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Abstract. This paper analyzes reduction of fractional ideals in a purely
cubic function field of unit rank one. The algorithm is used for generating
all the reduced principal fractional ideals in the field, thereby finding
the fundamental unit or the regulator, as well as computing a reduced
fractional ideal equivalent to a given nonreduced one. It is known how
many reduction steps are required to achieve either of these tasks, but
not how much time and storage each reduction step takes. Here, we
investigate the complexity of a reduction step, the precision required in
the approximation of the infinite power series that occur throughout the
algorithm, and the size of the quantities involved.

1 Introduction and Motivation

Basis reduction of fractional ideals is one of the key ingredients in the compu-
tation of invariants of a purely cubic function field of unit rank one, such as the
fundamental unit, the regulator, the ideal class number and, most importantly,
the order of the Jacobian of the field. In fields of characteristic at least five, a
basis reduction procedure was first presented in [2], and its discussion was con-
tinued in [1]. The algorithm was originally used for generating the entirety of
reduced fractional principal ideals and thus finding the fundamental unit and the
regulator of the field. Unfortunately, there are usually exponentially many such
ideals, and enumerating them all is not the most efficient method for computing
the regulator. This is where another aspect of ideal basis reduction comes into
play: it quickly produces from a given nonreduced fractional ideal an equivalent
reduced one.

The infrastructure of the set of reduced principal ideals is a powerful tool for
invariant computations and a variety of other applications in both computational
number theory and cryptography. Loosely speaking, the product of two reduced
fractional principal ideals is generally not reduced; however, reduction produces
a reduced ideal “close to” the product ideal, and the number of basis reduction
steps required is polynomial in the size of the field. This phenomenon can be
exploited for computing invariants of the field much faster than with the naive
approach outlined above. For hyperelliptic, i.e. quadratic function fields (where
reduction amounts to computing a simple continued fraction expansion), this
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was successfully accomplished in [3] with an improvement in complexity from p
to essentially p2/5, where p is the number of reduced fractional principal ideals.
Work on the purely cubic setting is in progress at the time of writing, and we
expect a similarly dramatic speed-up from our original method of [2].

While it is known how many reduction steps are required to compute the
fundamental unit and the regulator of a purely cubic function field of unit rank
one and characteristic at least five, it is as yet unclear how long an individ-
ual reduction step takes, how large the inputs and outputs get, and how much
“precision” is required. Numerical experiments and heuristics suggest that the
answers to these three questions are ‘not very long’, ‘not very large’, and ‘not
too much’, respectively — at least in the reduced case — but we lack proof. This
paper remedies this rather unsatisfactory situation. To that extent, we provide
answers to the following questions:
• What is the complexity of an ideal basis reduction step?
• What is the size of the quantities involved?
• What is the minimal precision required in the approximation of the infinite

series involved?

2 Purely Cubic Function Fields

A detailed treatment of this material can be found in [2] and [1]. A purely cubic
function field is the function field of a plane curve given by the (not necessarily
nonsingular) model y3 − D(x) = 0 over a finite field k = Fq of order q whose
characteristic is not 3; here, D(x) ∈ k[x] is a cubefree polynomial. Thus, a purely
cubic function field can be viewed as a cubic extension K = k(x)(ρ) of a rational
function field k(x) obtained by adjoining a cube root ρ of a cubefree polynomial
D = D(x) ∈ k[x]; this makes it the function field analogue of a purely cubic
number field. We write D = GH2 where G,H ∈ k[x] are squarefree and coprime
and deg(G) ≥ deg(H).

The integral closure O of k[x] in K is both a ring and a k[x]-module of
rank 3 that is generated by the integral basis {1, ρ, ω} where ω = ρ2/H , so ω
is a cube root of D = G2H . If α = a + bρ + cω ∈ K (a, b, c ∈ k(x)), then
the conjugates of α are α′ = a + bιρ + cι2ω and α′′ = a + bι2ρ + cιω where
ι is a fixed primitive cube root of unity. The norm of α is N(α) = αα′α′′ =
a3 + b3GH2 + c3G2H − 3abcGH ∈ k(x).

We henceforth make the following assumptions:
• q ≡ −1 (mod 3) (so k contains no primitive cube roots of unity),
• deg(D) ≡ 0 (mod 3),
• The leading coefficient sgn(D) of D is a cube in k∗ = k \ {0}.

Then K/k(x) has two points at infinity, namely one rational point and one
quadratic point. The former gives rise to an embedding of K into the field
k〈x−1〉 of Puiseux series over k, and the Galois closure of K is embedable into
k(ι)〈x−1〉; nonzero elements in k〈x−1〉 (respectively, k(ι)〈x−1〉) have the form
α =

∑∞
i=−m aix

−i =
∑m

i=−∞ a−ix
i with ai ∈ k (respectively, k(ι)) for i ≥ −m

and a−m 6= 0. The degree valuation on k(x) extends canonically to k〈x−1〉 via
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deg(α) = m and to k(ι)〈x−1〉 via deg(α + βι) = (deg(α + βι)(α + βι2)/2 =
deg(α2 − αβ + β2)/2 ∈ Z (α, β ∈ k〈x−1〉). For α =

∑∞
i=−m aix

−i ∈ k〈x−1〉,
we set |α| = qdeg(α), sgn(α) = a−m, and bαc =

∑m
i=0 a−ix

i (with |0| = 0 and
b0c = 0). For α ∈ K, we have |α′| = qdeg(α′) = |α′α′′|1/2. Note that |G| ≥ |H |
implies |ρ| ≤ |ω|.

Under the above assumptions, K has unit rank 1 over k(x); that is, the the
group O∗ of units in O is isomorphic to k∗ × Z (see Theorem 2.1 of [2]). A
generator ε of the torsionfree part of O∗ is a fundamental unit of K/k(x). If
ε has positive degree (and is hence unique up to constant factors), then R =
deg(ε)/2 = −deg(ε′) is the regulator of K/k(x).

3 Fractional Ideals

A fractional ideal (of O) is a subset f of K such that there exists a nonzero
d ∈ k[x] such that df is an integral ideal in O, i.e. an additive subgroup of O
that is also closed under multiplication by elements of O. The unique monic
polynomial d = d(f) of minimal degree that satisfies this condition is the denom-
inator of f. f is principal if it consists of O-multiples of some θ ∈ K; write f = (θ).
The fractional ideals form an infinite Abelian group I under multiplication, of
which the set of principal fractional ideals forms an infinite subgroup P. The
factor group I/P is the ideal class group of K/k(x); it is a finite Abelian group
whose order is the ideal class number of K/k(x). The product h = Rh′ where R
is the regulator of K/k(x) is the order of the group of k-rational points on the
Jacobian of K; it is independent of the element x and thus the representation
of K as a function field. Two fractional ideals are equivalent if lie in the same
coset in I/P, i.e. if they differ by a factor that is a principal fractional ideal.

We will henceforth assume “fractional ideal” to mean “nonzero fractional
ideal containing 1”. Then every fractional ideal f is a k[x]-module of rank 3 with a
basis {1, µ, ν}; write f = [1, µ, ν]. If f = [1, µ, ν] where µ = (m0 +m1ρ+m2ω)/d,
ν = (n0 + n1ρ+ n2ω)/d with m0, m1, m2, n0, n1, n2, d ∈ k[x] jointly coprime
and d = d(f), then the norm of f is N(f) = a(m1n2 −m2n1)/d2 ∈ k(x) where
a ∈ k∗ is chosen so that N(f) is monic. The discriminant of f is

∆(f) = det


 1 1 1
µ µ′ µ′′

ν ν ′ ν ′′




2

∈ k(x).

Both N(f) and ∆(f) (up to a constant factor) are independent of the choice of
k[x]-basis of f, and N(f) is multiplicative on the set of fractional ideals.

A canonical basis of a fractional ideal f is a k[x]-basis {1, α, β} where α =
s′(u + ρ)/s, β = s′′(v + wρ + ω)/s with s, s′, s′′, u, v, w ∈ k[x], s′s′′ divides
s, s′′ divides H , and gcd(s′, H) = 1. Here s = d(f) up to sign, and we may
assume |s′u|, |s′′v| < |s|, and |w| < |s′|. Such a basis always exists, and it is a
simple matter to generate a canonical basis from any given basis, or compute
a canonical basis of the product ideal of two fractional ideals given in terms of
respective canonical bases (see [1]).
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An element θ in a fractional ideal f is a minimum in f if for any φ ∈ f,
|φ| ≤ |θ| and |φ′| ≤ |θ′| imply φ ∈ kθ; that is, φ differs from θ only by a constant
factor. f is reduced if 1 is a minimum in f. It is easy to see that an element θ is a
minimum in O if and only if the fractional principal ideal f = (θ−1) is reduced.

We summarize some properties of fractional ideals; the proofs of these results
can be found in [2] and [1].

Proposition 3.1. Let f be a fractional ideal.
1. ∆(f) = a2N(f)2∆ for some a ∈ k∗.
2. |d(f)|−2 ≤ |N(f)| ≤ |d(f)|−1.
3. If f is reduced, then |∆(f)| > 1, so |N(f)| > |∆|−1/2.
4. If f is reduced, then |d(f)| < |∆|1/2, so |N(f)| < |∆||d(f)|−3.
5. If |∆(f)| > |d(f)|2, i.e. |d(f)| < |N(f)||∆|1/2, then f is reduced.
6. If f is nonreduced, then |N(f)| ≤ |∆|−1/4, so |∆(f)| ≤ |∆|1/2.

Let f be a fractional ideal and let θ be a minimum in f. An element φ ∈ f is
the neighbor of θ in f if φ is also a minimum in f, |θ| < |φ|, and for no ψ ∈ f,
|θ| < |ψ| < |φ| and |ψ′| < |θ′|. φ always exists and is unique up to nonzero
constant factors (see Theorem 5.1 of [2]).

The Voronoi chain (θn)
n∈N

of successive minima in O where θ1 = 1 and
θn+1 is the neighbor of θn in O yields the entirety of minima in O of nonnegative
degree (Voronoi first investigated this chain in cubic number fields in [4]). This
chain is given by the recurrence θn+1 = µnθn where µn is the neighbor of 1 in
the reduced fractional principal ideal fn = (θ−1

n ) (n ∈ N). The first nontrivial
unit ε = θp+1 (p ∈ N) encountered in this chain is the fundamental unit of
K of nonnegative degree. Since the recurrence for the Voronoi chain implies
θmp+n = εmθn for m ∈ N0 and n ∈ N, {f1, f2, . . . , fp} is the complete set of
reduced principal fractional ideals in K. The positive integer p is the period of ε.
By Theorem 6.5 of [2], p = O(q(deg(∆)/2)−2), so there may be (and usually are)
exponentially many reduced fractional ideals in K/k(x).

4 Reduced Bases

For the remainder of the paper, we exclude the case of even characteristic, so k
has characteristic at least 5. For θ = l + mρ + nω ∈ K with l, m, n ∈ k(x), we
define

ξθ = θ − l = mρ+ nω,
ηθ = (1 + 2ι)−1(θ′ − θ′′) = mρ− nω,
ζθ = θ′ + θ′′ = 2l−mρ− nω,

(4.1)

where ι(6∈ k) is a primitive cube root of unity. Then

θ =
1
2
(3ξθ + ζθ), θ′θ′′ =

1
4
(3η2

θ + ζ2
θ ), (4.2)

so
|θ′| = max{|ηθ|, |ζθ|}, |ξθ| ≤ max{|θ|, |θ′|}. (4.3)
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If {1, θ, φ} is a basis of a fractional ideal f, then

(ξµην − ξνηµ)2 = − 4
27
∆(f). (4.4)

A k[x]-basis {1, µ, ν} of a (reduced or nonreduced) fractional ideal f is reduced if

|ξµ| > |ξν|, |ζµ| < 1, |ζν | ≤ 1, |ηµ| < 1 ≤ |ην|,
if |ην| = 1, then |ν | 6= 1. (4.5)

The following procedure (which is essentially Algorithm 7.1 in [2]) generates a
reduced basis of a fractional ideal.

Algorithm 4.1. (Ideal Basis Reduction)
Input: µ̃, ν̃ where {1, µ̃, ν̃} is a basis of some fractional ideal f.
Output: µ, ν where {1, µ, ν} is a reduced basis of f.
Algorithm:
1. Set µ = µ̃, ν = ν̃.
2. If |ξµ| < |ξν| or if |ξµ| = |ξν| and |ηµ| < |ην|, replace(

µ
ν

)
by

(
0 1
−1 0

)(
µ
ν

)
.

3. If |ηµ| ≥ |ην|
3.1. While |ξνην| > |∆(f)|1/2, replace(

µ
ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ
ν

)
.

3.2. Replace (
µ
ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ
ν

)
.

3.3. If |ηµ| = |ην|, replace(
µ
ν

)
by

(
1 −sgn(ηµη

−1
ν )

0 1

) (
µ
ν

)
.

4. While |ην| < 1, replace(
µ
ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ
ν

)
.

While |ηµ| ≥ 1, replace(
µ
ν

)
by

(bην/ηµc −1
1 0

) (
µ
ν

)
.
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5. Replace µ by µ − bζµc/2 and ν by ν − bζνc/2.
6. If |ξν| = |ην| = 1, replace ν by ν − bνc.

A reduced basis provides an easy means by which to determine whether or not
an ideal is reduced (see [1]):

Proposition 4.2. Let {1, µ, ν} be a reduced basis of a fractional ideal f.
1. If f is reduced, then µ is the neighbor of 1 in f.
2. f is reduced if and only if |µ| > 1 and max{|ν |, |ην|} > 1.
3. f is nonreduced if and only if |µ| ≤ 1 or |ν | < |ην| = 1.

Part 2 of Proposition 4.2 in conjunction with (4.3) and step 5 of Algorithm 4.1
implies that step 6 can only be entered if the input ideal f is nonreduced. Part 1
of this proposition together with the recursion for the Voronoi chain shows that
repeated application of Algorithm 4.1 to the ideal fn = (θ−1

n ) with subsequent
division of fn by the neighbor µn of 1 in fn generates all the minima of nonnega-
tive degree in O and hence the fundamental unit ofK. A similar recursion allows
for computing from a given nonreduced fractional ideal an equivalent reduced
one.

Let f be any nonreduced fractional ideal and define a sequence (fn)
n∈N

of
pairwise equivalent fractional ideals as follows.

f1 = f, fn+1 = (φ−1
n )fn where φn =

{
µn if |µn| ≤ 1,
νn if |µn| > 1, (n ∈ N) (4.6)

and {1, µn, νn} is a reduced basis of fn. The case φn = νn in (4.6) can happen at
most once; that is, if fn is nonreduced with |µn| > 1, then fn+1 is reduced and a
reduced basis of fn+1 can be obtained directly without applying Algorithm 4.1:

Proposition 4.3. Let f be a nonreduced ideal with a reduced basis {1, µ, ν} and
let g = (ν−1)f = [1, µν−1, ν−1]. If |µ| > 1, then g is reduced with a reduced basis
{1, µν−1, ν−1}.

Proof. If |µ| > 1, then by part 3 of Proposition 4.2 and (4.3) |ν |< 1 = |ην| = |ν ′|.
Let α = µν−1 and β = ν−1. Then |α′| = |µ′| < 1, so |ηα| < 1, |ζα| < 1, and
since |α| > 1, |ξα| = |α| by (4.2). Furthermore, |β′| = 1, so |ζβ| ≤ 1, and
|ξβ| = |β| = |ν |−1 > 1. Since ηβ = −ην(ν ′ν ′′)−1, |ηβ| = 1.

Since |α| > 1 and max{|β|, |ηβ|} > 1, g is reduced by part 2 of Proposition
4.2. Since |ξα| = |α| > |ν |−1 = |ξβ|, |ηα| < 1 = |ηβ|, |ζα| < 1, and |ζβ| ≤ 1,
{1, α, β} is a reduced basis of g.

A polynomial number of steps of recursion (4.6) produces a reduced ideal (see [1]):

Proposition 4.4. Let f = f1 be a nonreduced fractional ideal.
1. The recursion (4.6) produces a reduced fractional ideal fm equivalent to f for

some m ∈ N.
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2. If m in part 1 is minimal, i.e. fm is reduced and fn is nonreduced for n < m,
then

m ≤ max
{

1,
1
2

(
5 − deg(N(f)) − 1

4
deg(∆)

)}
.

3. If f is the product of two reduced ideals and m is as in part 2, then

m ≤ 3
8

(deg(∆) + 4) .

As an aside, we mention the infrastructure of the set {f1, f2, . . . , fp} of reduced
principal fractional ideals. If fi = (θi)−1 for i = 1, 2, . . . , p, then the distance of
fi is δi = deg(θi). From part 3 of Proposition 4.4, a reduced principal ideal f can
be obtained by applying no more than 3(deg(∆)+ 4)/8 iterations of (4.6) to the
initial (generally nonreduced) product ideal fifj. Moreover, δ(f) = δi + δj + δ
with δ = O(deg(∆)) = O(logp), so the distance of f is within a logarithmically
small ‘error’ of where one would expect it to be. As pointed out in section 1,
this phenomenon allows for much faster computation of the fundamental unit
and other invariants of K/k(x).

The implementation of Algorithm 4.1 raises a number of questions: How large
do the degrees of θ, ξθ, and ηθ (θ ∈ {µ, ν}) and those of their basis coefficients
get throughout the algorithm? How often the while loops in steps 3.1 and 4
executed? And how does one determine absolute values of ξθ and ηθ, and compute
the quantities bξµ/ξνc in steps 3.2 and 4 as well as bηµ/ηνc in step 4? These
questions will be addressed in the next three sections.

5 Input/Output Sizes in Ideal Basis Reduction

We begin with the following empirical observation; for quadratic integers (as
opposed to Puiseux series), this is referred to as the Gauß-Kuz’min law. Let
α = α0 ∈ k〈x−1〉 and define ai = bαic ∈ k[x] and αi+1 = (αi − ai)−1 for i ∈ N0.
Then the ai (i ∈ N0) are the partial quotients in the simple continued fraction
expansion of α, and for i ∈ N, ai will almost always have very small degree. The
quotients bξµ/ξνc in steps 3.1, 3.2, and the first while loop of step 4 are easily
seen to be partial quotients in the simple continued fraction expansion of ξµ0/ξν0

where µ0 and ν0 are the inputs of step 3.1 or, if that loop is never entered, of
step 3.2; similarly for bην/ηµc in the second while loop of step 4. These quotients
will therefore almost always have very small degree, with the possible exception
of the very first such partial quotient.

Let {1, µ, ν} be a reduced basis of some fractional ideal f that was computed
using Algorithm 4.1. Since |ηµ| < 1 ≤ |ην|, and ην and ηµ differ by a factor
that is a partial quotient as described above, |ην| will usually have quite small
degree, and |ηµ| will not be much smaller that 1. By (4.5) and (4.4), |ξν | <
|ξµ| ≤ |∆(f)|1/2, so usually, |ξµ| will be close to |∆(f)|1/2, and since ξµ and ξν
once again differ by a factor that is a partial quotient in a simple continued
fraction expansion, |ξν | will not be much smaller than |ξµ|.

We have the following rigorous bounds on reduced bases:
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Proposition 5.1. Let {1, µ, ν} be a reduced basis of a fractional ideal, where
µ = (m0 +m1ρ+ m2ω)/d, ν = (n0 + n1ρ + n2ω)/d with m0, m1, m2, n0, n1, n2

∈ k[x] and d = d(f).
1. bm0/dc = bm1ρ/dc = bm2ω/dc = 3bµc.
2. |µ| ≤ max{q−1, |∆(f)|1/2}, |m0|, |m1ρ|, |m2ω| ≤ max{q−1|d|, |∆|1/2}, |ν | ≤

max{1, q−1|∆(f)|1/2}, |n1ρ+ n2ω| < |∆|1/2, |n0| ≤ max{|d|, q−1|∆|1/2}.
3. If |µ| > 1, then |ν | < |µ| ≤ |∆(f)|1/2, |m0| = |m1ρ| = |m2ω| ≤ |∆|1/2,

|n0|, |n1ρ|, |n2ω| < |∆|1/2.

Proof. Part 1 follows immediately from |ηµ| < 1 and |ζµ| < 1. For part 2,
we note that from (4.2), (4.5), and (4.4) |µ| ≤ max{|ζµ|, |ξµ|} with |ζµ| < 1
and |ξµ| = |∆(f)|1/2|ην|−1 ≤ |∆(f)|1/2. The bounds on |m1ρ| and |m2ω| follow
from |m1ρ −m2ω| = |dηµ| < |d| and |m1ρ + m2ω| = |dξµ| ≤ |dN(f)||∆|1/2 ≤
|∆|1/2 by (4.4) and the first two parts of Proposition 3.1. Furthermore, |m0| ≤
max{|dξν|, |dζν|}. Now by (4.2) |ν | ≤ max{|ζµ|, |ξν|} with |ζν| ≤ 1 and |ξν| <
|ξµ| ≤ |∆(f)|1/2 by (4.4), |dξν| < |dξµ| ≤ |∆|1/2, and |n0| ≤ max{|dζν|, |dξν|} ≤
max{|d|, q−1|∆|1/2}. The bounds in part 3 follow from part 1, (4.2), and the fact
that |d| < |∆|1/2 by part 4 of Proposition 3.1.

Note that unfortunately, we have no rigorous upper bound on |ην| and hence
on |n1ρ| and |n2ω| in the (nonreduced) case where |µ| ≤ 1. However, as we saw
above, these values will generally not be too large. We proceed to analyze the
sizes of the inputs of step 2 of Algorithm 4.1.

Lemma 5.2.
1. Let f1 be a fractional ideal and let fn+1 = (µ−1

n )fn where {1, µn, νn} is a
reduced basis of fn (n ∈ N). Let f = fn+1 = [1, µ−1, νµ−1] for some n ∈ N

with µ = µn and ν = νn. Then

max
{
|ηµ−1 |, |ηνµ−1 |

|ν ′|
}

=
1
|µ′| ,

|ξµ−1 | ≤ 1
min{|µ|, |µ′|} , |ξνµ−1 | ≤ max

{ |ν |
|µ| ,

|ν ′|
|µ′|

}
≤ |ν ′|

min{|µ|, |µ′|} .

|∆(f)|1/2 ≤ max{|ξµ−1ηνµ−1 |, |ξνµ−1ηµ−1 |} ≤ |∆(f)|1/2 max{|µ|, |µ′|}
|ξµ| .

If fn is reduced, then

max{|ηµ−1 |, |ξµ−1|} =
1
|µ′| ≤ |∆(f)|1/4,

max{|ηνµ−1 |, |ξνµ−1|} =
|ν ′|
|µ′| < |∆(f)|1/2,

max{|ξµ−1ηνµ−1 |, |ξνµ−1ηµ−1 |} = |∆(f)|1/2.
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If fn is nonreduced and f1 is the product of two reduced fractional ideals, then

max
{
|ηµ−1 |, |ηνµ−1|

|ν ′|
}
< |∆(f)∆|1/4,

max
{
|ξµ−1 |, |ξνµ−1 |

|ν ′|
}

≤ q−3|∆(f)∆|1/2.

max
{
|ξµ−1ηµ−1 |, ξνµ−1ηνµ−1 |

|ν ′|2
}

≤ q−2|∆(f)∆|1/2.

2. Let {1, α, β} be a canonical basis of a fractional ideal f. Then∣∣∣∣ ρ

d(f)

∣∣∣∣ ≤ |ξα|, |ηα| ≤ |ρ|,
∣∣∣∣ ω

d(f)

∣∣∣∣ ≤ max{|ξβ|, |ηβ|} ≤ |ω|.

If f is reduced, then |ξα|, |ηα| > |ω|−1, max{|ξβ|, |ηβ|} > |ρ|−1.
If f is the product of two reduced fractional ideals, then

|ξα|, |ηα| ≥ q2

|∆|1/2|ω| , max{|ξβ|, |ηβ|} ≥ q2

|∆|1/2|ρ| .

Proof. 1. By (4.3) |ηµ−1 | ≤ |µ′|−1, |ξµ−1 | ≤ max{|µ|−1, |µ′|−1}, |ηνµ−1| ≤
|ν ′||µ′|−1, and |ξνµ−1 | ≤ max{|ν ||µ|−1|, |ν ′||µ′|−1}. Since |ν | ≤ max{1, |ξµ|}
≤ max{1, |µ|}, we have |ν ||µ|−1 ≤ max{1, |µ|−1} ≤ |ν ′|max{|µ|−1, |µ′|−1}.
A simple computation reveals that

ηµ−1 = − ηµ

µ′µ′′ , ηνµ−1 =
ηνζµ − ηµζν

2µ′µ′′ .

Since max{|ζµ|, |ηµ|} = |µ′|, one of ηµ−1 and ηνµ−1/ην has absolute value
|µ′|−1.
Now by (4.4) |ξµ−1ηνµ−1 −ξνµ−1ηµ−1 | = |∆(f)|1/2, so |∆(f)|1/2 cannot exceed
both summands in absolute value. By (4.4), an upper bound on the absolute
values of both terms is given by

|ν ′|
|µ′|min{|µ|, |µ′|} =

|∆(fn)|1/2

|µ′ξµ|min{|µ|, |µ′|} = |∆(f)|1/2 max{|µ|, |µ′|}
|ξµ|

since ∆(f) = N(µ)−2∆(fn).
If fn is reduced, then |µ| > 1, so |ξµ| = max{|µ|, |µ′|} = |µ| and |ν | ≤
max{1, |ξν|} < |µ|. Furthermore,

ζµ−1 =
ζµ
µ′µ′′ , ζνµ−1 =

ζµζν − 3ηµην

2µ′µ′′ .

If |ζµ| = |µ′|, then |ηνµ−1 | = |ν ′||µ′|−1 and |ξµ−1 | = |2µ−1 − ζµ−1 | =
|µ′|−1. If |ηµ| = |µ′|, then |ηµ−1 | = |µ′|−1 and |ξνµ−1 | = |2νµ−1 − ζνµ−1 | =
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|ν ′||µ′|−1. Finally, |µ′|2 = |N(µ)||µ|−1 ≥ |N(µ)||∆(fn)|−1/2 = |∆(f)|−1/2 and
|ν ′||µ′|−1 = |∆(fn)|1/2|µµ′|−1 < |∆(fn)|1/2|N(µ)| = |∆(f)|1/2.
If fn is nonreduced, then |µ| ≤ 1. If f1 is the product of two reduced ide-
als, then by part 3 of Proposition 3.1, |∆(fn)| ≥ ∆(f1)| ≥ q4|∆|−1. Then
|µ′|2 ≥ |N(µ)| = |∆(f)−1∆(fn)|1/2 ≥ q2|∆(f)∆|−1/2 and min{|µ|, |µ′|} ≥
q−1|N(µ)| ≥ q3|∆(f)∆|−1/2.

2. Let α = s−1s′(u + ρ), β = s−1s′′(v + wρ + ω)}. Then ξα = ηα = s′s−1ρ,
ξβ = s′′s−1(wρ + ω), ηβ = s′′s−1(wρ − ω) with |w| < |s′|. Since |s′s′′| ≤
|s| = |d(f)| and |ρ| ≤ |ω|, the first set of bounds follows. If f is reduced, then
|d(f)| < |∆|1/2 = |ρω| by part 4 of Proposition 3.1. If f is the product of two
reduced fractional ideals, then |d(f)| ≤ |N(f)|−1 ≤ q2|∆| by parts 2 and 3 of
Proposition 3.1.

We point out that in the situation where Algorithm 4.1 is applied to the prod-
uct f of two reduced fractional ideals (as is the case in the infrastructure scenario,
for example), the input is a canonical basis and not of the form {µ−1, νµ−1}.

We now proceed to investigate the workings of ideal basis reduction in more
detail; in particular, we will see how the sizes of the quantities ξµ, ξν, ηµ, and
ην change throughout Algorithm 4.1. We point out that after step 2 of the
algorithm, |ξν | ≤ |ξµ| and |ην| ≤ |ηµ|.
Lemma 5.3.
1. In step 3.1 of Algorithm 4.1, ξµ and ηµ do not increase in absolute value

in the first iteration and decrease in absolute value in each subsequent iter-
ation. ξν and ην decrease in absolute value in each iteration. Furthermore,
|ξµ| > |ξν| and |ηµ| > |ην| after each iteration.

2. Step 3.2 of Algorithm 4.1 decreases ξµ, ξν , and ηµ, but does not decrease ην

in absolute value. After execution, |ξµ| > |ξν| and |ηµ| ≤ |ην|.
3. Step 3.3 of Algorithm 4.1 leaves the absolute values of ξµ, ξν, and ην un-

changed, but decreases ηµ in absolute value. After execution, |ξµ| > |ξν| and
|ηµ| < |ην|.

Proof. Let {α, β} be the input and {µ, ν} the output of any iteration of step 3.1,
step 3.2, or step 3.3.

Since |ξνην| > |∆(f)|1/2 if and only if |ξµ/ξν − ηµ/ην| < 1, or equivalently, if
and only if bξµ/ξνc = bηµ/ηνc, we have in step 3.1

ξµ = ξβ , ξν = −ξα +
⌊
ξα
ξβ

⌋
ξβ,

ηµ = ηβ, ην = −ηα +
⌊
ηα

ηβ

⌋
ηβ.

Therefore |ξν | < |ξβ| = |ξµ| and |ην| < |ηβ| = |ηµ|. From step 2 of the algorithm,
in the first iteration |ξα| ≥ |ξβ| and |ηα| ≥ |ηβ|, so |ξµ| ≤ |ξα| and |ηµ| ≤ |ηα|. In
subsequent iterations, we have |ξα| > |ξβ| and |ηα| > |ηβ|, so |ξµ| = |ξβ| < |ξα|
and |ηµ| = |ηβ| < |ηα|.
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In step 3.2, the transformations on ξµ, ξν, ηµ are the same as in step 3.1, so
each of these quantities decrease in absolute value, and we still have |ξµ| ≥ |ξν|.
Furthermore,

|ην| =
∣∣∣∣
(
−ηα +

⌊
ηα

ηβ

⌋
ηβ

)
−

(⌊
ηα

ηβ

⌋
−

⌊
ξα
ξβ

⌋)
ηβ

∣∣∣∣ .
The first term in the difference has absolute value less than |ηβ|, while the
second term is at least |ηβ| in absolute value because |bηα/ηβc − bξα/ξβc| ≥ 1.
So |ην| ≥ |ηβ| = |ηµ|.

In step 3.3, we have ν = β, so ξν and ην are unchanged. Furthermore, if
a = sgn(ηαη

−1
β ), then |ξµ| = |ξα − aξβ| = |ξα| as |ξα| > |ξβ| = |ξν|. Finally, since

a = bηα/ηβc, |ηµ| < |ηβ| = |ην|.
Analogous results hold for step 4 of Algorithm 4.1:

Lemma 5.4.
1. In the first loop of step 4 of Algorithm 4.1, ξµ and ξν decrease in absolute

value in each iteration, while ηµ and ην increase in absolute value in each
iteration.

2. In the seconds loop of step 4 of Algorithm 4.1, ξµ and ξν increase in absolute
value in each iteration, while ηµ and ην decrease in absolute value in each
iteration.

3. Throughout step 4, |ξµ| > |ξν| and |ηµ| < |ην|. At most one of the while
loops in step 4 is entered, and after the last iteration of either of the loops,
|ξµ| > |ξν| and |ηµ| < 1 ≤ |ην|.
The previous two lemmata show that |ην| takes on its largest value through-

out the algorithm either after step 3.2 or after the first loop of step 4 if that
value is less than 1 after step 3.2. Since in both cases |ηνξµ| = |∆(f)|1/2, and
we generally at least expect |ξµ| ≥ |d(f)|−1, we usually have by parts 1 and 2 of
Proposition 3.1 |ην| ≤ |d||∆(f)|1/2 ≤ |∆|1/2 for this maximal value.

6 Complexity of Ideal Basis Reduction

We now investigate how often each of the while loops in the basis reduction
algorithm.

Proposition 6.1. Let f = [1, µ, ν] where µ, ν are the inputs of Algorithm 4.1.
Assume that |ξµ| ≥ |ξν| and |ηµ| ≥ |ην|, so step 2 has been executed. Denote by
r, s, and t the number of iterations of step 3.1, the first loop in step 4, and the
second loop in step 4, respectively. Then

r ≤ max
{

0,
1
2

(
deg(ξνην) − 1

2
deg(∆(f)) + 1

)}
,

r + s ≤ max{0, deg(ξν) − 1
2

deg(∆(f))}, r + t ≤ max{0, deg(ην) + 1}.
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Proof. Let {µ0, ν0} be the first input and {µi, νi} the output after iteration i
(1 ≤ i ≤ r) of step 3.1. From part 1 of Lemma 5.3 |ξνi | < |ξνi−1 | and |ηνi| <
|ηνi−1|, so inductively |ξνi | ≤ q−i|ξν | and |ηνi| ≤ q−i|ην| for 1 ≤ i ≤ r. Then
|∆(f)|1/2 ≤ q−1|ξνr−1ηνr−1 | ≤ q1−2r|ξνην|, so qr ≤ (|ξνην||∆(f)|−1/2q)1/2.

Again, let {µ0, ν0} be the first input and {µi, νi} the output after iteration
i (1 ≤ i ≤ s) of the first loop of step 4. Then |ην0| < 1. Analogous to the
previous part, we infer from Lemma 5.4 that |ηνi| ≥ qi|ην0| for 1 ≤ i ≤ s, and
|ηνs−1| < 1 ≤ |ηνs|. Then 1 ≥ q|ηνs−1 | ≥ qs|ην0|. Here, ν0 is the ν value output by
step 3.3 and hence by 3.2 (since 3.3 leaves it unchanged). Thus, the corresponding
ην is the quantity ηνr+1, where we interpret step 3.2 as the (r + 1)-st iteration
of the loop in step 3.1. Now |ηνr+1| = |∆(f)|1/2|ξνr |−1 ≥ qr|∆(f)|1/2|ξν|−1. Thus,
qr+s ≤ |ξν ||∆(f)|−1/2.

In the second loop of step 4 of Algorithm 4.1, we have |ηµi | ≤ q−i|ηµ0 | for
1 ≤ i ≤ t, and |ηµt| < 1 ≤ |ηµt−1|. Then 1 ≤ |ηνt−1 | ≤ q−(t−1)|ηµ0 |, where |µ0| is
µ value output by step 3.3. The corresponding |ηµ0 | is at most equal to |ηµr+1|.
Then |ηµr+1| = |ηνr | ≤ q−r|ην|, so qr+t ≤ q|ην|.

Corollary 6.2. Let r, s, and t be as in Lemma 5.2. Let f be the input ideal and
{1, µ, ν} the input basis of Algorithm 4.1. Assume that |ξµ| ≥ |ξν| and |ηµ| ≥ |ην|,
so step 2 has been executed.
1. Suppose f = fn+1 for some n ∈ N, where f1 is a fractional ideal, fn+1 =

(µ−1
n )fn with {1, µn, νn} a reduced basis of fn (n ∈ N).

If fn is reduced, then r = s = 0, t ≤ 1
4

deg(∆(f)) + 1.

If fn is nonreduced and f1 is the product of two reduced fractional ideals, then

r ≤ 1
4

deg(∆) − 1
2
, r + s ≤ 1

2
deg(∆) − 3, r + t ≤ 1

4
deg(∆(f)∆) + 1.

2. Suppose {1, µ, ν} is a canonical basis of f. Then

r ≤ 1
2
(deg(d(f))+1), r+s ≤ max{0, deg(d(f))−deg(ω)}, r+t ≤ deg(ρ)+1.

If f = O, i.e. ν = ρ and µ = ω, then r = s = 0, t ≤ deg(ρ) + 1.

If f is reduced, then r ≤ 1
4

deg(∆), r + s < deg(ρ), r + t ≤ deg(ρ) + 1.

If f is the product of two reduced fractional ideals, then

r <
1
2

deg(∆), r + s ≤ 1
2

deg(∆) + deg(ρ) − 2, r + t ≤ deg(ρ) + 1.

Proof. Part 1 follows directly from the bounds in Lemma 5.2. For part 2, let
{1, α, β} be a canonical basis of f with α = s′s−1ρ and β = s′′s−1(wρ + ω).
Since |ρ| ≤ |ω|, |ξαηα||∆(f)|−1/2 ≤ |s′ρ||s′′ω|−1 ≤ |s| = |d(f)|, |ξα||∆(f)|−1/2 =
|s||s′′ω|−1 ≤ |d(f)||ω|−1, and |ηα| ≤ |ρ|. Once again by Proposition 3.1, |d(f)| <
|∆|1/2 if f is reduced and |d(f)| ≤ q−2|∆| if f is the product of two reduced ideals.
If ν = ρ and µ = ω, then |ξνην | = |ρ|2 ≤ |∆|1/2 = |∆(O)|1/2 and |ξν | < |∆|1/2.
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Corollary 6.2 reveals that if the input ideal f of Algorithm 4.1 is either equal
to O (with basis {1, ρ, ω}), or is of the form f = fn+1 = (µ−1

n )fn where fn is
reduced and {1, µn, νn} is a reduced basis of fn, then step 3.1, the first while
loop in step 4, and step 6 can be omitted. This is the case, in particular, if the
regulator or the fundamental unit of K/k(x) are computed by generating the
recursion fn+1 = (µ−1

n )fn with f1 = fp+1 = O.

Algorithm 6.3. (Basis Reduction, Input Ideal of Special Form)
Input: µ̃, ν̃ where {1, µ̃, ν̃} is a basis of some fractional ideal f. Here, {µ̃, ν̃} =

{ρ, ω} or {µ̃, ν̃} = {φ−1, θφ−1} where {1, φ, θ} is a reduced basis of a reduced
fractional ideal.

Output: µ, ν where {1, µ, ν} is a reduced basis of f.
Algorithm:
1. Set µ = µ̃, ν = ν̃.
2. If |ξµ| < |ξν| or if |ξµ| = |ξν| and |ηµ| < |ην|, replace(

µ
ν

)
by

(
0 1
−1 0

)(
µ
ν

)
.

3. If |ηµ| ≥ |ην|
3.1. Replace (

µ
ν

)
by

(
0 1
−1 bξµ/ξνc

)(
µ
ν

)
.

3.2. If |ηµ| = |ην|, replace(
µ
ν

)
by

(
1 −sgn(ηµη

−1
ν )

0 1

) (
µ
ν

)
.

4. While |ηµ| ≥ 1, replace(
µ
ν

)
by

(bην/ηµc −1
1 0

) (
µ
ν

)
.

5. Replace µ by µ − bζµc/2 and ν by ν − bζνc/2.

7 Precision Required for Ideal Basis Reduction

When computing absolute values as well as integer parts of quotients as required
in basis reduction algorithm, the relevant quantities of the form bρ± cω need to
be approximated to sufficient “precision” with a Puiseux series in k〈x−1〉 that is
truncated at some suitable negative power of x. Our numerical experiments in
[2] show that increasing the precision or even using variable precision does not
have a significant impact on the running time of the algorithm; for example, a
reduction in precision from deg(D) to deg(D)/2 made a difference of only 5-10
percent in computation time. Nevertheless, it is desirable to have a lower bound
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on the minimal precision required; in [2], where we implemented Algorithm 4.1
for reduced ideals only, we relied exclusively on heuristics and numerical evidence
in determining our precision.

We define a relative approximation of precision n ∈ N0 to an element α =∑∞
i=−m aix

−i ∈ k〈x−1〉 to be α̂n =
∑n−deg(α)

i=−m aix
−i. Then |1 − α̂/α| < q−n, or

equivalently, |α − α̂| < qdeg(α)−n. To approximate a quantity of the form θ =
bρ+ cω with b, c ∈ k(x), such as ξµ, ξν , ηµ, and ην, we generate relative approxi-
mations ρ̂n and ω̂n of sufficient precision n to ρ and ω, respectively, and approx-
imate θ by θ̂ = bρ̂n +cω̂n. ρ̂n is precomputed by explicitly extracting a cube root
of D ∈ k[x] so that the coefficients of xdeg(D)/3, . . . , x, 1, x−1, . . . , xn−deg(D)/3 are
correct, and ω̂n is given by the following lemma.

Lemma 7.1. Let ρ̂n be a relative approximation of precision n to ρ. Then ω̂n =
bxn−deg(ω)ρ̂2

n/Hcxdeg(ω)−n is a relative approximation of precision n to ω.

Here, it is a simple matter to verify that |1− ωn/ω̂n| < q−n. Henceforth, we
denote by ρ̂n and ω̂n relative approximations of some precision n ∈ N to ρ and
ω, respectively. For θ = a+ bρ+ cω with a, b, c ∈ k(x), we set

θ̂ = a+ bρ̂n + cω̂n, ξ̂θ = bρ̂n + cω̂n, η̂θ = bρ̂n − cω̂n, ζ̂θ = 2a− bρ̂n − cω̂n.

The following lemma gives lower bounds on the precision required to compute
absolute values and integer parts of certain Puiseux series correctly.

Lemma 7.2. Let θ, φ ∈ k(x).
1. If m ∈ Z and qn+m ≥ max{|ξθ|, |ηθ|}, then |ξθ| = qm if and only if |ξ̂θ| = qm,

|ξθ| ≤ qm if and only if |ξ̂θ| ≤ qm, and |ξθ| < qm if and only if |ξ̂θ| < qm.

2. If qn ≥ max
{

1,
∣∣∣∣ηθ

ξθ

∣∣∣∣
}

, then |ξθ| = |ξ̂θ|.

3. If qn ≥ max{|ξθ|, |ηθ|}, then bθc = bθ̂c and bζθc = bζ̂θc.

4. If |ξθ| ≥ |ξφ| and qn ≥ max

{
1,

∣∣∣∣ ξθξφ
∣∣∣∣ ,

∣∣∣∣ηθ

ξφ

∣∣∣∣ ,
∣∣∣∣∣ξθηφ

ξ2φ

∣∣∣∣∣
}

, then
⌊
ξθ
ξφ

⌋
=

⌊
ξ̂θ

ξ̂φ

⌋
.

Proof. If θ = a+ bρ+ cω with a, b, c ∈ k[x], then

|θ− θ̂| = |ξθ − ξ̂θ| = |ζθ − ζ̂θ|
= |b(ρ− ρ̂n) + c(ω − ω̂n)| < max{|bρ|, |cω|}q−n = max{|ξθ|, |ηθ|}q−n.

This immediately yields parts 1–3. For part 4, we have

ξ̂θ

ξ̂φ
=
ξθ
ξφ

+
ξθ(ξφ − ξ̂φ)

ξφξ̂φ
+
ξ̂θ − ξθ

ξ̂φ
.

Suppose that |ξθ| ≥ |ξφ| and qn ≥ max{1, |ξθ/ξφ|, |ηθ/ξφ|, |ξθηφ/ξ
2
φ|}. Then∣∣∣∣∣ξθ(ξφ − ξ̂φ)

ξφξ̂φ

∣∣∣∣∣ < |ξθ|
|ξφ|2 max{|ξφ|, |ηφ|}q−n ≤ 1;

similarly, |(ξ̂θ − ξθ)/ξ̂φ| < 1. So bξθ/ξφc = bξ̂θ/ξ̂φc.
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We are now able to give lower bounds on n for the different steps of Algorithm
4.1. We consider a precision of n to be sufficient if in any identity or condition on
a quantity θ, θ can be replaced by a relative approximation θ̂ of precision n to
θ. For example, n is sufficient for step 3.1 of Algorithm 4.1 if |ξνην| > |∆)(f)|1/2

exactly if |ξ̂ν η̂ν| > |∆(f)|1/2 and if bξµ/ξνc = bξ̂µ/ξ̂νc in every iteration of the
loop.

Lemma 7.3. Let f be the input ideal and {1, µ, ν} the input basis of Algorithm
4.1 Define {α, β} = {γ, δ} = {µ, ν} such that |ξα| ≥ |ξβ| and |ηγ | ≥ |ηδ|. Let r,
s, and t be as in Proposition 6.1. Then a precision of n is sufficient for

1. step 2 and the if condition at the start of step 3 if qn ≥ max
{∣∣∣∣ηγ

ξα

∣∣∣∣ ,
∣∣∣∣ξαηγ

∣∣∣∣
}

;

2. step 3.1 if qn ≥ max
{∣∣∣∣ξαξβ

∣∣∣∣ ,
∣∣∣∣ξαηγ

∣∣∣∣ ,
∣∣∣∣ηγ

ξβ

∣∣∣∣ , |ξβ|2
|∆(f)|1/2

,
|ξβηδ|

|∆(f)|1/2
, qlr−2 |ηδ|2

∆(f)|1/2

}

where qlr =
∣∣∣∣ξµr

ξνr

∣∣∣∣ for r ≥ 1;

3. step 3.2 if qn ≥ max

{∣∣∣∣ξαξβ
∣∣∣∣ ,

∣∣∣∣ηγ

ξβ

∣∣∣∣ ,
∣∣∣∣∣ξαηδ

ξ2β

∣∣∣∣∣ , qlr , q2lr−2 |ηδ|2
∆(f)|1/2

}
;

4. step 3.3 if qn ≥ max
{

1,
|ξβ|2

|∆(f)|1/2

}
;

5. the first while loop of step 4 if qn ≥ max
{
|∆(f)|1/2, |ξβ|, ql,

q2ls−1−2

|∆(f)|1/2

}
where

ql = max
0≤i≤s−1

{∣∣∣∣ξµi

ξνi

∣∣∣∣
}

and qls−1 =
∣∣∣∣ξµs−1

ξνs−1

∣∣∣∣;
6. the second while loop of step 4 if qn ≥ max

{
qm, qmt |∆(f)|1/2

}
where qm =

max
0≤j≤t−1

{∣∣∣∣ ηνj

ηµj

∣∣∣∣
}

and qmt =
∣∣∣∣ ηνt

ηµt

∣∣∣∣;
7. steps 5 and 6 if qn ≥ max{qmt , |∆(f)|1/2}.

Proof. We use the results of Lemma 7.2 and the same notation as in the proof
of Proposition 6.1. We only prove parts 1–3 and part 5; the other parts follow
analogously.

1. Since qn≥max{1, |ηα/ξα|}, |ξα|= |ξ̂α|, and since qn ≥ max{|ξβ/ξα|, |ηβ/ξα|},
|ξν| < |ξµ| if and only if |ξ̂ν| < |ξ̂ν|. Finally, qn ≥ max{|ηδ/ηγ |, |ξδ/ηγ|}
implies |ηµ| < |ην| if and only if |η̂µ| < |η̂ν| and |ηµ| ≥ |ην| if and only if
|η̂µ| ≥ |η̂ν|.

2. We have α = γ = µ0 and β = δ = ν0, |ξνi| ≤ |ξβ|, |ηνi| ≤ |ηδ|, and |ξνiηνi| >
|∆(f)|1/2 ≥ |ξνrηνr | for 0 ≤ i ≤ r − 1. Furthermore, |ξµi/ξνi | = |ηµi/ηνi |, so
|ηνi/ξνi | = |ηδ/ξβ| = |ηγ/ξα| for 0 ≤ i ≤ r − 1.
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Hence, since qn ≥ max{1, |ηγ/ξα|, |ξα/ηγ|}, |ξνi | = |ξ̂νi|, and |ηνi| = |η̂νi| for
0 ≤ i ≤ r − 1. Also, if r ≥ 1, then∣∣∣∣ηνr

ξνr

∣∣∣∣ = qlr

∣∣∣∣ ηνrηνr−1

ξνr−1ηνr−1

∣∣∣∣ ≤ qlr−2 |ηδ|2
|∆(f)|1/2

,

so |ξνr | = |ξ̂νr |. Furthermore, since

qn ≥ max
{ |ξβηδ|
|∆(f)|1/2

,
|ξβ|2

|∆(f)|1/2

}
≥ |ξνi |

|∆(f)|1/2
max{|ηνi|, |ξνi|},

then |ηνi| ≤ |∆(f)|1/2/|ξνi| if and only if |η̂νi| ≤ |∆(f)|1/2/|ξνi | for 0 ≤ i ≤ r.
Finally, if r ≥ i ≥ 1, then |ξµi/ξνi| < |ξνi−1ηνi|/|∆(f)|1/2 < |ξβηδ|/|∆(f)|1/2

and |ηµi/ξνi | < |ηδ|2/|∆(f)|1/2. Also, |ξµiηνi/ξνi |2 = |ηνi/ξνi | for 0 ≤ i ≤ r−
1. Hence, qn ≥ max{|ξα/ξβ|, |ηγ/ξβ |, |ξβηδ|/|∆(f)|1/2, |ηδ|2/|∆(f)|1/2} implies
bξµi/ξνic = bξ̂µi/ξ̂νic for 0 ≤ i ≤ r − 1.

3. If r ≥ 1, then |ξµr/ξνr | = qlr ,

∣∣∣∣ηµr

ξνr

∣∣∣∣ = qlr

∣∣∣∣∣ η2
νr−1

ξνr−1ηνr−1

∣∣∣∣∣ < qlr
|ηδ|2

|∆(f)|1/2
,

∣∣∣∣ξµrηνr

ξ2νr

∣∣∣∣ = q2lr

∣∣∣∣ ηνrηνr−1

ξνr−1ηνr−1

∣∣∣∣ ≤ q2lr−2 |ηδ|2
|∆(f)|1/2

.

5. We have |ηνi| < 1 ≤ |ηνs|, so |ξµi | > |∆(f)|1/2 ≥ |ξµs | for 0 ≤ i ≤ s − 1.
Since qn ≥ max{1, |ξβ|} ≥ max{|ηνi|, |ξνi| : 0 ≤ i ≤ s− 1}, |ηνi| < 1 if and
only if |η̂νi| < 1. Also |ξνs/ηνs| ≤ |∆(f)|1/2, so qn ≥ max{1, |∆(f)|1/2} yields
|ηνs| = |η̂νs|.
Now |ξµi/ξνi | ≤ ql for 0 ≤ i ≤ s− 1, and for 0 ≤ i ≤ s− 2:

∣∣∣∣ηµi

ξνi

∣∣∣∣ <
∣∣∣∣ ηνi

ξµi+1

∣∣∣∣ < 1
|∆(f)|1/2

,

∣∣∣∣ξµiηνi

ξ2νi

∣∣∣∣ =
|∆(f)|1/2

ξ2µi+1

<
1

|∆(f)|1/2

and ∣∣∣∣ηµs−1

ξνs−1

∣∣∣∣ ≤ qls−1−2

|ξµs−1 |
≤ qls−1−3

|∆(f)|1/2
,

∣∣∣∣∣ηνs−1ξµs−1

ξ2νs−1

∣∣∣∣∣ =
|∆(f)|1/2

|ξνs−1 |2
= q2ls−1

|∆(f)|1/2

|ξµs−1 |2
≤ q2ls−1−2

|∆(f)|1/2
.

It follows that bξµi/ξνic = bξ̂µi/ξ̂νic for 0 ≤ i ≤ s− 1.

Corollary 7.4. Let f be the input ideal and {1, µ, ν} the input basis of Algorithm
4.1 or Algorithm 6.3. Define {α, β} = {γ, δ} = {µ, ν} such that |ξα| ≥ |ξβ | and
|ηγ| ≥ |ηδ|. Let l, lr, ls−1, m, and mt be as in Lemma 7.3.
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1. If qn ≥ max

{
|ξβ|,

∣∣∣∣ξαξβ
∣∣∣∣ ,

∣∣∣∣ηγ

ξβ

∣∣∣∣ ,
∣∣∣∣ξαηγ

∣∣∣∣ ,
∣∣∣∣∣ξαηδ

ξ2β

∣∣∣∣∣ , |ξβ|2
|∆(f)|1/2

,
|ξβηδ|

|∆(f)|1/2
,
qlr−2|ηδ|2
|∆(f)|1/2

,

q2ls−1−2

∆(f)|1/2
, ql, qm, qmt , qmt |∆(f)|1/2,

}
, then a precision of n is sufficient for

Algorithm 4.1.

2. If qn ≥ max

{∣∣∣∣ξαξβ
∣∣∣∣ ,

∣∣∣∣ηγ

ξβ

∣∣∣∣ ,
∣∣∣∣ξαηγ

∣∣∣∣ ,
∣∣∣∣∣ξαηδ

ξ2β

∣∣∣∣∣ , |ξβ|2
|∆(f)|1/2

, qm, qmt |∆(f)|1/2

}
, then a

precision of n is sufficient for Algorithm 6.3.

We point out that the values ql, qlr , qls−1 , qm, and qmt are almost always very
small. In general, we expect the case where f is the product of two reduced
ideals to require the highest precision, since in this case, |N(f)|−1 (and hence
the upper bound on |d(f)| by part 2 of Proposition 3.1) is largest. Even in this
situation, it is very likely that the required precision is not too large, say no
more than deg(∆); however, only numerical experiments will tell. The scenario
of Algorithm 6.3 requires significantly less precision: here, we expect deg(∆)/2
to be sufficient, and this bound is supported by numerical evidence (see [2]).

8 Conclusion and Outlook

We have provided a complete analysis of the algorithm for computing a reduced
basis of a fractional ideal in a purely cubic function field of unit rank 1. The
number of iterations of each while loop of the algorithm is bounded by a fraction
of deg(∆). The quantities |ξµ|, |ξν |, |ηµ|, and |ην| appear not to grow too large
throughout our computations; in fact, we expect the bounds of Lemma 5.2 to
significantly exceed the actual sizes of these quantities. Finally, the precision
required to compute absolute values and quotients appears to be a fraction of
deg(∆) as well.

As mentioned in section 1, our two algorithms serve two purposes. If Algo-
rithm 6.3 is repeatedly applied, starting and terminating with f = O, it generates
all the reduced principal fractional ideals in O and thus produces the fundamen-
tal unit and/or the regulator ofK/k(x) as illustrated in [2]. Algorithm 4.1 can be
used to determine from a given nonreduced fractional ideal an equivalent reduced
one. In particular, if the input ideal is the product of two reduced principal ideals,
then the infrastructure of the set of reduced fractional principal ideals guaran-
tees that the method finds a reduced principal fractional ideal “close” to the
product ideal very quickly, namely after at most 3(deg(∆)+4)/8 applications of
Algorithm 4.1. This phenomenon allows for a rapid movement through this set,
thereby speeding up regulator and fundamental unit computation significantly.
The technique can be extended to yield the ideal class number of K/k(x) and
hence the order of the group of k-rational points on the Jacobian of K. Work on
this problem is currently in progress.

If q ≡ −1 (mod 3), then a representation of unit rank 1 can always be
achieved for any purely cubic extension K/k(x) by applying a simple change
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of variable; in particular, any purely cubic extension of unit rank 0 (i.e. when
deg(D) is not a multiple of 3) can always be converted to one of unit rank 1
over the same field of rational functions k(x). The methods outlined above can
also undoubtedly be generalized to arbitrary cubic function fields of unit rank 1;
once again, this is currently being explored. In addition, we are in the process of
investigating the case of even characteristic. It remains to be seen which elements
of Algorithms 4.1 and 6.3 (if any) are of use in cubic extensions of unit rank 2,
and to what extent our techniques can be extended to unit rank 1 extensions
of degree higher than 3. Much of the reduction theory remains valid here, but
Algorithm 4.1 needs to be replaced by an entirely different reduction procedure.
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