1 < λ < (D′)3/2 , |λλ |< (D′)3/2 when D′ > 1.
(4.10)

Lemma 4.5. Let λ be a small quadratic generator of some cubic field of discrimi-
nant D and fλ (x) = x3 −3Ax+G. Then the following hold:

0 < A < (|D′|/3)1/2 , |G| < 2(|D′|/3)3/4 when D′ <−3,

|A| < (D′)1/2 , |G| < (D′)3/2 when D′ > 1.

Proof. The identity |A|= |λλ |1/3 immediately yields the bounds on |A|.
Write λ = (G+H

√
D′)/2. If D′ < 0, then A3 = |λ |2 > 0, and (4.7) yields

G2 = 4A3 −H2|D′|< 4A3 < 4(|D′|/3)3/2.

Now assume D′ > 1, and note that |λ |= |λλ |/λ < (D′)3/2 by (4.10), so

|G|+ |H|
√

D′ = 2max{|λ |, |λ |}< 2(D′)3/2.

Suppose |G| ≥ (D′)3/2. Then |H|
√

D′|< (D′)3/2 < |G|, so G2−H2D′ > 0 and |H|<
|D′|, which forces |H| ≤ D′ −1. Also, H �= 0 by Corollary 4.1, and hence

4(D′)3/2 > 4|A|3 = G2 −H2D′ > (D′)3 − (D′ −1)2D′ = 2(D′)2 −D′.
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Solving for D′ yields D′ < 5/2+
√

6 < 5, which is impossible for a fundamental
discriminant D′.

Since the construction of small quadratic generators makes extensive use of ideal
arithmetic in OL′ , we briefly summarize some basic results on ideals in OL′ as
described in Sections 4.4–5.3 of Jacobson and Williams Jacobson-Williams [106].

The bounds in (4.10) show that the norm of a principal ideal generated by a small
element cannot be too large. The reduced ideals of OL′ are precisely those ideals
that have small norm. A primitive ideal a of OL′ is said to be reduced if it does not
contain any non-zero element α ∈ a with |α|<N(a) and |α|<N(a); when D′ < 0,
we have |α|= |α|, so these two inequalities condense to one. If a is reduced, then

N(a)<

{√
|D′|/3 when D′ < 0,√
D′ when D′ > 1.

(4.11)

Conversely, if N(a) <
√

|D′|/2, then a is reduced. Every ideal class of L
′ con-

tains at least one reduced ideal and at most finitely many reduced ideals. If D′ < 0,
then every ideal class C contains at most two reduced ideals, and the only scenario
where C contains two distinct reduced ideals is when C has order 2 and the two re-
duced ideals in C are conjugate to each other. When D′ > 1, in general, every ideal
class contains a large number of reduced ideals; this number is bounded below by
2R/ log(D′).

A 3-virtual unit λ ∈ OL′ is said to be reduced if(λ ) = a3 where a is a reduced
ideal. In this case, |λλ | = N(a)3, so by (4.11), λλ satisfies the bounds in (4.10).
When D′ < 0, this shows that every reduced 3-virtual unit is small. When D′ > 1
and ε ≥ (D′)3/2, every non-trivial ideal a3 with a reduced has at most one small
generator; this small generator, if it exists, is the unique normalized generator of a3.
Thus, the way to obtain small 3-virtual units is by way of reduced ideals in every
3-torsion ideal class whose cubes have small generators.

Recall that OL′ = Z⊕Zω where ω = (s+
√

D′)/2 and s ∈ {0,1} is given by
s ≡ D′ (mod 4). Every ideal a of OL′ is a Z-submodule of OL′ . If a is primitive,
then a has rank 2 over Z and a Z-basis of the form {a,b+ω} where a,b ∈ Z and
a divides (b+ω)(b+ω). Here, a is unique up to sign, and b can be chosen so that
|2b+ s| ≤ |a|. We write a = [a,b+ω]. Since aa = (a), we have |a| =N(a). Given
two primitive ideals a1 = [a1,b1 +ω] and a2 = [a2,b2 +ω], integers s,a,b such that
a1a2 = (s)c with c= [a,b+ω] can be efficiently computed.

Let a = [a,b+ω] be a primitive ideal of OL′ , and let a′,b′ ∈ Z be given by the
identity

b′+ω
a′ =

1
b+ω

a −q
,

where

q =

{
[(2b+ s)/2a] when D′ < 0,

�(b+ω)/a� when D′ > 1.
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Here, �r� denotes the largest integer not exceeding r ∈ R, and [r] = �r + 1/2� is
the nearest integer to r. Note that when D′ > 0, q is the first partial quotient and
(b′+ω)/a′ the subsequent complete quotient of the simple continued fraction ex-
pansion of (b+ω)/a as defined in §1.9. We have

b′ = qa−b− s, a′ =− (b′+ω)(b′+ω)

a
,

and [a′,b′+ω] is a primitive ideal that we denote by ρ(a). The ideal ρ(a) is equiv-
alent to a; specifically

ρ(a) = (ψ)a with ψ =
b′+ω

a
∈ L

′.

Repeated application of the ρ-operator, starting with some primitive non-reduced
ideal a = [a,b+ω], produces a reduced ideal equivalent to a; this process is re-
ferred to as reducing a. Here, N(ρ i+1(a)) < N(ρ i(a)) as long as ρ i(a) is not re-
duced. If k is the minimal index i such that N(ρ i+1(a)) ≥ N(ρ i(a)) when D′ < 0
and 0 < N(ρ i(a)) <

√
D′/2 when D′ > 1, then r = ρk(a) is reduced. In the latter

case, we have r= (θ)a where θ ∈ L
′ and N(a)−1 < |θ |< 2; the reduction process

computes both r and θ efficiently and simply entails computing a portion of the
simple continued fraction of (b+ω)/a of appropriate length. For both positive and
negative discriminants, the number k of reduction steps required to obtain r from a

is linear in log(N(a)/
√

|D′|).

Fig. 4.1 The infrastructure of the ideal class of a reduced ideal r. The circumference of the circle
is the regulator of L′. The length of the arc from r to an ideal b = ρ i(r) is given by log(θ) where
b= (θ)r and 1 ≤ θ < ε .
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Assume that D′ > 1 for the remainder of this section. Then continued application
of ρ , starting with r, generates the entire collection of reduced ideals in the class
C = [a], known as the infrastructure of C [168]. Here, ρ i(r) = (ψi)ρ i−1(r) with
ψi > 1, −1 <ψ i < 0, and ψi+1ψi > 2. If n is the number of reduced ideals in C, then
ρn(r) = r and ψ1ψ2 · · ·ψn = ε . Hence, the ρ-orbit of r is cyclic, and cycle of reduced
ideals in the class C= [r] can be considered as a finite set of points on a circle whose
circumference is R, the regulator of L′. The location of an ideal ρ i(r) on this circle
is determined by an arc of length log(ψ1ψ2 · · ·ψi) from r to ρ i(r), as depicted in
Figure 4.1. Note that if b= [a′,b′+ω] �=OL′ is reduced, then the ideal ρ−1(b), i.e.,
the ideal a with ρ(a) = b, is given by a= [a,b+ω] where a=−(b′+ω)(b′+ω)/a′

and b= q′a−b′−t with q′ = �(b′+ω)/a�. The ρ-operator exhibits a symmetry with
respect to conjugation of reduced ideals: if b= ρ(a), then a= ρ(b).

Let R be the regulator of L′, r any reduced ideal of OL′ , and r ∈ [0,R). Then
there exists at a unique reduced ideal a equivalent to r such that if a = (α)r and
ρ(a) = (α ′)r with α,α ′ normalized, then log(α)≤ r < log(α ′). Define the ideal

a[r,r] =

{
a if | log(α)− r| ≤ | log(α ′)− r|,
ρ(a) otherwise.

When r=OL′ , we write a[r] = a[r,OL′ ] for brevity. Thus, a[r] is the reduced princi-
pal ideal for which the logarithm of the normalized generator δ is closest to r. More
generally, a[r,r] can be thought of as the reduced ideal closest to r relative to r; see
Figure 4.2.

Suppose a[r,r] = (β )r with β ∈ {α,α ′}. Since α ′ = ψα with 1 < ψ <
√

D′, we
obtain

2|r− log(β )|< (r− log(α))+(log(α ′)− r) = log(ψ)< log(D′)/2,

and hence |r− log(β )|< log(D′)/4.

Fig. 4.2 The ideal a[r,r] closest to r with respect to r. Note that a[r,r] is slightly closer to r on the
circle that its neighbor ρ(a[r,r]).
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Given r, the ideal a[r] and a good approximation of log(δ ), where δ is the nor-
malized generator of a[r], can be found efficiently using a technique akin to binary
exponentiation (see Algorithm 11.6 of [106]). In general, a[r,r] can be efficiently
computed as follows. First find a[r], along with an approximation of log(δ ), where δ
is the normalized generator of a[r]. Next, obtain the reduction b= (θ)ra[r] of ra[r],
where θ ∈ L

′. Then b = (θδ )r, so an appropriate number of applications of ρ or
ρ−1, starting with b, produces the ideal a[r,r].

The ideals r and a[r] are both reduced and hence have norm less than
√

D′ by
(4.11). So (D′)−1 <N(a[r]r)−1 < |θ |< 2 and | log(δ )− r|< log(D′)/4. It follows
that

−5log(D′)

4
< log(δ |θ |)− r <

log(D′)

4
+ log(2).

Recall that ρ2(a) = (α)a with α > 2 for any reduced ideal a; similarly, ρ−2(a) =
(β )a with 0 < β < 1/2. Hence the number of applications of ρ or ρ−1 to obtain
a[r,r] from b is polynomially bounded in log(D′). In summary, the ideal a[r,r], along
with a good approximation of the normalized element β with a[r,r] = (β )r, can be
found efficiently.

4.7 Computing Ideal Cubes with Small Generators

When D′ < 0, we saw that every reduced 3-virtual unit is small. For the remainder of
this section, we therefore assume that D′ > 1 and solve the problem of finding small
3-virtual units in two stages. First, we compute in each 3-torsion ideal class C of L′

one reduced ideal when C is principal and three reduced ideals when C has order
3 such that the cube of any of these ideals has a small generator. We give explicit
expressions for these small generators. However, the quantities in these formulas are
far too large to be suitable for computation, so we provide a more efficient way of
finding the corresponding small 3-virtual units in the next section.

If R < 3log(D′)/2, then the fundamental unit ε is a small generator of O3
L
=OL′

that is not a cube in OL′ and is hence a small quadratic generator of the triple of
conjugate cubic fields in Φ−1({[OL′ ], [OL′ ]}). In this case, ε can easily be found by
traversing the infrastructure of principal ideals, starting at OL′ , via the ρ-operator.

When R ≥ 3log(D′)/2, we compute an ideal a0 located approximately one third
of the way into the infrastructure cycle of the principal class, close to R/3. We also
determine in any non-principal class of order 3 three reduced ideals a1,a2,a3 that are
separated from each other by a distance of approximately R/3 and thus correspond
to the corners of an equilateral triangle. The cubes of all these ideals have small
generators. The locations of these four ideals in their respective infrastructure cycles
are depicted in Figure 4.3.
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Fig. 4.3 Left: the ideal a0 of Theorem 4.8 is located near R/3, about one third of the way into
the principal infrastructure cycle. Right: the ideals a1,a2,a3 of Theorem 4.9 form an equilateral
triangle inside the infrastructure cycle of r. The location of the corners of this triangle on the circle
is determined by the size of the generator δ of r3.

Theorem 4.8. Let D′ > 1, and assume that R ≥ 3log(D′)/2. Put

a0 = a

[
R
3
+

log(D′)

4

]
, λ0 = α3

0 ε
−1,

where α0 is the normalized generator of a0. Then the following hold:

1. a0 �=OL′ .
2. λ0 is the unique small generator of a3

0 and is hence a small 3-virtual unit.
3. λ0 is a small quadratic generator of the triple of conjugate cubic fields in

Φ−1({[OL′ ], [OL′ ]}).

Proof. Put r = R/3 + log(D′)/4 for brevity. Then r > log(D′)/4 > 0, and R ≥
3log(D′)/2 implies log(D′)/4 ≤ R/6 and hence r ≤ R/2 < R. It follows that the
ideal a0 = a[r] is defined and is distinct from OL′ . Since ε ≥ (D′)3/2, a0 has at most
one small generator.

It is clear that λ0 is a generator of a3
0 that is not a cube in OL′ , and is thus a

quadratic generator of a triple of conjugate cubic fields in Φ−1({[OL′ ], [OL′ ]}). To
see that λ0 is small, note first that |λ0λ 0| =N(a0)

3 < (D′)3/2, since a0 is reduced.
Moreover, | log(α0)− r|< log(D′)/4 yields

− log(D′)

4
< log(α0)− r = log(α0)−

R
3
− log(D′)

4
<

log(D′)

4
.

Hence 0 < 3log(α0)−R < 3log(D′)/2, which in turn yields 1 < λ0 < (D′)3/2. 
�

Theorem 4.9. Let D′ > 1, r a reduced ideal whose class has order 3, and δ a gen-
erator of r3. Put
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k =

⌊
log((D′)3/4/δ )

R

⌋

,

ai = a

[
(i−1− k)R− log(δ )

3
+

log(D′)

4
, r

]
(i = 1,2,3),

λi = α3
i δεk−i+1 (i = 1,2,3),

where αi ∈ L
′ is normalized such that ai = (αi)r. Then the following hold:

1. The element λi is a small generator of a3
i for i = 1,2,3 and is hence a small

3-virtual unit.
2. λ1, λ2, λ3 are small quadratic generators of the three distinct triples of conju-

gate cubic fields in Φ−1({[r], [r]}).

Proof. The definition of k implies that k ≤ log((D′)3/4δ−1)/R < k+1, so

0 ≤ 3log(D′)

4
− (kR+ log(δ ))< R.

For brevity, put

ri =
(i−1− k)R− log(δ )

3
+

log(D′)

4
(i = 1,2,3).

Then 0≤ 3r1 <R< 3r1+R< 2R< 3r1+2R< 3R. Since r3 = r2+R/3= r1+2R/3,
we obtain

0 ≤ r1 <
R
3

≤ r2 <
2R
3

≤ r3 < R.

So the ideals a1, a2, a3 are defined and equivalent to r. It is also clear that λi is a
generator of a3

i for i = 1,2,3. The argument that λi is small proceeds analogous to
the proof of Theorem 4.8: we have | log(αi)− ri|< log(D′)/4 and hence

0 < 3log(αi)− (i−1− k)R+ log(δ )<
3log(D′)

2
,

which in turn implies that 1 < λi < (D′)3/2, for i = 1,2,3. Moreover, no λi is a cube
in L

′ as otherwise ai would be principal, contradicting the fact that ai belongs to
an ideal class of order 3. So each λi is a small quadratic generator of a triple of
conjugate cubic fields in Φ−1({[r], [r]}).

To see that the fields thus obtained are distinct up to Q-isomorphism, it suffices
to show by Theorem 4.3 that none of the quotients λi/λ j and λi/λ j, 1 ≤ i < j ≤ 3,
is a cube in L

′. We have λi/λ j = (αi/α j)
3ε j−i with 0 ≤ j − i ≤ 2, which is a cube

if and only if i = j. If λi/λ j were a cube, then ai would be equivalent to both a j

and a j, which would force the order of [a j] = [r] to be at most 2. 
�

The computation of the ideals ai (0 ≤ i ≤ 3) of Theorems 4.8 and 4.9 requires
knowledge of the regulator R of L′ which can be computed using any of the methods
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discussed in Sections 7.4 and 10.2 of [106]. In addition, the logarithm of a generator
δ of r3 is needed which can be obtained as follows. Reduce the ideal r3 to obtain a
reduced ideal c and an element θ ∈ L

′ such that c = (θ)r3. Put log(δ ) = log(γ)−
log(|θ |) where γ is the normalized generator of c. This process for finding log(δ )
is efficient provided that the logarithm of the normalized generator γ of c is given.
When R is known, this quantity can be obtained using techniques that are similar
to those for computing the regulator; see Section 7.4 and Chapter 13 of [106]. In
practice, sufficiently good approximations of R, log(δ ), and other irrational numbers
involved in the computations need to be used.

A note on the quantity k of Theorem 4.9. Since (D′)−3/2 <N(r)−3 < |θ |< 2 and
1 ≤ γ < ε , we have 1/2 < δ < ε(D′)3/2; in particular, δ need not be normalized.
The definition of k and the bounds on δ imply

εk ≤ (D′)3/4

δ
< εk+1,

1

ε(D′)3/4
<

(D′)3/4

δ
< 2(D′)3/4.

We thus obtain εk < 2(D′)3/4 and εk+2 > ε(D′)3/4/δ > (D′)−3/4. If ε ≥ 2(D′)3/4,
which is almost always the case, then this forces −2 ≤ k ≤ 0. Even when ε <
2(D′)3/4, we still obtain the bounds −3 ≤ k ≤ 1.

In general, ε as well as α0, α1, α2, α3, and δ are far too large to compute the small
3-virtual units λi (0 ≤ i ≤ 3) of Theorems 4.8 and 4.9 using the formulas given in
these theorems. In the next section, so we describe an algorithm for obtaining small
generators of the ideals a0, a1, a2, a3 defined in Theorems 4.8 and 4.9 that avoids
computing these large quantities.

4.8 Computing Small 3-Virtual Units

When D′ < 0, every reduced 3-virtual unit is small. In this case, computing small
3-virtual units is straightforward:

Algorithm 4.2 (Small 3-Virtual Units, D′ <−3).
Input: A reduced OL′-ideal a whose ideal class has order 3.
Output: A small generator λ of a3 that is not a cube in OL′ .
Algorithm:

1. Compute a primitive ideal b and an integer s such that (s)b = a3.
2. Repeatedly apply the ρ-operator, starting with b, to obtain θ ∈L

′ with b= (θ).
3. Output λ = sθ .

To see that this algorithm is correct, note that since OL′ is the only reduced principal
ideal, a3 is equivalent to OL′ . So θ−1 is obtained by reducing the primitive part b of
a3 via repeated application of ρ . Then a3 = (s)b= (sθ), so λ = sθ is a generator of
a3, which is small since a is reduced. Finally, λ is not a cube in OL′ since a is not
principal.
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We now turn to the case D′ > 1. The search for small 3-virtual units makes use
of the following idea. Suppose a = ai for some i ∈ {0,1,2,3} with ai defined in
Theorems 4.8 and 4.9, where we preclude the case R < 3log(D)/2, a0 = OL′ and
λ0 = ε from consideration. Then λ is a small generator of a3, so we can search for λ
in the infrastructure of the class of a and for λ in the infrastructure of [a] = [a2]
simultaneously as follows. Square a and reduce the primitive part of a2 to obtain a
reduced ideal c equivalent to a. Now apply ρ simultaneously to c and c until a or a
is found. The process of traversing one or, in some case, both these infrastructures
produces a small 3-virtual unit.

Algorithm 4.3 (Small 3-Virtual Units, D′ > 1).
Input: An ideal a that is one of the ideals ai defined in Theorems 4.8 and 4.9.
Output: A small generator λ of the cube of the input ideal such that λ is not a cube
in OL′ .
Algorithm:

1. Compute a primitive ideal b and a positive integer s such that (s)b = a2.
2. Repeatedly apply the ρ-operator, starting with b, to obtain a reduced ideal c

and an element γ ∈ L
′ such that c= (γ)b and γ > 0.

3. Put φ = sN(b)γ .
4. Repeatedly apply the ρ-operator simultaneously, starting with c and c, until a

or a is found. In the process, compute elements θ ,ψ ∈ L such that ρk(c) = (θ)c
and ρk(c) = (ψ)c, where k ≥ 0 is the number of applications of ρ .

5. If a was encountered first in Step 4, then
a. if φθ < (D′)3/2, then

i. Put λ = φθ
else

ii. Continue to apply the ρ-operator, starting with ρk(c), until a is found.
In the process, update ψ so that a= (ψ)c.

iii. Put λ = φ |ψ|.
else // a was encountered first in Step 4

b. if φ |ψ|> 1, then
i. Put λ = φ |ψ|

else
ii. Continue to apply the ρ-operator, starting with ρk(c), until a is found.

In the process, update θ so that a= (θ)c.
iii. Put λ = φθ .

6. Output λ

The correctness of this algorithm is established in the next theorem.

Theorem 4.10. If a is the input ideal of Algorithm 4.3, then the output λ is a small
generator of a3 that is not a cube in OL′ .

Proof. Note that c is equivalent to a2 and hence to a since the class of a has order 1
or 3. Similarly, c is equivalent to a. Hence, the quantities θ and ψ computed in
Step 5 satisfy a = (θ)c, a = (ψ)c where either θ = 1 or θ > 1 and −1 ≤ θ < 0;
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similarly, either ψ = 1 or ψ > 1, and −1 ≤ ψ < 0. Moreover, N(b)−1 < γ < 2, so
s2N(b) =N(a)2 and N(a)< (D′)1/2 yield

1 ≤ s < sN(b)γ =
N(a)2γ

s
< 2D′,

and hence 1 < φ < 2D.
Put μ = φθ and ν = φ |ψ|. Then the algorithm outputs either μ or ν . We have

a= (θ)c= (θγ)b and hence

a3 = (s)ba= (sθγN(b)) = (φθ) = (μ).

Similarly, a= (ψ)c= (ψγ)b, so a3 = (s)ba= (sψγN(b)) = (φψ) = (ν). It follows
that Algorithm 4.3 outputs a generator of a3.

We claim that μ or ν is small. To see this, note that φ > 1 and θ ≥ 1 together
imply μ > 1. Suppose μ is not small. Then μ ≥ (D′)3/2. If R ≤ 3log(D′)/2, then this
implies μ ≥ ε . If R > 3log(D′)/2, then we must also have μ ≥ ε , since the unique
normalized generator of a3 is known to be small and can hence not be equal to μ .
Now |ψ| ≤ 1 and φ < 2D′ yield ν ≤ 2D′ < (D′)3/2, so ν �= μ and hence θ �= |ψ|.
By the symmetry property of the ρ-operator with respect to ideal conjugation, we
must have θ = |ψ|ε , and hence μ = νε . Thus, ν < (D′)3/2 and ν = μ/ε > 1, so ν
is small.

Consider the stage when the algorithm reaches Step 5, and suppose first that a
was encountered first in Step 4. If the if clause in Step 5 a is satisfied, then the output
is λ = μ . Since 1 < μ < (D′)3/2 in this case, λ is a small generator. If the if clause
in Step 5 a does not hold, then μ is not small. In his case, the algorithm enters the
else clause in Step 5 a and outputs ν which is small.

Similarly, consider the situation where a was encountered first in Step 4. If the if
portion of Step 5 b is entered, then ν > 1, so ν is small, and the algorithm correctly
outputs ν . If the if part of Step 5 b is bypassed and the else clause holds, then ν < 1
and hence ν is not small. In this case, the algorithm outputs λ = μ which is small.

Finally, we establish that λ is not a cube in OL′ . If a is not principal, then no
generator of a3 is a cube. If a is principal, then R ≥ 3log(D′)/2 by Theorem 4.8. In
this case, λ is the unique small generator of a3 which by Theorem 4.8 is not a cube
in OL′ . 
�

We now investigate the size of the quantities φ ,γ ,θ ,ψ ∈L
′ computed throughout

the algorithm. Each of these quantities is of the form κ = (u+ v
√

D′)2N where
u,v,N ∈ Z and N is the norm of some appropriate ideal. We have |u| ≤ N(|κ |+ |κ|)
and |v| ≤ N(|κ |+ |κ|)/

√
D′, so to ascertain the size of κ , we need to find upper

bounds on |κ |, |κ|, and N.
For κ = φ , we have N = 1, 1 < φ < 2D′, and

|φ |= φ |φ |
φ

< φ |φ |= s2N(b)2γ) = s2N(b)N(c) =N(a)2N(c)< (D′)3/2.
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For κ = γ , we have N =N(b)< D′, N(b)−1 < γ < 2, and

|γ |= |γγ|
γ

< |γγ|N(b) =N(c)< (D′)1/2.

For κ = θ and κ = ψ , we have N =N(c)< (D′)1/2 as well as |θ | ≤ 1 and |ψ| ≤ 1
throughout Steps 4 and 5. Moreover, θ ≥ 2k/2 and ψ ≥ 2k/2 after Step 4. If μ is
small, then θ = μ/φ < μ < (D′)3/2. Moreover, k ≤ 2log2(θ) < 3log(D′), and ψ
is a product of k elements in L

′ that arise from the repeated application of the ρ-
operator. Each of these factors is bounded above by

√
D′. In practice, however, each

factor will be much smaller and is in fact bounded by an integer of the form q+ 1
where q is a partial quotient in the simple continued fraction expansion of a reduced
quadratic irrational. Every such q is expected to be small by Theorem 1.10. Hence
we do not expect ψ to be too large. Similarly, if ν is small, then

ψ =
ψ|ψ|
|ψ| =

N(a)

N(c)

φ
ν
<N(a)φ < 2(D′)3/2.

In this case 2k/2 ≤ ψ < 2(D′)3/2, so k < 3log2(D
′) + 2, and θ is a product of k

elements in L
′ that are again expected to be small. Hence, assuming that θ and ψ do

not contain too many large factors, all integers computed throughout Algorithm 4.3
are polynomially bounded in D′.

4.9 The CUFFQI Algorithm

We now have all the ingredients for computing small generating polynomials of all
cubic fields of a given fundamental discriminant D /∈ {1,−3} up to Q-isomorphism.
Optionally, we can also collect such polynomials for all cubic fields of discrim-
inant −27D′. As always, we begin with the easier case of negative fundamental
discriminants.

Algorithm 4.4 (Complete Collection of Cubic Fields of Discriminant D > 1).
Input: A fundamental discriminant D > 1.
Output: A list KD of generating polynomials in standard form of triples of conju-
gate cubic fields of discriminant D.
(Optional: A list K−27D′ of generating polynomials in standard form of triples of
conjugate cubic fields of discriminant −27D′.)
Algorithm:

1. Put D′ =−3D/gcd(3,D)2.
2. Initialize KD = /0.

(Optional: initialize K−27D′ = /0.)
3. Compute a basis B = {[r1], [r2], . . . , [rr′ ]} of the 3-torsion subgroup of the ideal

class group of L′ =Q(
√

D′), where ri is reduced for 1 ≤ i ≤ r′.
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4. For i = 1 to r′ do
a. Compute a small generator λ of r3 using Algorithm 4.2.
b. Put A = (λλ )1/3 and G = λ +λ .
c. Run Algorithm 4.1 on the input polynomial g(x) = x3 − 3Ax+G to obtain

a pair ( f (x),HasDiscD).
d. If HasDiscD) = 1, then append f (x) to KD.

(Optional: else append f (x) to K−27D′).
5. Return KD. (Optional: return K−27D′ .)

By Theorems 4.4 and 4.6, this algorithm computes a complete list, without dupli-
cates, of generating polynomials of all the triples of conjugate cubic fields of dis-
criminant D or −27D′. The call to Algorithm 4.1 ensures that all these polynomials
are in standard form and are placed in the corrects lists KD and K−27D′ .

The most time-consuming part of this algorithm is Step 3, the computation of
a basis B of 3-torsion ideal classes. Such a basis can be obtained via Sutherland’s
method [182] or by computing the entire ideal class group of L′ using one of the
algorithms discussed in Section 10.4 of [106].

Next, we turn to the case of negative fundamental discriminants.

Algorithm 4.5 (Complete Collection of Cubic Fields of Discriminant D <−3).
Input: A fundamental discriminant D <−3.
Output: A list KD of generating polynomials in standard form of triples of conju-
gate cubic fields of discriminant D.
(Optional: A list K−27D′ of generating polynomials in standard form of triples of
conjugate cubic fields of discriminant −27D′.)
Algorithm:

1. Put D′ =−3D/gcd(3,D)2.
2. Initialize KD = /0.

(Optional: initialize K−27D′ = /0.)
3. Compute the regulator R of L′ =Q(

√
D′).

// Cubic fields arising from the class of principal ideals

4. If R < 3log(D′)/2, then
a. Compute the fundamental unit ε of L′.
b. Put λ0 = ε .

else
c. Compute the ideal a0 of Theorem 4.8.
d. Compute a small generator λ0 of a3 using Algorithm 4.3.

5. Put A0 = (λ0λ 0)
1/3 and G0 = λ0 +λ 0.

6. Run Algorithm 4.1 on the input polynomial g(x) = x3 − 3A0x+G0 to obtain a
pair ( f (x),HasDiscD).

7. If HasDiscD= 1, then append f (x) to KD.
(Optional: else append f (x) to K−27D′).

// Cubic fields arising from the ideal classes of order 3

8. Compute a basis B = {[r1], [r2], . . . , [rr′ ]} of the 3-torsion subgroup of the ideal
class group of L′ =Q(

√
D′), where ri is reduced for 1 ≤ i ≤ r′.
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9. For j = 1 to r′ do
a. Compute the logarithm of a generator δ j of r j.
b. For i = 1,2,3 do

i. Compute the ideal ai of Theorem 4.9 from r= r j and log(δ j).
ii. Compute a small generator λi of a3

i using Algorithm 4.3.
iii. Put Ai = (λiλi)

1/3 and Gi = λi +λ i.
iv. Run Algorithm 4.1 on the input polynomial g(x) = x3 − 3Aix+Gi to

obtain a pair ( f (x),HasDiscD).
v. If HasDiscD) = 1, then append f (x) to KD.

(Optional: else append f (x) to K−27D′).
10. Return KD. (Optional: return K−27D′ .)

Once again, this algorithm outputs a complete list of generating polynomials, each
in standard form, of all the triples of conjugate cubic fields of discriminant D or
−27D′, with no duplicates. The run time of this algorithm is dominated by Steps 3
(computing the regulator), 8 (computing a basis of the 3-torsion subgroup of the
ideal class group of L′), and 9 a (computing the logarithm of a generator of each of
the reduced ideas representing the basis ideal classes).

We conclude this section with a brief note on the restriction to fundamental dis-
criminants, an assumption that is crucial for the CUFFQI algorithm. The construc-
tion of all cubic fields of an arbitrary, not necessarily fundamental discriminant is
significantly more complicated and less efficient. The count for such fields, i.e., a
generalization of Theorem 4.1 (Hasse’s Theorem), was given by Reichardt (Satz 7
of [157]); see also Theorem 1.1 of Mayer [142]. Algorithms for constructing all
cubic fields — and in fact more generally, all fields of prime degree — of a given
discriminant are described in Chapter 5 of [42] and make use of class field theory
and Kummer theory.

4.10 Detecting Escalatory Versus Non-escalatory from CUFFQI

It is interesting to note that for any fixed fundamental discriminant D /∈ {1,−3}, the
CUFFQI construction makes it possible to ascertain whether the field L = Q(

√
D)

falls under the escalatory or non-escalatory scenario. In fact, this is completely de-
termined by the existence or non-existence of cubic fields of discriminant −27D′.
To make this more precise, we use the properties of the map Φ described in The-
orems 4.6 and 4.7 to compute the cardinalities of the domain and range of Φ , and
ultimately, of the set K−27D′ .

To obtain the cardinality |ID′ |, note that the 3-torsion subgroup of the class group
of L′ contains 3r′ elements, where r′ is the 3-rank of the class group. Removing the
principal class and pairing up each 3-torsion class C with its inverse C−1 = C yields
a count of

|ID′ |= 3r′ −1
2

. (4.12)
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By Hasse’s Theorem (Theorem 4.1), we have |KD| = (3r − 1)/2 where r is the 3-
rank of the class group of L.

If D > 1, then Φ : KD ∪K−27D′ → ID′ is a bijection by Theorem 4.6, so

|K−27D′ |= |ID′ |− |KD|=
3r′ −3r

2
.

By Scholz’s Theorem (Theorem 4.2), r = r′ or r = r′ − 1 (note that since D > 0,
the roles of D and D′ in Theorem 4.2 are reversed). In the non-escalatory case,
we have r = r′, so there are no cubic fields of discriminant −27D′, whereas the
escalatory case has r = r′ − 1, and thus there are 3r non-conjugate cubic fields of
discriminant −27D′.

If D < −3, then Φ is three-to-one onto ID′ and one-to-one onto the pair
{[OL′ ], [OL′ ]}, by Theorem 4.7. So

|KD ∪K−27D′ |= 3|ID′ |+1 =
3r′+1 −1

2
,

and hence

|K−27D′ |= 3r′+1 −1
2

−|KD|=
3r′+1 −3r

2
.

In the non-escalatory case, there are 3r non-conjugate cubic fields of discrimi-
nant −27D′, while in the escalatory case, when r = r′+1, there are no cubic fields
of discriminant −27D′.

It is worth noting that a special case of Satz 7 of [157]) yields

|K32mD|=
3r′+s′ −1

2
−|KD|,

where D is a fundamental discriminant, m is as described in Theorem 2.16, and s′ is
the rank of the unit group O∗

L′ , i.e., s′ = 0 when D > 0 and s′ = 1 when D < 0. Ap-

plied to the CUFFQI situation, this yields |K−27D′ | = (3r′+s′ −3r)/2, in agreement
with the counts obtained above.

4.11 Cubic Field Tabulation

Closely related to the construction of all fields of a given discriminant is the problem
of field tabulation; that is, producing a table containing generating polynomials of
all fields of some fixed degree and discriminant Δ where |Δ | ≤ X for some given
bound X ∈N. The naive way to accomplish this is to construct for each discriminant
Δ with 1 < ±Δ ≤ X all fields of the given degree and discriminant Δ . However,
for cubic fields, Belabas [10] presented a far more efficient algorithm based on the
Davenport-Heilbronn correspondence (3.10) and reduction theory of integral binary
cubic forms as described in §3.2 and §3.3. Here, we must point out that the definition
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of the term integral binary cubic form (IBCF) in §1.3 included the requirement of
irreducibility over Z, whereas Belabas considered arbitrary integral homogeneous
polynomials of degree 3 in two variables which need not be irreducible over Z.
Consequently, the definition of a reduced (but not necessarily irreducible) integral
bivariate homogeneous cubic polynomial involves more conditions than those stated
in §3.2 and §3.3.

Let N±(X) denote the number of cubic fields of discriminant Δ with 1<±Δ ≤X .
Then

N±(X) =
C±

12ζ (3)
X +

4
√

C±ζ (1/3)
5Γ (2/3)3ζ (5/3)

X5/6 +O
(

X7/9+ε
)
, (4.13)

as X → ∞, for any ε > 0. Here, C+ = 1, C− = 3, ζ is the Riemann zeta function
and Γ the gamma function. The leading term in (4.13) was established by Daven-
port and Heilbronn [60]; the approximate values of the corresponding constants are
0.0693 for real cubic fields and 3 · 0.0693 ≈ 0.2079 for complex cubic fields. The
secondary term was conjectured by Roberts [159] and implicitly by Datskovsky-
Wright [56], and subsequently proved independently by Taniguchi-Thorne [183]
(with the asymptotic error term above) and by Bhargava-Shankar-Tsimerman [21]
(with an error estimate of O

(
X13/16+ε)).

The count in (4.13) shows that the computational effort of any algorithm for
producing generating polynomials of all N±(X) cubic fields must be at least propor-
tional to X . Belabas’ algorithm achieves this asymptotic run time. For completeness,
we outline his technique here; however, since the method is described in detail in
[10] and Chapter 8 of [42], we merely provide a brief overview.

Let W denote the set of all GL2(Z)-equivalence classes of IBCFs, U ⊂ W the
subset of all classes of IBCFs that are index forms of some cubic field, and K the
set of all triples of conjugate cubic fields. Then the Davenport-Heilbronn corre-
spondence is a bijection ϕ : K → U that maps a triple {K,K′,K′′} of conjugate
cubic fields to the GL2(Z)-equivalence class of an index form C(x,y) for K. Its in-
verse is the map ϕ−1 : U → K that sends the class of an IBCF C(x,y) to the triple
{K,K′,K′′} ∈ K for which C(x,y) is an index form. Thus, this map is precisely the
bijection between Q-isomorphism classes of cubic fields and their reduced index
forms (RIF).

Not every IBCF is the index form of some cubic field. For example, we will see
in Examples 4.1 and 4.2 below that the class of C = (3,91,6,−3) belongs to U ,
while the class of C = (1,90,6,−1) does not. In fact, the proportion of classes in
W of discriminant bounded in absolute value by X that belong to U approaches
π2ζ (3)/6 � 0.5 as X → ∞, so roughly half the classes in W correspond to index
forms for cubic fields.

To describe the set U explicitly, some auxiliary sets need to be defined first. Let

V2 = {[C] ∈ W | disc(C)≡ 1 (mod 4) or disc(C)≡ 8,12 (mod 16)},
Vp = {[C] ∈ W | p2

� disc(C)},
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where p is any odd prime. Note that
⋂

p Vp consists of all classes [C] ∈ W such that
disc(C) is a fundamental discriminant. Now define for any prime p the set Up to
be the collection of all [C] ∈ W such that either [C] ∈ Vp or there exist λ ∈ F

∗
p and

α,β ∈ Fp, not both zero, such that

C(x,y)≡ λ (αx−βy)3 (mod p) and (4.14)

C(β ,α) �≡ 0 (mod p2). (4.15)

The image U of K under the Davenport-Heilbronn map ϕ is U =
⋂

p Up. Belabas
found the following computationally suitable descriptions of the sets Up:

Lemma 4.6. Let C(x,y) = ax3 +bx2y+cxy2 +dy3 ∈ Z[x,y] with gcd(a,b,c,d) = 1.
Let A,B,C be as in (1.40), and let p a prime. Then the following hold:

1. C and p satisfy (4.14) if and only p | gcd(A,B,C).
2. Suppose C and p satisfy (4.14). Then they satisfy (4.15), i.e., [C] ∈ Up, if and

only if the following hold:

a. Case p �= 3: p3
� disc(C);

b. Case p = 3: either v3(ad) = 1 or v3(ad) = 0 and v3(a+ b+ c+ d) ≥ 2
when 3 | a+d, v3(a−b+ c−d)≥ 2 when 3 | a−d.

Belabas also established that every class in U consists of irreducible polynomials
only, and hence of IBCFs in the sense of §1.3. This provides the following algorithm
for membership in U :

Algorithm 4.6 (Membership in U ).
Input: C(x,y) = ax3 +bx2y+ cxy2 +dy3 ∈ Z[x,y] with gcd(a,b,c,d) = 1.
Output: true if [C] ∈ U , false otherwise
Algorithm:

1. Compute A,B,C as defined in (1.40). Put t = B2 −4AC and s = gcd(A,B,C).
2. If [C] /∈ U2 or [C] /∈ U3, return false.
3. If there exists a prime p ≥ 5 with p2 | s, return false.
4. Replace t by t/3s2 and subsequently by t/gcd(t,72). If gcd(s, t) > 1, return
false.

5. If t is square-free, return true, else return false.

Note that t = −3disc(C) in Step 1 by (3.6). Step 2 can easily be verified using
Lemma 4.6. To understand Step 3, note that if p2 | s for some prime p ≥ 5, then
p4 | t, so [C] /∈ Up by Lemma 4.6. In order for −t/3 to be the discriminant of a cubic
field, Theorem 2.16 forces v2(t) ≤ 3, v3(t) ≤ 5 and vp(t) ≤ 2 for all primes p ≥ 5.
The first two of these conditions hold since C passed Step 2; moreover, 3 | s. Putting
t ′ = t/3s2, we see that t ′ is square-free except possibly for powers of 2 and 3, and for
these powers we have v3(t ′) ≤ 3 and v3(t ′) ≤ 2. Dividing t ′ by gcd(t ′,72) removes
all remaining powers of 2 and 3 from t ′, leaving only prime factors p ≥ 5 that do
not divide s (possibly as squares of higher powers). The final test in Step 5 ensures
that t ′ is indeed square-free.
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Example 4.1. Consider the PIBCF

C = (3,91,6,−3).

Its Hessian is Q = (8227,627,855), so we have t = −27743211 and s = 19. Since
t ≡ 1 (mod 4), we see that [C]∈ V2, and since v3(t) = 2, and hence v3(disc(C)) = 1,
we also have [C] ∈ V3. Hence [C] ∈ U2 and [C] ∈ U2. Now t/3s2 = 25617, and
gcd(25617,72) = 8539 which is coprime to 19 and square-free. Hence the class of
C belongs to U .

Example 4.2. Consider the PIBCF

C = (1,90,6,−1).

Its Hessian is Q = (8087,549,306), so we have t = −9590967 ≡ 1 (mod 4) and
s = 9. Since 34 | t, and hence 33 | disc(C), we see that [C] /∈ V3. We have a = 1 and
d =−1, so 3 | a+d. Since v3(1+90+6−1) = v3(6) = 1, Lemma 4.6 establishes
that [C] /∈ U3, and hence [C] /∈ U . This means that there is no cubic field for which
C is an index form.

Given any X ∈ N, Belabas’ algorithm produces a list L of generating polyno-
mials of all cubic fields of discriminant Δ with 0 < Δ ≤ X or 0 > Δ ≥ −X . The
basic idea is to run four nested loops over appropriately bounded integers a,b,c,d.
Each 4-tuple (a,b,c,d) defines an IBCF C. The algorithm begins each loop iteration
by checking whether C is primitive and reduced, i.e., is the unique reduced repre-
sentative of some class in W , and whether the corresponding Hessian has discrim-
inant bounded by −3X in absolute value. If this holds, Algorithm 4.6 is executed
to establish membership in U . If all tests are passed, the algorithm stores the cubic
polynomial C(x,1), along with its discriminant, in L. The potentially costly factor-
izations of s in Step 3 and t in Step 5 of Algorithm 4.6 can be avoided through a
pre-computation, after which square factor testing requires only a small number of
trial divisions and a binary search that can be optimized via hashing; for details,
see [10].

The bounds on the loops for a,b,c arise from the conditions on the coefficients
of a reduced homogeneous cubic polynomial in Z[x,y]. In the case of positive dis-
criminants, they are given by

1 ≤ a ≤ 2X1/4
√

27
, 0 ≤ b ≤ 3a

2
+

√
√

X − 27a2

4
,

b2 −q
3a

≤ c ≤ b−3a,

where q > 0 is the unique real root of f (T ) = 4T 3 − (3a+ 2b)T 2 − 27a2X . For
negative discriminants, the loop bounds are somewhat simpler:

1 ≤ a ≤ 2

(
X
27

)1/4

, 0 ≤ b ≤ 3a
2

+

√√
X
3
− 3a2

4
, 1−b ≤ c ≤ u+

(
X
4a

)1/3

,

where u = b2/3a if a > 2b/3 and u = b−3a/4 otherwise.
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For any triple (a,b,c), the discriminant of C(x,y) = ax3 + bx2y+ cxy2 + dy3 as
given in (1.49) is a quadratic equation in d, yielding the condition 1 < |disc(C)| ≤ X
for looping over d. For positive discriminants, (3.15) yields the additional bounds
|bc−9ad| ≤ b2 −3ac ≤ c2 −3bd.

Belabas computed all cubic fields of discriminants bounded by 1011 in absolute
value; just over 6.7 billion totally real cubic fields and 20 billion complex cubic
fields. These numbers are slightly below the expected counts obtained when con-
sidering only the leading term in (4.13), due to the fact that the secondary term in
(4.13) is negative.

In [12], Belabas described several improvements to his algorithm and provided
a detailed complexity analysis. The algorithm requires O(X) integer operations and
space O(X3/4), and allows for time-memory trade-offs. A variant of the technique,
also described in [12], can be used to find quadratic fields whose class group has
large 3-rank. Firstly, only a check whether a given discriminant is fundamental,
i.e., a test for membership in V , is required. Secondly, instead of writing generating
polynomials to a list, all non-fundamental discriminants are discarded, and a counter
NΔ is attached to each fundamental discriminant Δ that keeps track of the number
of cubic fields of discriminant Δ . By Theorem 4.1, NΔ is of the form (3rΔ − 1)/2
where rΔ is the 3-rank of the class group of the quadratic resolvent field Q(

√
Δ). In

this way, large values of NΔ yield quadratic fields with class groups of large 3-rank.
Belabas’ code for enumerating cubic fields, called cubic, is available for free

download on his research webpage https://www.math.u-bordeaux.fr/∼kbelabas/
research/ under the heading “Software.”

https://www.math.u-bordeaux.fr/~kbelabas/research/
https://www.math.u-bordeaux.fr/~kbelabas/research/



