
Cryptography in Quadratic Function Fields

R. Scheidler∗

Department of Mathematical Sciences
University of Delaware, Newark DE 19716, USA

scheidle@math.udel.edu

Abstract

We describe several cryptographic schemes in quadratic function fields of odd char-
acteristic. In both the real and the imaginary representation of such a field, we present
a Diffie-Hellman-like key exchange protocol as well as a public-key cryptosystem and
a signature scheme of ElGamal type. Several of these schemes are improvements of
systems previously found in the literature, while others are new. All systems are based
on an appropriate discrete logarithm problem. In the imaginary setting, this is the
discrete logarithm problem in the ideal class group of the field, or equivalently, in the
Jacobian of the curve defining the function field. In the real case, the problem in ques-
tion is the task of computing distances in the set of reduced principal ideals, which is a
monoid under a suitable operation. Currently, the best general algorithms for solving
both discrete logarithm problems are exponential (subexponential only in fields of high
genus), resulting in a possibly higher level of security than that of conventional discrete
logarithm based schemes.

1 Introduction

Since the introduction of the well-known Diffie-Hellman key exchange protocol [17], many
cryptographic schemes based on discrete logarithms in a variety of groups and even semi-
groups have been proposed. Among them, the signature scheme due to ElGamal [18], now
the basis of the U.S. Digital Signature Standard [30], is notable. ElGamal also presented a
discrete logarithm based public-key cryptosystem in [18].

Any finite group or semi-group G with an efficient representation of elements, a fast
operation and a sufficiently difficult discrete logarithm problem (DLP) lends itself to the
use of discrete logarithm based cryptography. Diffie and Hellman as well as ElGamal used
G = F

∗
p, the multiplicative group of a finite prime field. Buchmann et al. based a key

∗Research supported by NSF grant DMS-9631647

1

exchange protocol on discrete logarithms in the ideal class group of an imaginary quadratic
number field [11, 10]. The first example of a non-group underlying a discrete logarithm
based system was the set R of reduced principal ideals of a real quadratic number field,
which admits a structure first explored by Shanks [37] and termed infrastructure by him. A
key exchange protocol using elements of R as keys was introduced in [12] and implemented
in [35]. A signature scheme using the same set was briefly mentioned in [9]. These ideas
were subsequently adapted to real quadratic function fields over finite fields, where the set
of reduced principal ideals exhibits an analogous infrastructure. The first discrete logarithm
based system in real quadratic function fields of odd characteristic was the key exchange
protocol of [36], followed by a signature scheme in [34], and both a key exchange and a
signature algorithm for even characteristic in [29]. Other schemes for real quadratic function
fields and number fields, such as an oblivious transfer protocol, were discussed in [8].

The function field schemes are faster, simpler, and easier to implement than the cor-
responding number field systems. They use finite field arithmetic, thereby eliminating the
need for rational approximations. The size of their underlying structure is determined by
two parameters (the size of the field of constants and the genus of the function field) as
opposed to only one parameter for number fields (their discriminant), so these two quan-
tities can be chosen to optimize use of computer hardware. Finally, their underlying DLP
can currently only be solved in exponential time, provided the genus of the field is not too
large, whereas for the corresponding problem in number fields, a subexponential algorithm
is known (provided the Extended Riemann Hypothesis is true). Thus, these fields seem to
represent a promising setting for cryptography.

This paper considers a variety of discrete logarithm based cryptographic schemes in
quadratic function fields of odd characteristic. We present Diffie-Hellman-like key exchange
protocols as well as ElGamal-like signature schemes and public key systems in both the real
and the imaginary model of such a field. Implementations of hyperelliptic systems (see [26])
using the ideal class group of an imaginary quadratic function field are discussed. For the
real setting of a quadratic function field, we simplify the key exchange algorithm of [36].
We also improve on the signature schemes of [34] and [29] by shortening the signatures.
Finally, we provide a more rigorous and meaningful complexity analysis of these systems
than [36, 34, 29] and investigate their security and its relationship to the relevant discrete
logarithm problems.

The fields under consideration are function fields K = k(C) of an elliptic or hyperelliptic
curve C of genus g over a finite field k of odd characteristic. If we write C in the form
y2 = D(t) where D(t) is a polynomial with coefficients in k, then deg(D(t)) = 2g + 1
(imaginary case) or 2g+2 (real case). Here, we assume that the leading coefficient sgn(D)
of D(t) is a square in k∗; otherwise, just adjoin a square root of sgn(D) to k, obtaining
a constant field isomorphic to Fq2 , and consider K over the field of constants Fq2 . It is a
simple matter to convert an imaginary representation to a real one over the same field k(t)
of rational functions: for example, by replacing D(t) by D(t−1 + b)t2g+2 where b is chosen
so that the leading coefficient D(b) of the new polynomial is a square in k∗. The reverse is

2

only possible if D(t) has a root a ∈ k, corresponding to a ramified rational prime divisor
of K/k(t); we then replace D(t) by D(t−1 + a)t2g+2 which has degree 2g + 1 and leading
coefficient D′(a) (here, D′(t) is the formal derivative of D(t) with respect to t). Hence the
real setting is more general. A preliminary investigation [32] suggests that the arithmetic
underlying our cryptographic schemes has approximately the same complexity and shows
roughly equal performance in both the real and the imaginary model. A choice of setting for
conducting cryptography (real versus imaginary) would depend on the performance issue as
well as the question of how difficult the DLP is in either model. Currently, the best known
general algorithms for solving this problem are exponential in both cases, and subexponential
if the genus of the field is sufficiently large.

In the next section, we summarize the necessary basics about quadratic function fields.
All the required algorithms and their complexity are stated in section 3. We present our
cryptographic schemes in section 4 and analyze their security in section 5.

2 Quadratic Function Fields

For an introduction to function fields, we refer the reader to [41]. Quadratic function fields
are discussed in considerable detail in [6]. Let k = Fq be a finite field of odd characteristic
with q elements. A quadratic function field is a quadratic extension K of the rational function
field k(t) over k in the variable t. More specifically, K = k(t, ρ) where t is transcendental
over k and ρ2 = D with D = D(t) a polynomial in t with coefficients in k which we may
assume to be squarefree. K is (a) real (quadratic function field) if the degree deg(D) of
D is even and the leading coefficient sgn(D) of D is a square in k. K is (an) imaginary
(quadratic function field) otherwise; that is, K is imaginary if deg(D) is odd or deg(D) is
even and sgn(D) is not a square in k. In the latter case, K is real quadratic over a quadratic
extension of k, so we henceforth exclude this case. Elements in K have the form α = a+ bρ
with a, b ∈ k(t). The conjugate of α is α = a− bρ ∈ K.

If g denotes the genus of K, then K is (an) elliptic (function field) if g = 1 and (a)
hyperelliptic (function field) if g > 1. Then deg(D) = 2g+2 if K is real and deg(D) = 2g+1
if K is imaginary. If K is real, then we can “extract” a fixed square root

√
D of D in the

field k〈t−1〉 of Puiseux series over k, so K ⊆ k〈t−1〉. As a result, every nonzero element
α ∈ K has a representation α =

∑m
i=−∞ ait

i with m ∈ Z, ai ∈ k for i ≤ m, and am 6= 0. We
set deg(α) = m and bαc =

∑m
i=0 ait

i ∈ k[t]. Also deg(0) = −∞ and b0c = 0.
Denote by k[t] the ring of polynomials with coefficients in k in the variable t and let

O = k[t] be the integral closure of k[t] in K. Then O is a k[t]-module of rank 2 with basis
{1,
√
D}. An (integral O-)ideal a is a subset of O such that for any α, β ∈ a and θ ∈ O,

α + β ∈ a and θα ∈ a. A fractional (O-)ideal a is a subset of K such that da is an integral
ideal for some nonzero d ∈ k[t]. Every fractional ideal a is an O-submodule of K. If the
O-rank of a is 1, i.e. there exists α ∈ K such that a = {θα | θ ∈ O}, then a is principal and
α is a generator of a; write a = (α).

3

Henceforth, all ideals (fractional and integral) are assumed to be nonzero, so the term
“ideal” will always be synonymous with “nonzero ideal”. Then every integral ideal a is a
k[t]-module of rank 2 with a k[t]-basis {SQ, SP + S

√
D} where S,Q, P ∈ k[t], SQ 6= 0,

and Q divides D2 − P . Write a = (SQ, SP). We may assume that S and Q are monic
and, after subtracting a suitable multiple of Q from P , that deg(P) < deg(Q). Then S, Q,
and P are unique. a is primitive if S = 1. If a = (Q,P) is primitive with Q monic and
deg(P) < deg(Q), then the pair (Q,P) is the standard representation of a (see [32]; [38, 39]
also use the term adapted basis), and a is said to be in standard form. In practice, we require
the degree inequality deg(P) < deg(Q), but we do not insist on Q being monic. A primitive
ideal a = (Q,P) is reduced if deg(Q) ≤ g, the genus of K. Hence every reduced ideal can
be uniquely represented by a pair of polynomials P,Q where Q is monic, Q divides D− P 2,
and deg(P) < deg(Q) ≤ g. This “small” representation makes reduced ideals very suitable
for computation.

On the set I of (nonzero) fractional ideals of K, a multiplication is defined as follows. If
a and b are fractional ideals, then the product ab consists of all finite sums of products of
the form αβ with α ∈ a and β ∈ b. Under this multiplication, I is an infinite Abelian group
with identity O. The set P of (nonzero) fractional principal ideals is an infinite subgroup of
I of finite index h′, the ideal class number of K. The factor group C = I/P is the ideal class
group of K. Note also that the set of integral ideals is a submonoid of I. Two fractional
ideals a and b are equivalent if they lie in the same coset of C, i.e. a = (θ)b for some
θ ∈ K∗. The element θ is a relative generator of a with respect to b. Write a ∼ b. Every
equivalence class of ideals contains at least one and at most finitely many reduced ideals.
If K is imaginary, then each class has a unique reduced representative [6]; however, if K is
real, then there can be many reduced representatives in each ideal class, in fact, as many as
O(qg) reduced ideals.

In the imaginary case, we base our cryptographic schemes on the arithmetic in the ideal
class group C of K. Each ideal class is represented by its reduced representative. The
product of two reduced ideals is generally not reduced; however, one can compute the reduced
representative in the class of the product ideal quickly. Thus, the set of reduced ideals is a
monoid under the following operation ∗ : given two reduced ideals a and b, let a ∗ b be the
reduced ideal in the class of ab. The underlying discrete logarithm problem is the DLP in
the class group C: given reduced ideals d and g with d ∼ gx, find x (mod h′).

Unfortunately, this approach fails in the real quadratic setting, due to the fact that there
are many reduced representatives in each ideal class. Here, we restrict ourselves to the finite
subset R of P of reduced principal ideals. More exactly, we define the distance δ(a) of a
reduced principal ideal a to be the degree of a generator of minimal nonnegative degree. For
n ∈ N0, we call a the reduced principal ideal below n if n− δ(a) ≥ 0 and minimal. Then R is
a monoid under the following operation: given two reduced principal ideals a and b, let a ∗ b
be the ideal below δ(a) + δ(b). Here, the underlying DLP is the the following: given reduced
principal ideals d and g so that d is the reduced principal ideal below xδ(g), find x (mod R)
where R is the maximal distance or the regulator of K. We will see that this problem is

4

polynomially equivalent to the problem of finding the distance of a reduced principal ideal.
In both the imaginary and the real case, we require efficient algorithms for the following

tasks:
• Given two reduced ideals in standard form, compute a standard representation of the

product ideal.

• Given this product ideal, compute a reduced representative in its class.
In the real setting, we need to solve the additional problem:
• Given n ∈ N, compute the reduced principal ideal below n.

3 Algorithms

In both the real and the imaginary models, the composition operation ∗, its implementation,
and its complexity have previously been studied in considerable detail. For the imaginary
setting, we refer the reader to [13], [31], and [32]. The real case is discussed in [38], [36],
[34], and again [32]. A detailed complexity analysis with explicit O constants can be found
in [32]. To make this paper somewhat self-contained, we restate the composition procedures
here, but we only sketch proofs of correctness or performance.

Algorithms pertaining to just the imaginary setting have the prefix “I” in their name.
Analogously, procedures that only apply to the real case begin with the letter “R”. Algo-
rithms with no prefix work in both types of representations. We use the complexity model
of [32]; that is, all complexity estimates are stated in terms of elementary field operations
of quadratic complexity, such as multiplication and inversion of field elements. Here, we as-
sume standard complexity estimates for polynomial arithmetic as described for example on
pp. 109f. of [14]; in particular, multiplication of two polynomials of respective degrees m and
n (m ≥ n) requires O(mn) field operations, division with remainder uses O(n(m − n + 1))
field operations, and computation of extended gcd’s takes O(m2) field operations (see also
[32] for the last result).

Our first algorithm computes the standard representation of the product of two primitive
ideals in standard form.

Algorithm MULT (ideal multiplication, real and imaginary case)

Input: (Qa, Pa, Qb, Pb) where a = (Qa, Pa) and b = (Qb, Pb) are two primitive ideals.

Output: (Qc, Pc, S) where c = (Qc, Pc) is a primitive ideal in standard form, S ∈ k[t], and
(S)c = ab. In the imaginary case, S need not be output.

Algorithm:

1. T ← gcd(Qa, Qb) ← XQa (mod Qb)

(T,X ∈ k[x], deg(X) < deg(Qb)).

5

2. If T = 1, then

Y ← 1, Z ← 0, S ← 1

else

S ← gcd(T, Pa + Pb) ← Y T + Z(Pa + Pb) (S, Y, Z ∈ k[x]).

3. Qc ←
QaQb

S2
.

Pc ← Pa +
QaXY (Pb − Pa) + Z(D − Pa2)

S
(mod Qc)

(deg(Pc) < deg(Qc)).

Proposition 3.1 The parameters c and S computed by Algorithm MULT satisfy (S)c = ab.
Furthermore, if a and b are reduced, then deg(S) < g, deg(Pc) < deg(Qc) ≤ 2g, and the
algorithm performs O(g2) field operations.

Proof: The correctness of the algorithm is proved in Section II.2 of [38] for the real case and
follows from [13] for the imaginary case. The degree bounds follow from the fact that a and
b are reduced and in standard form. For the complexity result, see Proposition 5 of [32]. 2

Henceforth, we need to treat the imaginary and real settings separately. We begin with
the imaginary situation and first describe the composition operation ∗ which computes the
unique reduced representative in the class of the product ideal ab, where a and b are two
reduced ideals. The procedure uses two different types of reduction steps. The first step is
only used once at the beginning of the reduction process. If this does not produce a reduced
ideal, the second step, which is computationally more efficient than the first step, is used
subsequently, until a reduced ideal is obtained.

Algorithm I-RED-STEP1 (initial reduction step, imaginary case)

Input: (Q,P) where a = (Q,P) is a primitive ideal in standard form.

Output: (Q+, P+, a,Q, P) where a+ = (Q+, P+) is an ideal equivalent to a in standard form
and a = b−P/Q+c.

Algorithm: Q+ ←
D − P 2

Q
, a ←

⌊
−P
Q+

⌋
, P+ ← − P − aQ+

(so −P = aQ+ + P+ with deg(P+) < deg(Q+).)

Algorithm I-RED-STEP2 (subsequent reduction step, imaginary case)

Input: The output (Q,P, a−, Q−, P−) of I-RED-STEPi, i = 1 or 2.

Output: (Q+, P+, a,Q, P) where a+ = (Q+, P+) is an ideal equivalent to a in standard form
and a = b−P/Q+c.

6

Algorithm: Q+ ← Q− + a−(P − P−), a ←
⌊
−P
Q+

⌋
, P+ ← − P − aQ+

(so again −P = aQ+ + P+ with deg(P+) < deg(Q+).)

We note that in both reduction steps, deg(Q+) ≤ deg(Q)− 2 (see [13, 32]).

Algorithm I-COMP (ideal composition, imaginary case)

Input: (Qa, Pa, Qb, Pb) where a = (Qa, Pa) and b = (Qb, Pb) are two reduced ideals in standard
form.

Output: (Qc, Pc) where c = (Qc, Pc) = a ∗ b is the reduced ideal equivalent to ab in standard
form.

Algorithm:

1. (Qc, Pc) ← MULT (Qa, Pa, Qb, Pb).

2. If deg(Qc) > g then

2.1. Q ← Qc, P ← Pc.

2.2. (Qc, Pc, a,Q, P) ← I-RED-STEP1(Q,P).

2.3. While deg(Qc) > g

(Qc, Pc, a,Q, P) ← I-RED-STEP2(Qc, Pc, a,Q, P).

Proposition 3.2 The ideal c computed by Algorithm I-COMP is the reduced ideal equivalent
to ab in standard form. Furthermore, the algorithm performs O(g2) field operations.

Proof: For the correctness of the algorithm, see [13]. By Theorem 1 of [32], the complexity
of the procedure is 22g2 +O(g). 2

For our cryptographic schemes, we require an algorithm for “exponentiation” of reduced
ideals. This method is based on the standard repeated squaring and multiplying technique
used for ordinary exponentiation (see for example Algorithm 1.2.3, p. 9, of [14]).

Algorithm I-EXP (exponentiation, imaginary case)

Input: (Qa, Pa, n) where a = (Qa, Pa) is a reduced ideal in standard form and n ∈ N0.

Output: (Qb, Pb) where b = (Qb, Pb) is the reduced ideal equivalent to an in standard form.

Algorithm:

1. If n = 0, then

7

Qb ← 1, Pb ← 0,

else

1.1. Compute the binary representation n =
∑l

i=0 bi2
l−i of n where b0 = 1, bi ∈ {0, 1}

for 1 ≤ i ≤ l.

1.2. Qb ← Qa, Pb ← Pa.

1.3. For i ← 1 to l do

1.3.1. (Qb, Pb) ← I-COMP(Qb, Pb, Qb, Pb).

1.3.2. If bi = 1, then (Qb, Pb) ← I-COMP(Qa, Pa, Qb, Pb).

Proposition 3.3 The ideal computed by Algorithm I-EXP is the reduced ideal equivalent to
an and the algorithm performs O(max{1, g2 log n}) field operations.

We now proceed with the real setting. For brevity, we set d = b
√
Dc, i.e. d is the

polynomial part of a (fixed) square root of D as defined in Section 2. As in the imaginary
model, we have two reduction steps; the first one is to be applied immediately after ideal
multiplication, while the second, more efficient one is for subsequent use.

If (Q,P) represents a basis of a reduced ideal a, then both reduction steps produce a
reduced representation (Q+, P+) of an equivalent reduced ideal a+; that is, deg(P+ − d) <
deg(Q+) < deg(P+ + d). Then deg(P+) = deg(d) = g + 1 > deg(Q+), and in fact d and P+

agree in their two highest coefficients [38]. In the real setting, all the reduced ideals produced
by our algorithms are in this reduced form, not in standard form. If a user prefers ideals in
standard form, he or she can easily convert the reduced representation (Q,P) to a standard
representation by replacing P by P (mod Q), deg(P) < deg(Q).

Algorithm R-RED-STEP1 (initial reduction step, real case)

Input: (Q,P) where a = (Q,P) is a primitive ideal.

Output: (Q+, P+, a, r, Q, P) where a+ = (Q+, P+) is a primitive ideal equivalent to a and
P + d = aQ+ r with deg(r) < deg(Q).

Algorithm:

1. a ←
⌊
P + d

Q

⌋
, r ← P + d (mod Q)

(so P + d = aQ+ r with deg(r) < deg(Q)).

2. P+ ← d− r, Q+ ←
D − P 2

+

Q
.

Algorithm R-RED-STEP2 (subsequent reduction step, real case)

8

Input: The output (Q,P, a−, r−, Q−, P−) of R-RED-STEPi, i = 1 or 2.

Output: (Q+, P+, a, r, Q, P) where a+ = (Q+, P+) is a primitive ideal equivalent to a and
P + d = aQ+ r with deg(r) < deg(Q).

Algorithm:

1. a ←
⌊
P + d

Q

⌋
, r ← P + d− aQ

(so again P + d = aQ+ r with deg(r) < deg(Q)).

2. P+ ← d− r, Q+ ← Q− + a(r − r−).

Since (P+ +
√
D)a = (Q)a+, a and a+ are equivalent. For both reduction steps, we have

deg(Q+) < deg(P+) < deg(Q), provided the input ideal is not reduced. So in this case, we
again have deg(Q+) ≤ deg(Q)−2. If the input ideal is reduced, then the output ideal is also
reduced and in reduced representation; in particular deg(Q+) < g + 1 = deg(P+).

Let a1, a2, . . . be a sequence of primitive ideals where ai+1 is obtained by applying one of
the reduction steps to ai (i ∈ N). For i ≥ 0, we associate with each ideal ai+1 = (Qi, Pi) the
element αi = (Pi +

√
D)/Qi ∈ K. If we set

θ1 = 1, θi+1 =
i∏

j=1

1

αj
(i ∈ N), (3.1)

then ai = (θi)a1, where θi is the conjugate of θi. Since αiαi = −Qi−1/Qi, we have θiθi =
(−1)i−1Qi−1/Q0 and hence for i ∈ N0:

deg(θi) = deg(Qi−1)− deg(Q0) +
i−1∑
j=1

deg(aj) (3.2)

where aj = bαjc for j ∈ N.
The next algorithm shows how to obtain from any primitive ideal an equivalent reduced

one. If the input ideal is not reduced, then we simply apply reduction steps until we obtain
a reduced ideal (Q,P), i.e. deg(Q) ≤ g. Since each reduction step reduces the degree of Q
by at least 2, this must eventually happen.

Algorithm R-REDUCE (ideal reduction, real case)

Input: (Qa, Pa) where a = (Qa, Pa) is a primitive ideal.

Output: (Qb, Pb, ε) where b = (Qb, Pb) is a reduced ideal equivalent to a in reduced form and
ε is the degree of a relative generator of b with respect to a.

9

Algorithm:

1. Qb ← Qa, Pb ← Pa, ε ← 0.

2. If deg(Qb) > g, then

2.1. Q ← Qa.

2.2. (Qb, Pb, a, r, Qa, Pa) ← R-RED-STEP1(Qa, Pa).

2.3. While deg(Qb) > g do

2.3.1. (Qb, Pb, a, r, Qa, Pa) ← R-RED-STEP2(Qb, Pb, a, r, Qa, Pa).

2.3.2. ε ← ε+ deg(a),

2.4. a ←
⌊
Pb + d

Qb

⌋
, ε ← ε+ deg(a) + deg(Qb)− deg(Q).

Proposition 3.4 The ideal b computed by Algorithm R-REDUCE is a reduced ideal equiv-
alent to a in reduced form, and ε is the degree of a relative generator of b with respect to
a.

Proof: For the proof that b is a reduced ideal equivalent to a in reduced form, see [38].
Suppose the reduction steps in the algorithm generate ideals a1 = a, a2, . . . , ai+1 where
aj = (Qj−1, Pj−1) (1 ≤ j ≤ i + 1) and i is minimal with deg(Qi) ≤ g, so ai+1 is the first
reduced ideal in the sequence. Then we have ε =

∑i−1
j=1 deg(aj) at the end of the while loop,

where aj = b(Pj+d)/Qjc. At the end of the algorithm, ε =
∑i

j=1 deg(aj)+deg(Qi)−deg(Q0)
which is correct by (3.2). 2

Let r1 = O and recursively define ri+1 to be the reduced principal ideal obtained by
applying one of the two reduction steps to ri. Since the set R of reduced principal ideals is
finite and the reduced representation of a reduced ideal is unique, there exists m ∈ N such
that applying a reduction step to rm yields r1, so m = |R|, the movement through R using
reduction steps is periodic, and m−1 reduction steps applied to r1 = O yields all of R. This
process also imposes a total order on R = {r1 = O, r2, r3, . . . , rm}.

The distance of a reduced principal ideal ri (1 ≤ i ≤ m) is δ(ri) = δi = deg(θi) where θi
is given by (3.1), so θi is a generator of minimal nonnegative degree of ri. Then the distance
δi is a nonnegative function on R that strictly increases with i.

For two reduced principal ideals ri, rj with 1 ≤ j ≤ i ≤ m, the (relative) distance from
ri to rj is δ(ri, rj) = δi − δj. Let a1, ai ∈ R, say a1 = rj, ai = ri−1+j with 1 ≤ j < i ≤
m + 1− j. If a1 = (Q0, P0) and ai = (Qi−1, Pi−1), where these are reduced representations,
then deg(ai−1Qi−1) = deg(Pi−1 + d) = g + 1 together with (3.2) implies

δ(ai, a1) = g + 1− deg(Q0) +
i−2∑
j=1

deg(aj). (3.3)

10

In particular, for j = 1, we have 1 ≤ deg(ai−1) = g + 1− deg(Qi−1) ≤ g, so

δ1 = 0, δ2 = g + 1, δi+1 = δi + deg(ai−1),
1 ≤ δi+1 − δi ≤ g, δi ≥ i

(3.4)

for i ≥ 2. For ease of notation, set δm+1 = deg(θm+1) (strictly speaking, distances are only
defined for indices up to m). R = δm+1 is the regulator of K.

Let k ∈ N0, k < R. The reduced principal ideal below k is the unique reduced principal
ideal ri with δi ≤ k < δi+1. If a, b ∈ R, then the ideal a ∗ b is the reduced principal ideal
below δ(a) + δ(b).

At times, we may need to advance from a reduced principal ideal a certain specified
length in R. For example, if we multiply two reduced principal ideals a and b using MULT
and reduce the result using R-REDUCE, then we still need to perform reduction steps until
we actually reach the ideal a ∗ b below δ(a) + δ(b).

Our next four algorithms give as output a reduced principal ideal together with its ‘error‘ ε
in distance from the input. This error is always an integer between −g and 0. Note, however,
that the ideal distances themselves are never used.

Algorithm R-ADVANCE (advancement in R, real case)

Input: (Qa, Pa, k) where a = (Qa, Pa) is a reduced principal ideal in reduced form and k ∈ N0.

Output: (Qb, Pb, ε) where b = (Qb, Pb) is the reduced principal ideal below δ(a)+k in reduced
form and ε = δ(b, a)− k.

Algorithm:

1. Qb ← Qa, Pb ← Pa, ε = −k, δ ← g + 1− deg(Qa)− k.

2. If δ ≤ 0, then

2.1. (Qc, Pc, a, r, Qb, Pb) ← R-RED-STEP1(Qb, Pb).

2.2. While δ ≤ 0 do

2.2.1. ε ← δ

2.2.2. (Qc, Pc, a, r, Qb, Pb) ← R-RED-STEP2(Qc, Pc, a, r, Qb, Pb),

2.2.3. δ ← δ + deg(a),

Proposition 3.5 The quantities b and ε computed by Algorithm R-ADVANCE are, respec-
tively, the reduced principal ideal below δ(a) + k and the value of δ(b, a) − k. Furthermore,
the algorithm performs O(max{1, kg}) field operations.

Proof: In each step, the value of ε is δ(b, a)−k by (3.3) where b = (Qb, Pb); also, δ = δ(c, a)−k
where c is one reduction step ahead of b. So the final ideal b has maximal distance such that
δ(b, a) ≤ k and is thus the reduced principal ideal below δ(a) + k.

11

Now the degrees of Pa, Qa, and d are all bounded by g + 1, so step 2.1 requires O(g2)
field operations. Since by (3.4), each reduction step advances the value of δ by at least 1, the
loop in step 2.2 is executed at most k times (provided k > 0). Each reduction step in step
2.2.2 performs O(g deg(a)) operations. By (3.4), the sum of the degrees of all the a values
is O(δ(b, a)) = O(k). So the total number of operations performed in step 2 is O(gk). 2

We now have the tools to compute from any two reduced principal ideals a, b the reduced
principal ideal a ∗ b below δ(a) + δ(b). We again point out that the computation of a ∗ b

does not require knowledge of δ(a) or δ(b).

Algorithm R-COMP (ideal composition, real case)

Input: (Qa, Pa, Qb, Pb) where a = (Qa, Pa) and b = (Qb, Pb) are two reduced principal ideals.

Output: (Qc, Pc, ε) where c = (Qc, Pc) = a∗b is in reduced form and ε = δ(a∗b)−δ(a)−δ(b).

Algorithm:

1. (Qc, Pc, S) ← MULT(Qa, Pa, Qb, Pb).

2. (Qc, Pc, δ) ← R-REDUCE(Qc, Pc).

3. (Qc, Pc, ε) ← R-ADVANCE(Qc, Pc, deg(S)− δ).

Proposition 3.6 Algorithm R-COMP computes the reduced principal ideal a∗b below δ(a)+
δ(b) and the quantity ε = δ(a ∗ b)− δ(a)− δ(b). Furthermore, the algorithm performs O(g2)
field operations.

Proof: Let c̃ be the ideal generated by step 2. Then δ = δ(c̃) − δ(a) − δ(b) + deg(S). Step
3 computes the ideal c below δ(c̃) + deg(S)− δ = δ(a) + δ(b) which is a ∗ b, and the correct
value of ε. Since 0 ≤ deg(S)− δ ≤ 2g (see [38]), step 3 performs at most 2g reduction steps
by (3.4). In fact, according to [32], the algorithm performs 21g2 +O(g) field operations. 2

The complexity results in the proofs of Propositions 3.2 and 3.6 show that composition
in the real and the imaginary model perform at essentially the same speed, with the real
setting being only slightly slower.

Using repeated applications of Algorithm R-COMP in combination with R-ADVANCE,
we can adapt the binary exponentiation technique mentioned earlier to compute for a reduced
principal ideal a and an “exponent” n ∈ N the reduced ideal below nδ(a).

Algorithm R-EXP (exponentiation, real case)

Input: (Qa, Pa, n) where a = (Qa, Pa) is a reduced principal ideal in reduced form and n ∈ N0.

Output: (Qb, Pb, ε) where b = (Qb, Pb) is the reduced principal ideal below nδ(a) in reduced
form and ε = δ(b)− nδ(a).

12

Algorithm:

1. ε ← 0.

2. If n = 0, then

Qb ← 1, Pb ← d,

else

2.1. Compute the binary representation n =
∑l

i=0 bi2
l−i of n where b0 = 1, bi ∈ {0, 1}

for 1 ≤ i ≤ l.

2.2. Qb ← Qa, Pb ← Pa.

2.3. For i ← 1 to l do

2.3.1. (Qb, Pb, δ) ← R-COMP(Qb, Pb, Qb, Pb).

2.3.2. (Qb, Pb, ε) ← R-ADVANCE(Qb, Pb,−(δ + 2ε)).

2.3.3. If bi = 1, then

2.3.3.1. (Qb, Pb, δ) ← R-COMP(Qa, Pa, Qb, Pb).

2.3.3.2. (Qb, Pb, ε) ← R-ADVANCE(Qb, Pb,−(δ + ε)).

Proposition 3.7 The ideal computed by Algorithm R-EXP is the reduced principal ideal
below nδ(a). Furthermore, the algorithm performs O(max{1, g2 log n}) field operations.

Proof: We first observe that (1, d) is the reduced representation of O which is the reduced
principal ideal below nδ(a) for n = 0. Assume now that n > 0 and set s0 = 1 = b0,
si = 2si−1 + bi for 1 ≤ i ≤ l. Since sl = n, it suffices to show that at the end of the
i-th iteration of the for loop, bi = (Qb, Pb) is the reduced principal ideal below siδ(a) and
εi = δ(bi)− siδ(a) (0 ≤ i ≤ l). For i = 0, we have b0 = a and ε0 = 0, which is correct. Now
consider the (i + 1)-st iteration of the for loop. Step 2.3.1 produces the reduced principal
ideal b below 2δ(bi) and δ = δ(b)− 2δ(bi). Step 2.3.2 generates the reduced principal ideal
b̃ below

δ(b)− (δ + 2εi) = 2(δ(bi)− εi) = 2siδ(a)

and
ε̃ = δ(b̃)− δ(b) + (δ + 2εi) = δ(b̃)− 2siδ(a).

If bi+1 = 0, then si+1 = 2si and bi+1 = b̃ which is correct. Suppose bi+1 = 1. Then step
2.3.3.1 computes the reduced principal ideal b̂ below δ(a) + δ(b̃) and δ̂ = δ(b̂)− δ(a)− δ(b̃).
Finally, step 2.3.3.2 generates the reduced principal ideal bi+1 below

δ(b̂)− (δ̂ + ε̃) = δ(a) + δ(b̃)− ε̃ = (1 + 2si)δ(a) = si+1δ(a)

and
εi+1 = δ(bi+1)− δ(b̂) + (δ̂ + ε̃) = δ(bi+1)− si+1δ(a).

13

Now −g ≤ δ, ε ≤ 0 for the values of δ and ε throughout the algorithm, so each R-ADVANCE
call advances a distance of O(g). Hence the complexity result follows from Propositions 3.6
and 3.5. 2

Using the previous algorithm, we can now generate the reduced principal ideal below any
nonnegative integer k. Here, we make use of the fact that if r1 = O = (1, d) (in reduced
form), then r2 = (D − d2, d) with distance δ2 = deg(d) = g + 1. If k = n(g + 1) + r with
r ≤ g, then we first compute the reduced principal ideal a = (Qa, Pa) below n(g + 1) using
R-EXP on the base ideal r2 and the exponent n. Then we apply reduction steps until we
reach the reduced principal ideal r = (Q,P) below k.

Algorithm R-BELOW (generates an ideal of specific distance, real case)

Input: k ∈ N0.

Output: (Q,P, ε) where r = (Q,P) is the reduced principal ideal below k and ε = δ(r)− k.

Algorithm:

1. n ←
⌊

k

g + 1

⌋
, r ← k − n(g + 1) (so k = n(g + 1) + r with r ≤ g).

2. (Q,P, δ) ← R-EXP(D − d2, d, n).

3. (Q,P, ε) ← R-ADVANCE(Q,P, r − δ).

Proposition 3.8 Algorithm R-BELOW computes the reduced principal ideal r below k and
the quantity ε = δ(r)− k. Furthermore, the algorithm performs O(g2 log k) field operations.

Proof: Let a = (Qa, Pa) be the output ideal of step 2. Then

δ = δ(a)− n(g + 1) = δ(a)− k + r

and ε = δ(r) − δ(a) − (r − δ) = δ(r) − k. Step 2 requires O(g2 log n) = O(g2 log k) field
operations. Since 0 ≤ r − δ ≤ 2g, step 3 requires O((r − δ)g) = O(g2) field operations. 2

4 Cryptographic Schemes

We now present three cryptographic schemes for both real and imaginary of quadratic func-
tion fields, namely a key exchange protocol, a public-key system, and signature scheme. Each
system uses the “exponentiation” method corresponding to the composition operation. The
field K should be chosen so that qg is large. More details on the choice of the field are given
in the next section. For simplicity, we assume D(t) to be monic.

We begin with the imaginary case. All our schemes require the following precomputation.

I-PRECOMP (precomputation, imaginary case)

14

1. Generate an odd prime power q,

2. generate a random squarefree monic polynomial D ∈ Fq[t] of odd degree,

3. generate a random ideal i = (Qi, Pi) and compute r = (Q,P) ← I-REDUCE(Qi, Pi),

4. publicize (q,D,Q, P).

KEY EXCHANGE PROTOCOL (imaginary case)
Precomputation:
Alice and Bob jointly obtain (q,D,Q, P) by performing I-PRECOMP.

Protocol:

1. Alice

1.1. secretly generates an integer a, 0 < a < qbg/2c,

1.2. computes (Qa, Pa) ← I-EXP(Q,P, a),

1.3. transmits (Qa, Pa) to Bob.

2. Bob

2.1. secretly generates an integer b, 0 < b < qbg/2c,

2.2. computes (Qb, Pb) ← I-EXP(Q,P, b),

2.3. transmits (Qb, Pb) to Alice.

3. Alice computes (Qk, Pk) ← I-EXP(Qb, Pb, a).

4. Bob computes (Qk, Pk) ← I-EXP(Qa, Pa, b).

Since (Qb, Pb)
a ∼ ((Q,P)b)a ∼ (Qk, Pk) ∼ ((Q,P)a)b ∼ (Qa, Pa), both parties have now

computed the unique reduced ideal equivalent to rab in standard form. They can use the
polynomials (Qk, Pk) (or any previously agreed upon portion thereof) as their key. Since a

and b are reduced and in standard form, both parties transmit approximately 2g log q bits
of information.

Denote by x⊕ y the bitwise “exclusive or” of two bit strings x and y.

PUBLIC-KEY CRYPTOSYSTEM (imaginary case)
Key Generation:
All participants jointly obtain (q,D,Q, P) by performing I-PRECOMP.
Each participant

1. secretly generates an integer a, 0 < a < qbg/2c,

2. computes (Qa, Pa) ← I-EXP(Q,P, a),

15

3. makes (Qa, Pa) the public key and a the secret key.

Encryption: To encrypt a message M , the sender (with secret key s)

1. looks up the recipient’s public key (Qr, Pr),

2. computes (Qk, Pk) ← I-EXP(Qr, Pr, s),

3. repeat

3.1. generates the bit string x ∈ N obtained by concatenating the coefficients in Fq of
the polynomial Qk written in binary,

3.2. removes the first block m with m < x from M ,

3.3. sends the ciphertext m⊕ x,

until all of M encrypted.

Decryption: To decrypt a ciphertext C, the recipient (with secret key r)

1. looks up the sender’s public key (Qs, Ps),

2. computes (Qk, Pk) ← I-EXP(Qs, Ps, r),

3. repeat

3.1. generates the bit string x ∈ N obtained by concatenating the coefficients in Fq of
the polynomial Qk written in binary,

3.2. removes the first block c with c < x from C,

3.3. computes m ← c⊕ x,

until all of C is decrypted,

4. concatenates all the blocks m to obtain the plaintext M .

Once again (Qs, Ps)
r ∼ (Q,P)sr ∼ (Qr, Pr)

s, so both parties compute the same reduced
ideal (Qk, Pk) and thus the same polynomial Qk and bit string x. Since deg(Qk) ≤ g, each
block c of ciphertext is approximately g log q bits long.

Our next scheme requires a collision-resistant one-way hash function hash that takes as
input a message M and the polynomials Q and P of a reduced ideal (in standard form) and
produces positive integer values not exceeding qbg/2c. The inputs of this hash function can
also be thought of as bit strings, if we concatenate M , Q, and P . The idea of using a hash
function as described above was first presented in [29], where it was used for a signature
scheme based on a real quadratic function field of characteristic 2.

For n ∈ N0, we let Fq[t]
≤n denote the set of polynomials in Fq[t] of degree ≤ n.

SIGNATURE SCHEME (imaginary case)
Precomputation: All participants jointly

16

1. obtain (q,D,Q, P) by performing I-PRECOMP.

2. agree on a cryptographically secure hash function

hash : N× Fq[t]≤g × Fq[t]≤g−1 → {1, 2, . . . , qbg/2c}

Each participant

1. secretly generates an integer a, 0 < a < qbg/2c,

2. computes (Qa, Pa) ← I-EXP(Q,P, a),

3. makes (Qa, Pa) the public key and a the secret key.

Signature Generation: To sign a message M , the signer (with secret key a)

1. secretly generates an integer r, 0 < r < qbg/2c,

2. computes (Qr, Pr) ← I-EXP(Q,P, r),

3. computes m ← hash(M,Qr, Pr),

4. computes s ← r −ma,

5. sends the signature (Qr, Pr, s) along with the message M .

Signature Verification: To verify the signature (Qr, Pr, s) to the message M , the ver-
ifier

1. computes m ← hash(M,Qr, Pr),

2. computes (Qs, Ps) ← I-EXP(Q,P, |s|),

3. looks up the senders public key (Qa, Pa),

4. computes (Qb, Pb) ← I-EXP(Qa, Pa,m),

5. computes (Qr′ , Pr′) ← I-COMP(Qb, Pb, Qs, sgn(s)Ps),

6. accepts the signature if and only if Qr′ = Qr and Pr′ = Pr.

To show that the verification procedure is correct, we first observe that if (Q̃, P̃) is any
reduced ideal, then (Q̃,−P̃) is the reduced representative of the ideal class that is the inverse
in the class group C of the ideal class of (Q̃, P̃): it is clear that (Q̃,−P̃) is reduced and in
standard form, and multiplying (Q̃, P̃) and (Q̃,−P̃) using algorithm MULT gives as result
the ideal O = (1, 0).

Now we have (Qs, sgn(Ps)Ps) ∼ (Q,P)s and (Qb, Pb) ∼ (Qa, Pa)
m ∼ (Q,P)am. If s ≥ 0,

then (Qr′ , Pr′) = (Qb, Pb) ∗ (Qs, Ps) ∼ (Q,P)am+s ∼ (Q,P)r ∼ (Qr, Pr). If s < 0, then
(Qs, Ps) ∼ (Q,P)−s and (Qr′ , Pr′) = (Qb, Pb) ∗ (Qs,−Ps) ∼ (Q,P)am+s ∼ (Qr, Pr).

17

To forge a signature, an adversary needs to generate a reduced ideal r = (Qr, Pr) and an
integer s such that (Q,P)s ∼ (Qr, Pr)∗ (Qb,−Pb). It is necessary to use the hash function to
prevent the following attack. Suppose we replaced m = hash(M,Qr, Pr) by a message block
m where 0 < m < qbg/2c. Then an adversary can simply pick a random positive integer s and
compute the reduced ideal (Qr, Pr) equivalent to (Q,P)s ∗ (Qb, Pb). Such a forged signature
(Qr, Pr, s) would always be accepted by the verifier. The hash function forces the signer to
generate the reduced ideal (Qr, Pr) before computing s, rather than making it possible to
choose s first and then generate a “fitting” reduced ideal (Qr, Pr).

Since 0 < a,m, r < gg/2, we have −qg/2 < s < qg, so the transmission of a signature
requires approximately 3g log q bits of information. Signatures can be somewhat shortened
by imposing a smaller upper bound on a and m.

We now continue with cryptographic schemes in the real setting. Some of the schemes
require a participant to generate a reduced principal ideal together with its distance. The
easiest way to achieve this is to generate a random nonnegative integer a of desired size and
compute (Qa, Pa, εa) ← R-BELOW(a). Then δ(a) = a + εa. The schemes also require the
precomputation of d = b

√
Dc. This can be done using a Puiseux diagram (see [25]). Once

again, there is a common precomputation to all schemes.

R-PRECOMP (precomputation, real case)

1. Generate an odd prime power q,

2. generate a random squarefree monic polynomial D ∈ Fq[t] of even degree,

3. compute d ← b
√
Dc,

4. publicize (q,D, d).

The protocol given below is a slight improvement over the versions given in [36] and [29]
in that it eliminates the need for including a reduced ideal in the set of public parameters.

KEY EXCHANGE PROTOCOL (real case)
Precomputation:
Alice and Bob jointly obtain (q,D, d) by performing R-PRECOMP.

Protocol:

1. Alice

1.1. secretly generates a reduced principal ideal a = (Qa, Pa) with distance δ(a) <
qbg/2c,

1.2. transmits (Qa, Pa) to Bob.

2. Bob

2.1. secretly generates a reduced principal ideal b = (Qb, Pb) with distance δ(b) < qbg/2c,

18

2.2. transmits (Qb, Pb) to Alice.

3. Alice computes (Qk, Pk) ← R-EXP(Qb, Pb, δ(a)).

4. Bob computes (Qk, Pk) ← R-EXP(Qa, Pa, δ(b)).

Both parties compute the reduced principal ideal (Qk, Pk) below δ(a)δ(b). They can use
Qk and Pk (or any previously agreed upon portion thereof) as their key. As in the imaginary
case, both parties transfer approximately 2g log q bits of information.

PUBLIC KEY CRYPTOSYSTEM (real case)
Key Generation:
All participants jointly obtain (q,D, d) by performing R-PRECOMP.
Each participant

1. secretly generates a reduced principal ideal a = (Qa, Pa) with distance δ(a) < qbg/2c,

2. makes (Qa, Pa) the public key and δ(a) the secret key.

Encryption: To encrypt a message M , the sender (with secret key δ(s))

1. looks up the recipient’s public key (Qr, Pr),

2. computes (Qk, Pk, ε) ← R-EXP(Qr, Pr, δ(s)),

3. repeat

3.1. generates the bit string x ∈ N obtained by concatenating the coefficients in Fq of
the polynomial Qk written in binary,

3.2. removes the first block m with m < x from M ,

3.3. sends the ciphertext m⊕ x,

until all of M is encrypted.

Decryption: To decrypt a ciphertext C, the recipient (with secret key δ(r))

1. looks up the sender’s public key (Qs, Ps),

2. computes (Qk, Pk, ε) ← R− EXP (Qs, Ps, δ(r)),

3. repeat

3.1. generates the bit string x ∈ N obtained by concatenating the coefficients in Fq of
the polynomial Qk written in binary,

3.2. removes the first block c with c < x from C,

3.3. computes m ← c⊕ x,

19

until all of C is decrypted,

4. concatenates all the blocks m to obtain the plaintext M .

Both parties compute the reduced principal ideal (Qk, Pk) below δ(r)δ(s) and thus the
same polynomial Qk and bit string x. Again each block c of ciphertext is approximately
g log q bits long.

Our next scheme is an improvement over the signature scheme of [29] in that it generates
shorter signatures. Once again, we use a cryptographically secure hash function similar to
the one used in the corresponding scheme in imaginary fields (the signature scheme of [34]
failed to take this into consideration).

SIGNATURE SCHEME (real case)
Precomputation:
All participants jointly

1. obtain (q,D, d) by performing R-PRECOMP.

2. agree on a cryptographically secure hash function

hash : N× Fq[t]≤g × Fq[t]≤g+1 → {1, 2, . . . , qbg/2c}.

Each participant

1. generates a reduced principal ideal a = (Qa, Pa) with distance δ(a) < qbg/2c,

2. makes (Qa, Pa) the public key and δ(a) the secret key.

Signature Generation: To sign a message M , the signer (with secret key δ(a))

1. secretly generates a reduced principal ideal r with distance δ(r) < qbg/2c.

2. computes m ← hash(M,Qr, Pr),

3. computes s ← δ(r)−mδ(a),

4. sends the signature (Qr, Pr, s) along with the message M .

Signature Verification: To verify the signature (Qr, Pr, s) to the message M , the ver-
ifier

1. computes m ← hash(M,Qr, Pr),

2. computes (Qs, Ps, δ) ← BELOW(|s|),

3. looks up the sender’s public key (Qa, Pa),

4. computes (Qb, Pb, e) ← R-EXP(Qa, Pa,m),

20

5. if s ≥ 0 then

5.1. computes (Qc, Pc, f) ← R-COMP(Qs, Ps, Qb, Pb),

5.2. computes (Qr′ , Pr′ , ε) ← R-ADVANCE(Qc, Pc,−(δ + e+ f)),

5.3. accepts the signature if and only if Qr′ = Qr and Pr′ = Pr.

else /∗s < 0∗/
5.4. computes (Qc, Pc, f) ← R-COMP(Qr, Pr, Qs, Ps),

5.5. computes (Qb′ , Pb′ , e
′) ← R-ADVANCE(Qc, Pc,−(δ + f)),

5.6. accepts the signature if and only if Qb′ = Qb and Pb′ = Pb.

Once again, we check the verification procedure. Write s = (Qs, Ps), b = (Qb, Pb),
c = (Qc, Pc), r′ = (Qr′ , Pr′), and b′ = (Qb′ , Pb′). Suppose first that s ≥ 0. Then we have

δ + e+ f = (δ(s)− s) + (δ(b)−mδ(a)) + (δ(c)− δ(s)− δ(b)) = δ(c)− δ(r).

r′ is the reduced principal ideal below δ(c)− (δ + e+ f) = δ(r), so r′ = r. Now assume that
s < 0. Then

δ + f = (δ(s) + s) + (δ(c)− δ(r)− δ(s)) = δ(c)−mδ(a).

b′ is the reduced principal ideal below δ(c)− (δ + f) = mδ(a), so b′ = b.
To forge a signature (Qr, Pr, s), an opponent must generate a reduced principal ideal

r = (Qr, Pr) and an integer s with the following properties. If s ≥ 0, then r is the reduced
principal ideal below s+mδ(a). If s < 0, then b is the reduced principal ideal below δ(r)−s.
The similarities in these two cases are best seen as follows. Let (s, δ) be as in step 2 of
the verification procedure. If s ≥ 0, write δ(r) = s + mδ(a) = δ(s) + δ(b) − (δ + e), so
δ(s) + δ(b) = δ(r) + (δ + e). Since −2g ≤ δ + e ≤ 0, s must be such that r has distance
at most 2g below s ∗ b. If s < 0, write δ(b) − e = mδ(a) = δ(r) + |s| = δ(r) + δ(s) − δ, so
δ(r) + δ(s) = δ(b) + (δ− e). Since −g ≤ δ− e ≤ g, s must be such that b has distance within
g of r ∗ s.

Since m, δ(a), δ(r) < qg/2, we have −qg < s < qg/2, so the transmission of a signature
again requires at most 3g log q bits of information. The signatures in [29] are between 3g log q
and 4g log q bits long. Once again, signatures could be shortened by imposing tighter bounds
on δ(a) and m.

5 Security

Before we discuss possible attacks on our cryptographic schemes, we explore the size of our
underlying sets. We need to ensure that the class group C (in the imaginary setting) and
the set R of reduced principal ideals (in the real setting) are sufficiently large.

21

The order of C is simply the ideal class number h′. Consider now the real case and let
m = |R|. From (3.3) and (3.4)

m+ 1 ≤ R = g + 1 +
m−1∑
j=1

deg(aj) ≤ g + 1 + g(m− 1) = gm+ 1.

where R = δm+1 is the regulator of K. So the size of R is determined by R (in the elliptic
case, we even have R = m+1). Let h be the order of the Jacobian J of the curve C defining
the function field K. Then

h =

{
h′ in the imaginary case
Rh′ in the real case

(see [42]). It is well-known (see for example Theorem V.1.15, p. 166, of [41]) that h = L(1)
where L(x) ∈ Z[x] is the L polynomial of K|k. Here, L(x) =

∏2g
i=1(1 − αix) where each αi

(1 ≤ i ≤ 2g) is an algebraic integer of absolute value
√
q by the Hasse-Weil Theorem (see

Theorem V.2.1, p. 169, of [41]). It follows that (
√
q − 1)2g ≤ h ≤ (

√
q + 1)2g and hence

h = qg + Θ(qg−0.5). (5.1)

This implies that in an imaginary quadratic field, there are approximately qg ideal classes
in C. Analyzing the size of R in the real case is slightly more complicated. To ensure a
large regulator, we need to make h′ as small as possible. A strong heuristic argument ([36],
also Section 3.4.1, pp. 107-111, of [39]), analogous to the Cohen-Lenstra heuristic in real
quadratic number fields [15, 16]), shows that the probability that the order of the odd part
of the ideal class group exceeds x is 1/2x+O((log x)/x2). In fact, in the elliptic case, there
is very strong numerical evidence that ideal class groups behave according to this heuristic
[21, 22], and it can be proved that for sufficiently large q, the probability that h′ = 1 is high
[23]. At the same time, it is easy to find real quadratic fields whose ideal class number is
odd; for example, by a result of Zhang [43], it suffices to choose D to be irreducible over k
or the product of two odd-degree irreducibles in k[t]. Hence under these choices, h′ is small
with high probability, and there are close to qg reduced principal ideals in K.

Hence to foil an exhaustive search attack, we should ensure that qg is sufficiently large.
Considerations for good choices of q and g are discussed below, but we point out that within
these considerations, users can take advantage of the following trade-off. For small g and
large q, our complexity analysis in section 3 results in very good performance in terms of
field operations, but field arithmetic dominates our computation times. If q is small and g is
large, then field arithmetic is very fast, but the number of field operations performed by our
algorithms is high. Thus, one could select q and g in such a way as to optimize performance,
while ensuring a sufficient level of security in our systems.

We now explore the possibility of breaking our schemes. We begin with the imaginary
model. Here, the relevant problem underlying all three schemes is the DLP in the class

22

group C of K: given two ideals g and d with d ∼ gx for some x ∈ {0, 1, . . . , h′ − 1}, find the
discrete logarithm x. It is obvious that for any of the schemes, there is a polynomial-time
reduction from an algorithm for solving the DLP to an algorithm for breaking the system.
Since no other way of compromising any of the schemes is known, we focus our attention on
the difficulty of the DLP in C.

The ideal class group C is isomorphic to the Jacobian J , and the DLPs in C and J are
polynomially equivalent. We first observe that in certain cases, the DLP in the Jacobian
of an elliptic or hyperelliptic curve is reducible to the DLP in a finite field, in which case
using (hyper)elliptic function fields represents no advantage over using finite fields for the
implementation of discrete logarithm based cryptosystems. More exactly, the curve C should
not be supersingular [27], and the largest prime divisor of h′ should not divide qk − 1 for
those small k for which the DLP in Fqk is feasible [20]. It is currently unknown whether such
reductions are possible in situations other than those cited above.

In [4], a probabilistic algorithm for computing discrete logarithms in J in the case where
q is a prime is given. This technique is subexponential of complexity exp(c

√
log qg log log qg)

where c > 0 is a constant, provided log q ≤ (2g + 1).98, i.e. q is small compared to g. This
algorithm was generalized to odd prime powers q in [7, 19], but seems infeasible in practice for
sufficiently large parameters, and one could foil an attack based on this method by choosing
q to be large and the genus g to be small.

In general, a technique analogous to that of Pohlig-Hellman [33] can be used to compute
discrete logarithms in C. The complexity of this method is essentially of order

√
p where p is

the largest prime factor of h′. This attack requires that h′ be known. A technique described
in [26] can be used to compute h′ by generating the coefficients of the L polynomial L(x);
this method works particularly well for small g. Another algorithm for computing (among
other quantities) h′ given in [3] is polynomial in the size of q and exponential in g. Hence,
while it might be feasible to determine h′, particularly for small g, the Pohlig-Hellman attack
is infeasible unless h′ is smooth, i.e. has only small prime factors.

In the real setting, there are two problems that are relevant to possible attacks on our
cryptoschemes. The distance problem (DP) in R requires the computation of the distance of
a reduced principal ideal. The DLP in R is the problem of finding x (mod R), given reduced
principal ideals g and d where d is the reduced principal ideal below xδ(g). Both problems
are equally difficult; hence, the problem of breaking any of our schemes is polynomial-time
reducible to either problem.

Proposition 5.1 There is a polynomial-time reduction from the DLP to the DP and vice
versa.

Proof: Suppose first that we can solve any instance of the DLP. Let r be a reduced principal
ideal. We wish to find δ(r). Let δ(r) = y(g+ 1) + r with 0 ≤ r ≤ g. Let r′ be the ideal below
(y + 2)δ2 where as before, δ2 = δ(r2) = g + 1 and r2 = (D − d2, d). Then

δ(r′) ≤ (y + 2)(g + 1) = δ(r)− r + 2(g + 1) ≤ δ(r) + 2(g + 1),
δ(r′) > (y + 2)(g + 1)− g = δ(r)− r + g + 2 ≥ δ(r) + 2.

23

Suppose the call R-ADVANCE(Qr, Pr, 3g + 1) with r = (Qr, Pr) generates a sequence a1 =
r, a2, . . . , am of reduced principal ideals which we store in memory. Then 3g+1 ≥ δ(am, a1) >
(3g + 1)− g = 2g + 1, so

δ(a1) = δ(r) < δ(r′)− 2 < δ(r′),
δ(am) ≥ δ(r) + 2g + 2 ≥ δ(r′)− 2(g + 1) + (2g + 2) = δ(r′),

hence δ(a1) < δ(r′) ≤ δ(am) and r′ ∈ {a2, a3, . . . , am}. Using the m − 1 candidates ai
(2 ≤ i ≤ m) for r′, we can use our DLP algorithm to determine from the ideal r2 = (D−d2, d)
with distance δ2 = g + 1 and the reduced principal ideal r′ below (y + 2)δ2 the discrete
logarithm y + 2. Of these m − 1 calls of our DLP procedure, one gives a correct answer
for y + 2 (the other m − 2 might give a wrong or meaningless answer or no answer at
all). We now have m − 1 candidates for y and g + 1 candidates for r. Since by (3.4)
m−2 ≤ δ(am, a2) ≤ δ(am, a1)−1 ≤ 3g, this gives us (m−1)(g+1) ≤ (3g+1)(g+1) candidates
for δ(r). We can check which one of these candidates is the correct one by using the following
simple technique. If l is a candidate for δ(r), compute (Q,P, ε) ← R-BELOW(l). If Q = Qr

and P = Pr, compute l + ε = δ(r).
Assume now that we know how to compute distances and let g and d be reduced principal

ideals such that d is the reduced principal ideal below xδ(g) for some x ∈ N0. Our task is
to find x (mod R). First compute δ(g) and δ(d). We have 0 ≤ δ(d) − xδ(g) ≤ g, so
(δ(d) − g)/δ(g) ≤ x ≤ δ(d)/δ(g). If δ(g) > g, then these bounds uniquely determine the
integer x. If δ(g) ≤ g, then g = O, in which case d = O and x = 1. 2

Clearly, our three systems are broken if there is a fast algorithm for the DLP or the DP.
The difficulty of the DLP was already discussed in [36], so we briefly repeat the arguments
here. The most interesting situation is given by the elliptic case g = 1 (deg(D) = 4)
which also seems to be the most difficult case cryptanalytically. It was shown in [39, 40]
that in this setting, there is a simple bijection from R = {r1 = O, r2, . . . , rm} to the set
{0, 2P, 3P, . . . ,mP} of multiples of P (except P itself) that maps r1 onto 0 and ri onto iP
for 2 ≤ i ≤ m. Here, P is a point on a certain elliptic curve over Fq. Consequently, there is
a polynomial-time reduction from the DLP in R to the DLP in the group of points on this
elliptic curve: given two points P and Q on the curve with Q = xP for some x ∈ N, find
x. If char(Fq) 6= 3, then there is also a polynomial-time reduction in the opposite direction
(there may also be such a bijection or “near bijection” in the case where char(k) = 3),
so the DLP for elliptic real function fields of characteristic not equal to 3 is polynomially
equivalent to the DLP for elliptic curves over a finite field. Since the best known algorithm
for computing discrete logarithms on an elliptic curve over a finite field Fq has complexity of
order

√
q, provided the curve is not supersingular, we require at this point exponential time

to compute discrete logarithms in the set of reduced principal ideals of an elliptic function
field.

For hyperelliptic real fields, there is no equivalence of the type discussed above. Here, the
best known general algorithms for computing both discrete logarithms and the regulator R of

24

the field are of complexity O(q(2g−1)/5) (see Theorem 2.2.33, p. 78, of [39]). If log q ≤ 2g+ 1,
i.e. q is again small compared to g, then discrete logarithms, including the regulator, can
be computed probabilistically in subexponential time exp(c

√
log qg log log qg) where c > 0 is

a constant ([28], Theorem 6.3.2, p. 203, of [39]). The algorithm does not appear feasible in
practice; nevertheless, to be safe, one might again wish to choose q to be large relative to g.
The computations in [36] show that the elliptic case g = 1 performed best computationally;
for a 50 digit prime q, a call of R-EXP with a 50 digit exponent required 3.76 seconds on
a Silicon Graphics Challenge workstation, and further optimization of this implementation
will undoubtedly produce faster running times.

A Pohlig-Hellman-like technique for computing discrete logarithms in a real quadratic
function field of characteristic 2 described in considerable detail in [29] can easily be adapted
to work in real fields of odd characteristic. The algorithm requires knowledge of the regulator
R, and as usual, its running time is essentially the square root of the largest prime factor
of R. Once again, this method does not pose a threat to our cryptographic schemes at this
time if qg is sufficiently large (100 decimal digits seems more than sufficient with current
computer technology) and R is not smooth.

Thus, if the parameters are chosen with some care, the fastest currently known methods
for breaking our schemes are all exponential. This is in contrast to systems based on discrete
logarithms in finite fields where the DLP is subexponential [2], as well as the corresponding
systems in quadratic number fields (both real and imaginary), where the relevant DLPs
can also be solved in subexponential time [24, 1] (assuming that the Extended Riemann
Hypothesis holds). Thus, our systems might well be more secure than these other DLP-based
schemes. Our key exchange protocol in real hyperelliptic fields is also significantly faster than
the corresponding scheme in real quadratic number fields [12, 35] (see our computations in
[36]), although we have no data available as to how our systems would perform relative to
elliptic curve systems such as [5].

Unfortunately, in some instances, more information needs to be transmitted than in the
original Diffie-Hellman and ElGamal systems. Let l be the size of the underlying set, i.e.
l = p − 1 for the original Diffie-Hellman and ElGamal schemes over a finite field Fp and
l ≈ gg for our schemes. Diffie-Hellman keys require log l bits of transmission, whereas our
keys are twice as long. Similarly, ElGamal signatures have size 2 log l, while our signatures
are up to 3 log l bits long. However, as mentioned before, they can be made shorter, say
2 log l bits as well, if we reduce our upper bound on our parameters from qg/2 to qg/4. Even
with these smaller quantities, we consider the schemes secure.

References

[1] C. Abel, Ein Algorithmus zur Berechnung der Klassenzahl und des Regulators
reellquadratischer Ordnungen. Doctoral Dissertation, Universität des Saarlandes,
Saarbrücken (Germany), 1994.

25

[2] L. M. Adleman & J. DeMarrais, A subexponential algorithm for discrete loga-
rithms over all finite fields. Math. Comp. 61 (1993), 1–15.

[3] L. M. Adleman& M. D. Huang, Counting rational points on curves and Abelian
varieties over finite fields. Second Internat. Symp. Algorithmic Number Theory ANTS-II,
Lect. Notes Comp. Sci. 1122, Springer, Berlin 1996, 1–16.

[4] L. M. Adleman, J. DeMarrais & M. D. Huang, A subexponential algorithm
for discrete logarithms over the rational subgroup of the Jacobians of large genus hy-
perelliptic curves over finite fields. First Internat. Symp. Algorithmic Number Theory
ANTS-I, Lect. Notes Comp. Sci. 877, Springer, Berlin 1994, 28–40.

[5] G. B. Agnew, R. C. Mullin & S. A, Vanstone, An implementation of elliptic
curve cryptosystems over F2155 . IEEE J. Selected Areas in Communications 11 (1993),
804–813.

[6] E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen I, II. Math.
Zeitschr. 19 (1924), 153–206.

[7] M. L. Bauer A subexponential algorithm for solving the discrete logarithm problem
in the Jacobian of high genus hyperelliptic curves over arbitrary finite fields. Submitted
to J. Cryptology.

[8] I. Biehl, B. Meyer & C. Thiel, Cryptographic protocols based on real-quadratic
A-fields (extended abstract). Advances in Cryptology – ASIACRYPT 96, Lect. Notes
Comp. Sci. 1163. Springer, Berlin 1996, 15–25.

[9] I. Biehl, J. A. Buchmann & C. Thiel, Cryptographic protocols based on discrete
logarithms in real-quadratic orders. Proceedings of CRYPTO ’94, Lect. Notes Comp.
Sci. 839. Springer, New York 1994, 56–60.

[10] J. A, Buchmann, S. Düllmann & H. C. Williams, On the complexity of a new key
exchange system. EUROCRYPT 90 Proceedings, Lect. Notes Comp. Sci. 473. Springer,
Berlin 1990, 597–616.

[11] J. A. Buchmann & H. C. Williams, A key-exchange system based on imaginary
quadratic fields. J. Cryptology 1 (1988), 107–118.

[12] J. A. Buchmann & H. C. Williams, A key-exchange system based on real quadratic
fields. CRYPTO ’89 Proceedings, Lect. Notes Comp. Sci. 435. Springer, Berlin 1989,
335–343.

[13] D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve. Math. Comp. 48
(1987), 95–101.

26

[14] H. Cohen, A Course in Computational Algebraic Number Theory. Springer, Berlin
1995.

[15] H. Cohen & H. W. Lenstra, Heuristics on class groups. Number Theory (H. Jager,
ed.) (Nordwijkerhout 1983), Lect. Notes Math. 1052, Springer, New York 1984, 26–36.

[16] H. Cohen & H. W. Lenstra, Heuristics on class groups of number fields. Number
Theory (H. Jager, ed.) (Nordwijkerhout 1983), Lect. Notes Math. 1068, Springer, New
York 1984, 33–62.

[17] W. Diffie & M. E. Hellman, New directions in cryptography. IEEE Trans. Inform.
Theory 22 (1976), 644–654.

[18] T. ElGamal, A public-key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory IT-31 (1985), 469–472.

[19] A. Enge, Computing discrete logarithms in high-genus hyperelliptic Jacobians in prov-
ably subexponential time. Research Report CORR # 99-04, University of Waterloo, Feb.
1999.

[20] G. Frey & H. Rück, A remark concerning m-divisibility and the discrete logarithm
in the divisor class group of curves. Math. Comp. 62 (1994), 865–874.

[21] C. Friesen, A special case of Cohen-Lenstra heuristics in function fields. Centre de
Recherches Mathématique Proceedings and Lecture Notes 19 (1999), 99–105.

[22] C. Friesen, Class group frequencies of real quadratic function fields: the degree 4 case.
To appear in Math. Comp.

[23] C. Friesen, Bounds for frequencies of class groups of real quadratic genus 1 function
fields. Preprint.

[24] J. L. Hafner & K. S. McCurley, A rigorous subexponential algorithm for compu-
tation of class group. J. Amer. Math. Soc. 2 (1989), 837–849.

[25] E. Jung, Theorie der Algebraischen Funktionen einer Veränderlichen. Berlin 1923.

[26] N. Koblitz, Hyperelliptic cryptosystems. J. Cryptology 1 (1989), 139–150.

[27] A. Menezes, T. Okamoto & S. Vanstone, Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Trans. Inf. Theory 39 (1993), 1639–1646.

[28] V. Müller, A. Stein & C. Thiel, Computing discrete logarithms in real quadratic
congruence function fields of large genus. Math. Comp. 68 (1999), 807–822.

27

[29] V. Müller, S. Vanstone & R. Zuccherato, Discrete Logarithm based cryptosys-
tems in quadratic function fields of characteristic 2. Designs, Codes and Cryptography
14 (1998), 159–178.

[30] National Institute for Standards and Technology, Digital Signature Stan-
dard. FIPS Publication 186 (1993).

[31] S. Paulus & H.-G. Rück, Real and Imaginary Quadratic Representations of Hyper-
elliptic Function Fields. Math. Comp. 68 (1999), 1233–1241.

[32] S. Paulus & A. Stein, Comparing real and imaginary arithmetics for divisor class
groups of hyperelliptic curves. Third Internat. Symp. Algorithmic Number Theory
ANTS-III, Lect. Notes Comp. Sci. 1423, Springer, Berlin 1998, 576–591.

[33] S. Pohlig & M. Hellman, An improved algorithm for computing logarithms over
GF (p) and its cryptographic significance. IEEE Trans. Inf. Theory 24 (1978), 918–924.

[34] R. Scheidler, Cryptography in real quadratic congruence function fields. Proceedings
of PRAGOCRYPT 1996, CTU Publishing House, Prague (Czech Republic), 1996, 109–
128.

[35] R. Scheidler, J. A. Buchmann & H. C. Williams, A key exchange protocol using
real quadratic fields. J. Cryptology 7 (1994), 171–199.

[36] R. Scheidler, A. Stein & H. C. Williams, Key-exchange in real quadratic con-
gruence function fields. Designs, Codes and Cryptography 7 (1996), 153–174.

[37] D. Shanks, The infrastructure of a real quadratic field and its applications. Proc. 1972
Number Theory Conf., Boulder, Colorado, 1972, 217–224.

[38] A. Stein, Baby step-Giant step-Verfahren in reell-quadratischen Kongruenzfunktio-
nenkörpern mit Charakteristik ungleich 2. Diplomarbeit, Universität des Saarlandes,
Saarbrücken (Germany), 1992.

[39] A. Stein, Algorithmen in reell-quadratischen Kongruenzfunktionenkörpern. Doctoral
Dissertation, Universität des Saarlandes, Saarbrücken (Germany), 1996.

[40] A. Stein, Equivalences between elliptic curves and real quadratic congruence function
fields. J. Théorie des Nombres de Bordeaux 9 (1997), 75–95.

[41] H. Stichtenoth, Algebraic Function Fields and Codes. Springer, Berlin 1993.

[42] B. Weis & H. G. Zimmer, Artins Theorie der quadratischen Kongruenzfunktionen-
körper und ihre Anwendung auf die Berechnung der Einheiten- und Klassengruppen,
Mitt. Math. Ges. Hamburg XII (1991), 261–286.

28

[43] X. Zhang, Ambiguous classes and 2-rank of class groups of quadratic function fields.
J. China Univ. Sci. Tech. 17 (1987), 425–431.

29

