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Abs t r ac t .  A real quadratic congruence function field K --- Fq (x)(v/-D) 
typically contains many elements a of large height H(a)  = max{la h I~l} 
and small norm (in absolute value) IN(a)l = [aK[. A prominent example 
for this kind of behavior is the fundamental unit yK whose norm has 
absolute value 1, but whose height is often exponential in IDI. Hence it 
requires exponential time to even write down YK, let alone perform com- 
putations on YK. In this paper, we present a shorter representation for 
elements a in any quadratic order O = Fq [x][v/-~] of g .  This represen- 
tation is analogous to the one for quadratic integers developed by Buch- 
mann, Thiel, and Williams, and is polynomially bounded in 1.og IN(a)[, 
log degH(a) ,  and log lA [. For the fundamental unit ~g of K ,  such a 
representation requires O((log IDI) 2) bits of storage. We show how to 
perform arithmetic with compact representations and prove that the 
problems of principal ideal testing, ideal equivalence, and the discrete 
logarithm problem for ideal classes belong to the complexity class NP. 

1 I n t r o d u c t i o n  

For a general introduction to the topic of real quadratic congruence function 
fields, see [1] and [3]. Let k = Fq be a finite field of odd characteristic with q 
elements. A quadratic congruence function field over the field k of constants is a 
quadratic extension K of the rational function field k(x) with a t ranscendental  
element x E K .  We say that  K is a real quadratic congruence function field (of 
odd characteristic) if g is of the form g = k ( x ) ( V ~ )  -- k(x) + k(x)v/-D, where 
D E k[x] is a squarefree polynomial of even degree whose leading coefficient is a 
square in k* = k \ (0}. (This is in analogy to the case of a real quadrat ic  number  
field Q(v/D) ,  where D is a positive, squarefree integer). The ring of integers of 
K is OK ---- k[x][y/-D] - -  k[x] + k[x]v/-D. 

In contrast  to the number  field case, there are two places of K at  infinity. 
We know f rom [9] tha t  the place at  infinity ~3~ of k(x) with respect to x splits 
in K as ~oo = ~31 " ~2.  ~ t r thermore ,  the completions of K with respect to ~1 
and ~2 ,  K V l  and K~32, respectively, are isomorphic to k(x)~3o ~ = Fq ((l/x)), the 

field of power series in 1Ix. By explicitly taking square roots of D, we see tha t  
g is a subfield of Fq ((l/x)). Let ~1 be the place which corresponds to the case 
where v ~  = 1. Then we consider elements of K as Laurent  series at  ~1 in the 

~T~ 
variable l/x. Let a e k(( l#) )  be a non-zero element. Then a = ~"]~i=-o~ cix* with 
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cm ~ 0. Denote by 

deg(a) = m the degree of a,  

[(~[ = qm the absolute value of (~, 

sgn(a) = cm the sign of a,  
m 

[(~] = Z cixi the principal part of a. 
i=O 

If m is negative, then 1(~] = 0. We set deg(0) -- - o o  and ]0] = 0. 
In analogy to the case of a real quadratic number field, the unit group EK 

of K is of the form EK ~- k* • (r/K), where r/K E K is a fundamental unit of K ,  
so every unit e E K can be written as e -- cr/~ for some c E k* and m E Z. We 
choose ~/K so that  ]r/gl > 1. Then  the positive integer RK = deg(~/g) is called 
the regulator of K with respect to OK. 

A (quadratic) order 0 of K is a subring of K that  contains k[x] and has K as 
its field of quotients. Every order O in K is a free k[x]-module of rank 2 and has 
a k[x]-basis of the form {1, V ~ }  where A = F2D for some non-zero F E k[x]. 
If F is chosen to be monic, then it is unique and is called the conductor of O. 
Write 

O = V a  = [1, v G ]  = k[=] + k[=]r 

We have O a  C.C_ Oa,  if and only if A /A '  is a square in k[x]. The maximal order 
(with respect to inclusion) is OK, the ring of integers of K.  

Let O -- O a  be a quadratic order of K and let a = A + B V ~  E O ( A, B E 
ktx ] ). Denote by 

a = A + B v / ~  the standard representation of a ,  

= A - B V ~  the conjugate of a, 

N ( a )  = c~K = A 2 - B2Zi the norm of a,  

g((~) = max{[a[, [~]} = max{iAI, I B v ~ I }  the height of a.  

For ~ E 0 and Q E k[x], set H(a lQ)  = H(~)IQ.  
In general, a quadratic order contains many elements of large height, whose 

norm is at the same time comparatively small in absolute value. For example, the 
fundamental unit r/K of K often has degree of order Iv/-DI (and thus an enormous 

height of approximately qlV-51 = qql/2d,g(D)!), while its norm has absolute value 
1. Hence it requires exponential time in log IDI to write down the standard 
representation of r/K, and any algorithm using the standard representation of 
r/K has at least exponential running time in log lD I. It is therefore desirable 
to have a shorter representation for elements of K with large height and small 
norm (in absolute value) and to be able to determine such a representation 
quickly. A representation of this type was first introduced by Buchmann, Thiel 
and Williams [2] in the case of real quadratic number fields. The object of this 
paper is to describe a similar representation in real quadratic congruence function 
fields and to show how to obtain and use it efficiently. 
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T h e o r e m  1.1 
let a E O. A compact representation of a is a representation 

1 2 I - j  

"= \ A j ]  

where 

(Main Theorem)  Let 0 = Oza be a quadratic order of K and 

(1.1) 

a 0 , a l , . . . , a l E O ,  A o , A 1 , . . . , A t  E k[x], 
H(ao) <_ ]g(a)l, g ( a j )  < ]AI3/2 for 1 <_ j < l, 

]Ao] < lY~l ,  ]Aj] < ]A] for l <_ j <_ l, 

l _< max{0,1ogdeg H(a) - log deg(A) + 2}, and 

7~ = aj E O  for 1 < i < / .  
j=l \ A j  ] 

The computation of a compact representation of a requires no more than O(max 
{deg(a), log deg g ( a )}  amthmetic operations on polynomials in k[x]. 

Note that 
l (o0) 

deg(a) = deg ~00 + 2t-J" 
j = l  

The above equality resembles a binary representation of ordinary integers, except 
that the coefficients are not bits, but small integers. 

Suppose that aj = Gj +Bjx/-~ for 0 < j < I in (1.1), then [Gj ], IBj] < H(a j )  
(0 < j < l). Any polynomial F e k[x] requires O(deg(F)logq) = O(log IF]) bits 
of storage, so if the compact representation of a is stored as the vector 

(A, Go, B0, A0, a l ,  B1, A1, �9 �9 �9 Gt, Bt, Al) E k[x] 31+4, 

then it requires O(log Ig(a)l +log deg g (a ) log  ]AD bits of storage. For example, 
for the fundamental unit r/K of K, we have ]N(r/K)I = 1 and logdegH0?g ) = 
16g RK = O(log [D[) (see (2.2) below), so any compact representation of rig re- 
quires O((log [D I) 2) bits of storage, as opposed to up to O([x/'D]) for the standard 
representation. 

Since the computation of compact representations involves algorithms on 
ideals, we give a brief introduction to the theory of reduced ideals in quadratic 
orders in the next section. Section 3 presents the algorithms required for comput- 
ing compact representations and analyzes their running times. We show how to 
perform basic computations with compact representations in Section 4. Finally, 
we prove that three important decision problems concerning ideals belong to the 
complexity class NP, namely principal ideal testing, ideal equivalence, and the 
discrete logarithm problem for ideal classes. 
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2 I d e a l s  

For an overview of the theory of continued fractions and reduced ideals in real 
quadratic congruence function fields, refer to [7], [8], and [9]. These sources 
discuss ideals in the ring of integers only, but  the material can be extended to 
any quadratic order. For more on ideals in quadratic orders, see [5]. 

Let (9 = (9z~ be a fixed quadratic order. An (integral (9-)ideal a is an additive 
subgroup of (9 such that  c~a C a for all a E (9. Every ideal "in (9 is a free 
k[x]-submodule of (9 of rank 2, and there exists a k[x]-basis of a of the form 
{SQ, SP  + S V ~ }  where S , Q , P  E k[x] and Q ] A - p2. Write 

a = S[Q,P + v ~ ]  = k[x](SQ) + k[x](SP + S v ~ ) .  

A basis {SQ, S P + S v ~ }  of an ideal a can be made unique up to constant factors 
if we replace P by the remainder of P (mod Q) of least non-negative degree. In 
this case, if S and Q are chosen to be monic, then we say that  a is in adapted 
form with adapted basis {SQ, S P +  Sv/-~}, where Q [ A - p2, deg(P)  < deg(Q), 
and sgn(S) = sgn(Q) = 1. a is primitive if S in its basis can be chosen to be 1. 

The product of two ideals a, b is the ideal ab consisting of all finite sums 
of products aft  where a E a and fl E b. It is easy to determine a k[x]-basis 
for ab from k[x]-bases for a and b, respectively, using Algorithm MULT given 
below. The norm of an ideal a = S[Q, P + v ~ ]  is the monic polynomial N(a) = 
S2Q/sgn(S2Q). An ideal a is principal if it is of the form a = (a) = c~(9 for 
some ~ �9 (9. ~ is a generator of a. In this case, g(a)  = g(~) /sgn(g(a)) .  Two 
ideals a, b are equivalent if there exist non-zero a,  fl �9 (9 such that  (a)a = (~)b, 
or equivalently, if there exists A �9 K* = K \ {0} such that  a = Ab. If a and 
b are equivalent ideals, then there exists 7 �9 a such that  7a = N(b)b and 
0 < I'Y[ -< [Y(~)[ (see [7], Lemma II.3.1). Ideal equivalence partitions the set 
of ideals in (9 into equivalence classes which form a finite group under ideal 
multiplication, called the class group of (9. The order h~ of the class group of 
(9 is the ideal class number of (9. For the ideal class number h~ of OK and the 
regulator RK, the following bounds hold (see [4], pp. 299-307). 

( y / q -  1) deg(D)-2 ~ h'KRK <-- (X/~ + 1) deg(D)-2 �9 (2.2) 

An ideal a in (9 is reduced if a is primitive and there exists a k[x]-basis 
{ Q , P  + v ~ }  of a such that  I F -  v ~ I  < IQI < [P + v/~l �9 Such a basis is a 
reduced basis of a and is unique up to constant factors. The following lemma 
summarizes properties of reduced ideals. 

L e m m a  2.1 1. Let a = [Q, P + v ~ ]  be a primitive ideal. Then a is reduced if 
and only if IQI -- Ig(a)l  < Iv"-~l. 

~. Let a be a reduced ideal with reduced basis {Q, P + v/"~}. Then the following 
properties hold. 
(a) Iel -- I e + v ~ l  -- I'r �9 
(b) sgn(P) = sgn(A). In fact, the two highest coeJfficients of P and ~ are 

equal. 
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(c) l f  a = [ P  +-Q-V/-~J, then laQl = [v/~l. ln particular, 1 <  la[ < Ivc-~l 

and 1 _< IOI < Iv l. 
Let al = [Q0, Po + V c~] be a primitive ideal and consider the ideal sequence 

(ai)i~N where 

ai = [Qi-1, Pi-1 + v/~] (2.3) 

is recursively defined as follows. 

bl+ j 
h i - 1  : Q 

Pi = a i - lQi -1  - Pi-1 (i e N) (2.4) 

A-P/~ 
Qi- -  - -  

Qi--1 

Here, the polynomials ai (i E No) are exactly the partial quotients in the con- 
Po+V-~ 

tinued fraction expansion of C~o - . The process of obtaining ai+l from 
Qo 

ai (i E N) is called a baby step. For i E N, define 

i 1 
Pi + V ~  0 1 = 1 ,  Oi+l H 

ai -- Qi j=l ~j 

Then 0i+1 = 1 0 ,  where 1 = . _ _ ~ -  Pi for i e N by (2.4), and the following 
C~i ~i ~ i -1  

properties hold. 

L e m m a  2.2 For i E N: 

1. oi+lQo,-Oi+lQo e hi. 

2. ai+l = -oi+lal - v/-~ + Pi hi. In particular, all aj (j E N) are equivalent. 
Q i - 1  

i 

3. Oi+l-Oi+ 1 ~- (--1)i~--~ -, SO deg(0i+a) = deg(Qi) - deg(Qo) -4- E deg(aj).  
j=l  

4. deg(0i+l) = deg(0i) + deg(ai-1) for i > 2. 

5. 0i+1 = ( - 1 )  iGi-1 - B i - l  V/-~ where B_2 = 1, B-1  = O, B j -x  = a i - l B j - 2 +  
Qo 

Bj-3  for 1 < j < i, and Gi-x = PiBi-1 + QiBi-2 .  

L e m m a  2.3 Let a = [Q, P + v/~] be a primitive ideal and let a = ax, a2, h a , . . .  
be the sequence of ideals given by (Z.3) and (2.4). 

1. ai is reduced for i > max {1, deg(Qo)/2 - deg(A)/4 + 2}. 
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3. 

If  aj is reduced for some j E N, then ai is reduced for all i > j and the 
reduced basis of ai is given by (2.3) and (2.4). 
Suppose aj is reduced for some j e N. Then the sequence (ai)i>j is purely 
periodic, i.e. there exists m E N such that ai+m = al for all i > j .  Further- 
more, the entire collection of distinct reduced ideals in the ideal class of a is 
finite and is given by {aj, a j+ l , . . . ,  aj+rn-1}. 

Suppose al = O, then ai = 
distance of ai is 

Then 

(8{) is a reduced principal ideal for i E N. The 

~i = ~(ai) = deg(0i). 

i--2 

81 = 0 ,  8 i =  l d e g ( A ) + E d e g ( a j )  for i_>2,  
j = l  

~i+1 ---~ ~i -I- deg(ai_l) >_ i, i _< $i+1 - ~i ~ 2 deg(A) for i e N. 

Note that  ideal distances are integers (as opposed to irrational numbers in the 
number field case), so we need not resort to rational approximations here. This 
means that  it is somewhat easier and faster to compute compact representations 
in quadratic function fields than it is to obtain them in quadratic number fields. 

For any s E No, there exists a unique reduced principal ideal ak such that  
~k _< s < ~k+l. We say that  ak is the reduced principal ideal below s and write 
ak = a(s). For i E N, a~ = a(s) if and only if ~ _< s < 81 + deg(A)/2. 

3 A l g o r i t h m s  

Let s E N. The key ingredient for computing compact representations is a fast 
algorithm for determining from the reduced principal ideal a(s) below s the 
ideal a(2s). It is possible to find a(2s) by repeatedly applying (2.4), starting at 
al = a(s), but this could require as many as s baby steps and is very inefficient 
for large values of s. Instead, we apply the following method which achieves our 
goal much faster. 

Let a = a(s). Compute the primitive principal ideal r where Sr = a 2, using 
the algorithm SQUARE given below, c is generally not reduced, but by Lemma 
2.3, part 1, we can find a reduced principal ideal r = ac = (a /S )a  2 after ap- 
proximately deg(A)/2 many baby steps. The process of computing r from a is a 
giant step. r is "not too far" below 2s but it need not be immediately below 2s, 
so we continue to perform baby steps until a(2s) is reached, which will happen 
after O(deg(A)) many more baby steps. This is another difference between our 
setting and the number field case, where it may happen in rare cases that  in 
computing r, we might have "overshot" our target ideal a(2s) and thus need to 
perform "backward" baby steps in order to reach a(2s). In quadratic number 
fields, one needs to check for this possibility after each giant step. 
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Before we give a more detailed description and analysis of the required algo- 
rithms, a note on running times. We measure the time complexity of our algo- 
rithms in terms of polynomial operations over k = Fq (additions, subtractions, 
multiplications, divisions with remainder, degree comparisons, and assignments). 

Our first two algorithms are a method for multiplying two reduced ideals 
(see for example Algorithm II.2.1 in [7] or Section 7 in [8]) and its special case 
of squaring a reduced ideal, the only situation required for computing compact 
representations. They are followed by ideal reduction (see Algorithm II.4.1 in 
[7] or Section 8 in [8]) and a technique of "doubling" the ideal a(s) below some 
s E N to obtain a(2s). 

A l g o r i t h m  MULT 

Input: Two reduced ideals a = (Q~, P~), b = (Qb, Pb). 
Output: (c, S) where c = [Q, P + v ~ ]  is aprimitive ideal, S E k[x], and Sc = ab. 
Algorithm: 

1. S 1 :---- gcd(Qa,Qb) - :  X i Q a  (rood Qb) (S1,X1 E k[x]). 
2. S := gcd(S1,Pa -b Pb) =: X2S1 + Y2(P~ + Pb) (S, X2,Y2 E k[x]). 

(If $1 = 1, then set X2 := 1, ]I2 := 0, S := 1). 
Q.Qb 

3. Q . -  $2 
_ p :  

Qa X2Xl(Pb _ ea) T y2DQa ] 4. P : - P a + - ~ -  (mod Q). 

L e m m a  3.1 Algorithm MULT is correct and performs O(deg A) polynomial op- 
e'rations. Furthermore, ISI < v ~ ,  IPI < IQI < IAI �9 

A l g o r i t h m  SQUARE 

Input: A reduced ideal a = [Q, P + x/~]. 
Output: (c, S) where r = [Q', P '  + v ~ ]  

Sc = a 2. 

Algorithm: 

is a primitive ideal, S E k[x], and 

1. S : = g c d ( P , Q ) - : Y P  (modQ) 

A -- p2 
3. P ' : - P + Y - -  (modQ') .  Q 

(y e k[=]). 

A l g o r i t h m  RED UCE 

Input: A primitive ideal a = [Q, P + v ~ ]  in adapted form. 



330 

Output: (b, A) where b = Aa = [Q', P ' +  v'-~] is reduced and A = 

(G, B �9 k[x]). 
Algorithm: 

G + Bv[-~ 
Q � 9  

1. j := O, Po := P, Qo := Q, B-2  := l, B_I  := O. 
2. While deg(Qj) > deg(A)/2 do { baby steps } 

aj-1 := L Qj-1 J '  Pj := a j - zQj-1  - Pj-1,  Qj := - -  

Bj-x := aj_lSj_2 + Bi-s. 
3. Q ' : = Q j ,  P ' : = P j ,  b : = [ Q ' , P ' + v ~ ] ,  B : = B j _ I ,  

a + BCA 
G :-- P j B j - I  + QjBj -2 ,  A -=- Q 

Qj-1 ' 

L e m m a  3.2 Algorithm REDUCE is correct and performs O(deg A) polyno' 
mial operations. Furthermore, IQ~I, IPJl < IQol, IBj-21 < IB~-ll < IQol/Ix/-~l 
throughout the algorithm, and/;/(A) _< 1. 

Proof. By Lemma 8.5 of [S], b is reduced and IAI _< 1, hence H(A) < 1 as 
IA[ < 1 always holds. Suppose the algorithm stops after l iterations of step 2, 
i.e. b = at+x. Then IBj'~[ < [Bj-I[ follows from [aj-ll > 1 (1 < j < l). Using 
techniques similar to those employed in the proofs of Theorem 4.1, Corollary 
4.1.1 and Theorem 4.2 of [10], we can show that [Qj], [Pj[ < [Q01 for 0 < j < 1 
and [Bt-x[ _< [Qo[/[vf~[. 

A lgo r i t hm DOUBLE 

Input: s �9 N, a(s) = [Q, P + y/-~], 6 = 6(a(s)). 
c~ 2 Output: a(2s) = [Q',P'+x/-~] = -~a(s) where a = G+ B v / ~  ( G , B , A  �9 k[x]), 

~(a(2s)). 
Algorithm: 

1. (c, S) := SQUARE(a(s ) ) ,  c = [Qc, Pc + v/~]. 
2. (a) j : = o ,  P o : = P ,  Q o : = Q ,  B - 2 : = l ,  B - l : = 0 ,  

d2 := 26 - deg(S) - deg(Qo). 
(b) While deg(Qj) > deg(A)/2 do { baby steps } 

Increment j by 1; 

aj_~ := [ Oj- i  J '  Pj : ;  ~s-~Q~-I-P~-I, 

B/_~ :-- a~_~B~_2 + B~_~, dj+~ := d~ + deg(aj_0.  
S. While d~+~ + deg(OA _< 2s do { more baby steps } 

Increment j by 1; 

a~-i :---- Q~_~ j ,  P~ := a j - 1 O ~ - ~ -  P~-~, O~ := 

B~-I := ~ - l S j - 2  + Bj_~, dj+x : ;  d~ + aeg(a~_0. 

A - -  Ps? " 
QJ : :  Qj-1 ' 

A -  p~2. . 

Q~-I ' 
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4. Q' := Qj, P' := Pj, a(2s) := [Q',P' + v~] ,  
~(a(2s)) := dj+l + deg(Q/), 

�9 Q 2  
B : = B j _ I ,  G : = P j B j _ I + Q j B j _ 2 ,  a : = G + B V ~ ,  A . = - ~ - .  

T h e o r e m  3.3 Algorithm DOUBLE is correct and performs O(deg`4) polyno- 
mial operations. Furthermore, IP~I, IQ~I < 1`41 throughout step 2, IP~I, IQ~I < 
Ivf-~l throughout step 3, 2 s -  2deg(`4) < dj < dj+l < 2s + deg(`4)/2 and 
1 <_ IBj_2[ < IBj_I[ < 1,413/2 throughout steps 2 and 3, [G[ < 1,412 , so 
H((x) < 1,412, and IAI < 1,41. 

Proof. Step 1 is correct and requires O(deg ,4) polynomial operations, and IS[ < 
Iv/'AI, IPcl, IQcl < ],4] by Lemma 3.1. Let am+l = [Qm, P m +  v/~] be the ideal 
computed at the end of step 2. Then am+l is reduced and the bounds for [Pjl 
and IQJl (0 < j < m) follow from Lemma 3.2. 

Now it is known (see Theorem 9.2 in [8]_) that  if a0 = r then am+l = 0m+lC = 
(-Om+l/S)a(s) 2 where 2 -  deg(~)  _< deg(Om+l/S) <_ O, so 25 + 2 -  deg(,4) _< 
(fm+l < 2(f < 2s. Hence, unless am+l is already the ideal below 2s, more baby 
steps are required to increase ~m+l and compute a(2s). This is done in step 3. 

Assume the algorithm halts at index j = l, i.e. the last ideal computed in step 
3 is al+l. Then the ideals am+2, am+a , . . . ,  al+l are reduced, whence follow the 
bounds on IPjl and [Qj[ for m + 1 < j < I. Furthermore, since ~ > s -  deg(,4)/2,  
we have 2s - 2deg(,4) < d2 < dj < dj + deg(aj-1)  = dj+l _< dm+l < 2s + 
deg(Qm) < 2s + deg(,4)/2 for 2 < j < m. Now IBj_21 < [Bj-ll <_ IB[ for 

GI-1 + BI-I V/-~ 
0 < j _< m - 1 and [G[ < IBl lv~ l .  Since at+l = Qo c by Lemma 

2.2, part  5, we have a = Bt-1 + G l - lVr~  and A = SQo = Q2/S by step 2 of 
Algorithm SQUARE. Then IAI _< IQI 2 < 1,41 and 

5j+1 = deg(0~+a) - deg(S) + 25 
J 

= deg(Qj) - deg(Qo) + ~ deg(ai) - deg(S) + 25 
i = a  

3" 
---- deg(Qj) + ~--~ deg(ai) + d2 -- deg(Qj) + dj+l, 

i = 1  

hence the algorithm stops when j is maximal such that  ~j+l < 2s, so a(2s) = 
at+l. Therefore, deg(a/A) = St+l - 25 < 2(s - r < deg(A) and I~1 < IAII`41 < 
1`412. On the other hand, deg(a/A) > 51+ 1 - -  deg(`4)/2 - 25 > 2(s - (i) - 
deg(,4)/2 > -c leg( ,4) /2 ,  so [a[ > [a[/[A I > 1 / I V y .  But  

I~lll~l IQ, I IQ, I IQ, I 
IAI 2 IQollSl 2 IQI 2 ISIIAI' 

so I~1 _< IAIIQ, I/I~I < IAI 2. Therefore, lal < 1`412, IBI < 1`413/2, and H(c~) < 
IAI 2. 
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In order to determine a compact representation for an element a E O, we 
first need to compute a k[x]-basis for the principal ideal generated by a. 

A l g o r i t h m  IDEAL 

Input: ~ = A + B V ~  e 0 \ {0} in standard representation (A, B e k[x]). 
Output: a = (~) = S[Q, P + vl-~] (S, Q, P e k[x], Q I A - p2). 
Algorithm: 

1. S := gcd(A, B) = X A  + Y B ,  (X, Y e k[x]). 
A B A S - B2Zl N(a)  

2. P : = Y ~ + X A ~ ,  Q . -  $2 $2 

L e m m a  3.4 Algorithm IDEAL is correct and per$orms O(max {deg(A), deg(B)}) 
polynomial operations. 

Proof. Let a = S[Q, P§ where S, Q, and P are computed by the algorithm. 
We need to show that a = (a). We have 

S2 ( x Q  + B (p  + v ~ ) )  = X(A2 - B2A) + B ( Y A  + X B A  + SvI-~) 

= X A  2 + Y A B  + S B v / ~  

= A ( X A  + YB)  + SBvf '~ 

= S(A + Bv/-~) 
SOl~ 

so ~ = s x o  + ~ (  + v '5)  �9 . .  Conversely, SQ S ~ 

S ( P  + ~/-~) = (YA + XZ~B) + (XA + Y B ) V ~  

= (Y + X,/Z)(A + B, /5)  

= (Y + X v ~ l a  e (a). 

Finally, N ( P  + Vf-~) = N ( Y  + X v ~ ) N ( ( x / S )  or p2 _ A = (y2 _ X2A)Q, so 
Q I ,5 - p2 and {SQ, SP  + Sx /~}  is a k[x]-basis of (a). 

We are now prepared to provide the algorithm for computing compact rep- 
resentations. Given a E O, we determine a k[x]-basis of (a), using the algorithm 
IDEAL, before calling the algorithm described below. 

A lgo r i t hm COMPA CT-REPRESENTATION 

Input: A non-zero principal ideal a = (~) = S[Q, P + vr~] (S, Q, P e k[x], 
Q [ A - P 2 ,  a e O ) .  
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Output: l E N, ao ,a l , . . . , a t  E O, Ao ,A1 , . . . ,A t  E k[x] such that 

l 2 t - i  

o =  

is a compact representation of a. 
Algorithm: 

1. (b,7) := R E D U C E ( s a ) ,  b=[Q ' ,P '  + v~] .  

deg(p) / 
2. l : = m i n  j E N o [ 2  s - ~ >  deg(A) J '  

a(So) := O, Ao := Q', ao := ~QS, 
3. For j := l to l do 

deg(p) a 
S o  . - -  21 where p = 7-~ ; 

eo := 1. 

sj := 2ss_ 1 

(aS, AS, a(sj)) := DOVBnE(a(ss_l))  

e j-1 

4. Replaceao bye-lsgn(a)ao wheree sgn(a-~oo)/--\ 

T h e o r e m  3.5 Algorithm COMPACT-REPRESENTATION is correct and per- 
forms 0 (max{deg(A), log deg H(a)})  polynomial operations. 

Proof. We have b = ('ya/S) = (p), so p E (.9. By Lemma 2.2, part 3, we have 
7~ = + Q ' / Q ,  so s / 7  = + S Q ~ / Q '  = +ao/Ao.  Hence there there exists c E k* 
such that  a = cpao/Ao. Furthermore, since H(3') g 1 by Lemma 3.2, we have 
H(ao) = [S[[Q[H(7) <_ [S[IQ [ = [N(a)[/[S[ <_ IN(a)[ and [Ao[ = [q'] < x/~.  

If I = 0, then deg(p) < deg(A)/2, so since b = (p) is a reduced ideal with 
distance 8(b) = deg(p), we must have (p) = O, p E k*, the loop in step 4 is 
never executed, and pao/Ao is the compact representation of a up to sign. 

Suppose l > 1, then 2 t-1 > deg(p)/deg(Al) _> 2 t-2, so deg(A)/2 > So >_ 
deg(A)/4 _> 0. We have ~(O) = 0 _< so < ~(O) + deg(A)/2, so setting a(so) to 
be O in step 2 is correct. Let "Y0 = 1, ~j = (aj/Aj)"/2_l for 1 _< j <_ I. Then 

n o, ~s = , a ( s A  = (~j)  (0 < j < l), 
i = 1  

hence 7j e O for 0 < j g I. By Theorem 3.3, H(aj) < [3[ 2 and [dj[ < [A[. 
Furthermore, since (p) is the reduced principal ideal below deg(p) = sl, we have 
(p) = a(sl) = (Tt), so a and (ao/Ao)Tt differ only in sign. Now e s = sgn(Ts) for 
0 < j ~ l, so after step 4, the compact representation of a has the correct sign. 

Finally, i f / >  1, then l _< log deg (p ) -  log deg(A)+  2, and since [p[ <_ g(p)  ~ 
H(7)g(a)/[S[ < H(a), we have 1 < max{0, log deg H(a )  - l o g  deg(Al) + 2}, and 
step 4 requires O(log deg H(a))  many doubling steps. 
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4 A p p l i c a t i o n s  

L e m m a  4.1 Let a E O\{0} be given in compact representation. Using no more 
than O(max {deg(A), log deg H(a)}) polynomial operations, we can compute 

1. a compact representation of-~, 
2. the degree of a, 
3. the sign of a, 
4. a k[x]-basis of the principal ideal (a), 
5. the norm of a~ 

/ f  13 E O \ {0} is also given in compact representation, we can 

6. compute a compact representation of aft, 
7. determine whether fl divides a and if yes, compute a compact representation 

of a~13, 
8. determine whether a = 13. 

using no more than O(max{deg(A), log deg H(a),  log deg H(13)}) polynomial op- 
erations. 

Proof. 1-3 is obvious. For 4, write a = (ao/Ao)p. Use step 3 of algorithm 
C O M P A C T - R E P R E S E N T A T I O N t o  successively compute k[x]-bases of the ide- 
als a(s0), a(sl), ..., a(st) = (p). Then compute b = I D E A L ( a o ) .  Finally, use 
Algorithm MULT to compute a k[x]-basis {SQ,  S P  + S v ~ }  for the ideal (p)b. 
Then A0(a) = (p)b, so A0 must divide S. Hence (a) = (S /Ao)[Q,P  + v ~ ] .  In 
5, to obtain N(a) ,  compute a(So), . . . ,  a(st) as before. If a(st) = S[Q, P + v ~ ] ,  
then g ( a )  is equal to N ( a o ) Q S 2 / N ( A o )  up to sign. 

For 6-8, compute k[x]-bases {SQ, S P  + Sv/--~} and {S'Q' ,  S 'P '  + S'Vt-~} of 
(a) and (13), respectively. To obtain a compact representation of the product aft, 
compute a k[x]-basis of the ideal (aft) using Algorithm MULT and apply Algo- 
rithm C O M P A C T - R E P R E S E N T A T I O N  to this'basis. Then match the sign of 
the compact representation to be equal to sgn(a13) = sgn(a)sgn(13). To compute 
a" compact representation of the quotient, observe that (-fl) = S ' [ Q ' , - P ' +  v/-~]. 
Use Algorithm MULT to compute a k[x]-basis of the product ideal (aft), say 
(a-fl) = S"[Q", P" + v/~]. Now/3 I a if and only if N(13) [ aft. Since the ideal 
[Q', P " +  v/-~] is primitive, this happens if and only if Q~S ~2 ] S ' .  Check whether 
this is true. If yes, apply Algorithm C O M P A C T - R E P R E S E N T A T I O N  to the 
ideal (a/13) = ( S " / Q ' S ' 2 ) [ Q " , P " +  v/~] and again, match the sign to be equal 
to that of a/13. Finally, for 8, note that a = fl if and only if sgn(a) = sgn(13), 
13[ a, and deg(a) = deg(fl). 

Henceforth, we only consider the case O = OK, i.e. A = D. 

L e m m a  4.2 Every principal ideal in OK has a generator a such that deg H(a)  
< max {(V~+ 1) deg(D)-2, degN(a)}.  
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Proof. Clear for the zero ideal. Let a be a non-zero principal ideal with a gen- 
erator fl with 1t31 > 1. There exists m E Z such that  0 _< deg(/~) + tuRK < RK. 
Then a = flrl~ is also a generator of a and deg(a) < RK <_ (vrq + 1) deg(D)-2 by 
(2.2). Furthermore,  since ~ = g ( a ) / a ,  we have deg(~) < deg N(a) .  

We conclude with an investigation of three important  computational ques- 
tions regarding ideals. Recall that  a decision problem is said to belong to the class 
NP if and only if a certificate for the problem can be verified in time polynomial 
to the size of the input. 

T h e o r e m  4.3 The following problems belong to NP. 

(PIT) Principal Ideal Testing. 
Instance: An ideal a in OK, given in adapted form. 
Question: Is a principal? 

(EI) Ideal Equivalence. 
Instance: Two ideals a, b in OK, given in adapted form. 
Question: Are a and b equivalent? 

(DLP) Discrete Logarithm Problem for Ideal Classes. 
Instance: Two ideals a, b in OK, given in adapted form. 
Question: Are a t and b equivalent for some l E N0. 

Proof. The size of an ideal a = S[Q, P + yr-D] in OK is linear in log [SI, log [QI, 
log ]P], and log ID]. By Lemma 4.2, there exist a generator a of a such that  
deg g ( a )  < max{[P[,  deg(QS2)}. 

For (PIT),  a compact representation of such a generator a of a is a certificate, 
as its size is polynomially bounded by log [Y(a)[ = log [QS2[, log [D[, and l < 
max{log [D[, log deg(QS2)}. Simply compute the adapted representation of the 
ideal (a) as in Lemma 4.1, part 4, and compare it with the basis of a. 

For (EI), an element 7 E a given in compact representation such that  7a = 
N(b)b and 0 < [7] < [N(a)[ represents a certificate. First, find a k[z]-basis of 
the ideal (7). From this basis and the basis for a, compute an adapted k[x]-basis 
for the ideal (7)a and compare it with the adapted basis of N(b)b.  

Finally, a discrete logarithm, i.e. a pair (7,1) �9 a x {0, 1 , . . . ,  h~  - 1} such 
that  7a t = N(b)b and 0 < ]7] -< IN(a)[ is a certificate. By (2.2), the size of 
l is bounded by log [D[. Using a technique analogous to the repeated squaring 
method used for exponentiation of integers (see for example [6], p. 442), we can 
compute an adapted k[x]-basis of the ideal a ~, using no more than O(log l) ideal 
multiplications and squarings. Then we proceed in a fashion similar to (EI). 
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