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A b s t r a c t .  This paper describes a method for computing the fundamen- 
tal unit and regulator of a purely cubic congruence function field of unit 
rank 1. The technique is based on Voronoi's algorithm for generating a 
chain of successive minima in a multiplicative cubic lattice which is used 
for calculating the fundamental unit and regulator of a purely cubic 
number field. 

1 I n t r o d u c t i o n  

Voronoi's Algorithm [14, 7] computes a system of fundamental  units of a cubic 
number  field. The method is based on computing chains of successive minima in 
the maximal  order (9 of the field K .  An implementat ion in purely cubic number  
fields was given by Williams et al. [16, 17, 15]. Since then, the general method 
has been extended to fields of higher degree; see [1-6]. The first algori thm for 
computing fundamental  units in cubic funcion fields was given by Mang [9]. His 
technique is based on the Pohst-Zassenhaus method for number  fields [10, Chap. 
5]. By Mang's  own admission, his technique is slow and is infeasible for even 
modest  size fields; an example that  took 273 seconds of CPU time on a Siemens 
mainframe using Mang's  method required only 0.04 seconds on a Silicon Graphics 
Challenge workstation with our algorithm. In this paper,  we show how to adap t  
Voronoi's algorithm to purely cubic congruence function fields of unit rank 1. 
While the number  field and function field situations are similar in many  ways, 
there are also significant differences between the two settings; most  notably, the 
different behavior of the valuation (which is non-archimedian in the function 
field case) and the lack of geometric lattice structure in function fields. 

For an introduction to congruence function fields, see [13]; the purely cubic case 
is discussed in more detail in [9]. Let k = ]Fq be a finite field of order q and let t 
be a an element tha t  is transcendental  over k. As usual, we denote by k(t) the 
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rat ional  function field and by k[t] the ring of polynomials over k in the variable 
t. A purely cubic (congruence) function field K over the field of constants k is 
a cubic extension of k(t) of the form K = k(t, p) where p3 = D E k[t] and 
D = D(t) is cubefree in k[t]; write D = GH 2 where G, H E k[t] are relatively 
prime. The algebraic closure (9 = k[t] of k[t] in g is a k[t]-module of rank 3 
with a (t-)integral basis {1,p = 3Gv/-G-H~, w = p 2 / g  = ~/-d2-H}. Its unit group 
(9* is the ( t - )un i t  group of K.  (9* = k* • s where E is the product  of r infinite 
cyclic groups and r E ]No is the ( t - )un i t  rank of K .  The units in k* are the 
trivial units. If  r > O, an independent set of r generators of $ is a system 
of fundamental ( t - )uni ts  of K.  Denote by k((1/t)) the field of Puiseux series 
~i~=m a J t  i (rn E ~Z, ai E k for i _> m) over k. Then the number  of irreducible 
factors over k((1/t)) of the polynomial F(t,  y) = y3 _ D E k[t, y] is r + 1. 

Henceforth, we assume that  q _= - 1  (mod 3) (so k does not contain any primitive 
cube roots of unity), the degree deg(D) of D is divisible by 3, and the leading 
coefficient sgn(D) of D is a cube in k. In this case, p E k((1/t)),  so g < k((1/t)) ,  
and F (t, y) splits into two irreducibles over k ((1/t)) ,  namely F (t, y) = ( y -  p) (y 2 + 
py + p2), so r = 1 and (9* = k* x (~) with a fundamental  unit ~ (see [11]). If  g 
denotes the genus of K ,  then we have 

g = deg(GH)  - 2. (1.1) 

Let :D be the divisor group of K over k, :D o the subgroup of :D of divisors of 
degree 0, and P ~ D O the group of principal divisors of KIk. The divisor class 
group (o I degree O) of KIk is the factor group g O = D ~  its order h = #C  ~ is 
finite and is the divisor class number of K.  In analogy to l)  and :D ~ denote by 
U the subgroup of l)  generated by the infinite places (with respect to t) of K 
and by L/~ the subgroup of divisors in 5 / o f  degree 0. The  (t-)regulator of K is 
the index R = [L/~ : P MUo]. If �9 is the group of ~ractional (t-)ideals of K and 

the subgroup of fractional principal (t-)ideals of K ,  then the ( t-) ideal  class 
group of K is C = :/:/~; its order h I = #C is also finite and is the ( t-) ideal  class 
number of K .  We have 

h = Rh'. (1.2) 

For ~ = E i ~ m  a J  ti E k((1/t)) (m E Z~, ai E k for i > m, am ~ 0), we define 

deg(a) = - m ,  
la I = q - m  = qdeg(a ) ,  

sgn(a) = am, 
0 

i : m  

We also set deg(0) = - c ~  and [0J = 0. Note tha t  [aJ E k[t] and Is - [~Jl < 1. 

If e is a fundamental  unit with deg(e) > 0, then e is unique up to a trivial unit 
factor. Then we have for the regulator R = deg(e)/2. 
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Let ~ be a primitive cube root of unity in some algebraic closure of k, so e2 + 
+ 1 = 0 and ~s = 1. Then k((1/t))(e) is a quadratic extension of k((1/t)) 

whose nontrivial K-antomorphism is "complex conjugation" - : k((1/t))(e) -4 
k((1/t))(~) via ~ = ~-1. For r e k((1/t))(~), we define 

deg(r = 1 deg(r162 

Ir = ~ = q�89 deg(r162 = qdeg(~b). 

K(L) = k(~, t, p) is a cyclic extension of k(L, t) of degree 3 for which we fix the 
k(~,t)-automorphism ' : g(~) -~ K(~) via p' = Lp. Write 7"  for (7') '  (7 E g(~)) .  
Note that  ~'  = a "  for c~ e K.  For a e K ,  the norm of a (over k(t)) is N(~)  = 
aa 'a" .  We have N(~)  e k(t), and if a e O, then N ( a )  E kit]. 

2 Reduced  Ideals and Min ima  

A subset .4 of O is an integral ideal if for any a ,  ~ E .4 and 0 E O, a + ~ E A 
and /9c~ E .4. A subset A of K is a fractional ideal if there exists a nonzero 
d E k[t] such that  d-4 is an integral ideal of O. A fractional or integral ideal 
,4 is principal if ,4 = (a) = {On I 0 E O} for some a. Henceforth, we assume 
all ideals (fractional and integral) to be nonzero, i.e. the term "ideal" will be 
synonymous with "nonzero ideal". An integral ideal .4 is primitive if there exists 
no nonconstant polynomial f E k[t] such that  every c~ E -4 is a multiple in O of f .  
For a primitive integral ideal .4, the greatest common divisor of all polynomials 
in .4 n k[t] is denoted by L(.4). 

Every integral or fractional ideal .4 of O is a k[t]-module of rank 3. I f .4  has a k[t]- 
basis {~, #, v}, write .4 = [A, #, u]. Specifically, if a fractional ideal .4 contains 1, 
then .4 has a k[t]-basis of the form {1,/~, u} where 

lz = (too + mlp  + m2w)/d, 
v = (no + nip + n2w)/d, 

with m o , m l , m 2 , n o , n l , n 2 , d  E k[t]. If gcd(mo, ml ,  no, nl ,  n2, d) = 1, then dA 
is a primitive integral ideal with L(d-4) = d/sgn(d). 

The ( t - )norm of a fractional ideal -4 = [A, #, u] is N(.4) = sgn(det(T)) -1 det(T)  
E k(t)* where T E Gl3(k(t)) such that  

= r  . 

N(-4) is independent of the choice of bases for -4 and O. The norm of an integral 
ideal -4 is N(-4) = L( .4)aN(L( .4) - I .4)  E k[t]. For an integral ideal .4, we have 
L(.4) I N(.4),  and if .4 is primitive, then N(.4) I L(.4) 2. 
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The ( t - )  discriminant of a fractional or integral ideal A = [A,/z, v] is the quantity 

(~ ,~,,]2 Sk(t) A(A) = det i u ' / J " ]  �9 
~,~ , , ]  tk [ t ]  

if A is a fractional ideal, 
if .4 is an integral ideal. 

A(A) is independent of the choice of k[t]-basis of A. The discriminant of O = 
[1,p, w] is A = -27G2H 2. We have 

A(.A) = a2N(.A)2A for some a �9 k*. (2.1) 

If A is a fractional ideal and a �9 ,4, a r 0, then a is a minimum in A if for 
j3 �9 A with/~ r 0, I/~] < ]a I and [/~'] _< [a' I imply/~ �9 k 'a ,  i.e./3 and a differ 
only by a factor that  is a trivial un i t . . 4  is reduced if 1 �9 .4 and 1 is a minimum 
in A. An integral ideal A is reduced if the fractional ideal (L(A) -1)A is reduced, 
i.e. if and only if L(A) is a minimum in A. It is easy to see that  O is reduced. 
If A is a fractional ideal of O with a minimum 0 �9 A, then ~/0 is a minimum in 
,4 for every unit ~? �9 O*. In particular, every unit in O is a minimum in O. 

Theorem 2.1. I f ,4  is a reduced fractional ideal, then IA(A)I > 1, s o  IN(A)I > 
1/Iv~l .  

Proof. See [11]. [] 

C o r o l l a r y  2.2. /].A is a reduced integral ideal, then IL(A)I < Iv~l and IN(A)I 
< IAI. 

Proof. Since .A is reduced, we have L(.A) I N(.A) I L(-A) 2. Also/7 = (L(.A)-I).A is 
a reduced fractional ideal, so by Theorem 2.1, IL(.4) I 2 _> IN(.4) l = ]L(A) IalN(B)I 
> IL(A)I3/I4-~I, so iL(A)I < and IN(A)I < IL(A)I 2 < i~l .  [] 

C o r o l l a r y  2.3. If ,4 is a reduced fractional ideal and a �9 .4 is nonzero, then 

I g (a ) l  > l / Iz~l. 

Proof. Let d E k[t] be of minimal degree so that  B = d.A is an integral ideal. Then 
da e 13, so (da)(d2a' a '') = N(da)  = d3N(a) �9 13. Hence L(B) = d I d3N(a),  so 
IN(a) l  > l / Id l  2 = I / I L (B ) I  2 > l/Iz~l by Corollary 2.2. [] 

Let A be a fractional ideal and let 0 E A be a minimum in A. An element r E A 
is a minimum adjacent to 0 in A if 

(M1) 
(M2) 
(M3) 

r is a minimum in ,4, 

1el < Ir 
For no a e .4, ]01 < I~1 < Ir and la'l < 10'1. 
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Note that  conditions (M1) and (M2) imply [r < [8'1, as [8'[ < [r would yield 
8 �9 k*r by (M1) and hence [8[ = [r contradicting (M2). 

In the number field setting, the existence of adjacent minima is guaranteed by 
Minkowski's lattice point theorem. However, in function fields, we have no such 
tool available, so we need to establish their existence analytically. 

T h e o r e m  2.4. Let .4 be a fractional ideal and let 8 �9 .4 be a minimum in .4. 
Then a minimum r adjacent to 8 in .4 exists and is unique up to a trivial unit 
factor. 

Proof. The set H(8) = {a �9 A l la l  > 181 and la'l < 18'1} is nonempty as c8 �9 
H(8). Let a �9 H(8) have minimal degree. Then the set D(8) = {deg(N(a)) I 
a �9 H(8), lal is minimal} is a nonempty subset of ,~  which is bounded below by 
- deg(A) by Corollary 2.3. Let r �9 H(8) so that  Ir is minimal and deg(N(r 
is a smallest element of D(8). Then 

(a) Ir > 181 and Ir < 18'1, 
(b) if a �9 `4 with lal > IS1 and la'l < 18'1, then lal > Ir 
(c) if a �9 .4 with lal = Ir and la'l < 10'l, then la'l > Ir 

Conditions (M2) and (M3) for r follow from properties (a) and (b), respectively, 
so we only need to show that  r is a minimum in `4. Let a �9 .4, a # 0 with 
lal -< Ir and la'l < Ir By (a), la'] < 18'1. If lal < 181, then a �9 k*8 as 8 is 
a minimum in .A, implying 18'1 = la'l < 18'1. So lal > 181. By (b), lal _> Ir so 
lal = Ir Hence by (c), la'l >_ Ir so la'l = Ir Thus we have lal = Ir and 
la'l = Ir 

Let/~ = a - (sgn(a)sgn(r162 then 8 �9 A, 181 < Ir and 18'1 ~ max{la'l ,  Ir 
< 18'1. Suppose 8 # o, then by (M3), 181 _< 181, so 8 �9 k*8. But then 18'1 = 18'1 < 
18'1. So we must have j3 = 0 and thus a �9 k*r Therefore, r is a minimum in A. 

To see that  r is unique up to a factor in k*, let r r be two minima in `4 
adjacent to 8. Without loss of generality, assume Ir -< Ir I- Both r and r are 
minima in ~4 by (M1) and 181 < 1r162 by (M2). If Ir < 1r then by (M3), 
Ir -> 18'1, so since r is a minimum in .4, 8 E k*r implying the contradiction 
181 = Ir > 181 �9 Similarly we can rule out Ir > 1r Hence Ir = 1r so 
(~1 �9 k*r [] 

We will henceforth speak of the minimum adjacent to an element in a fractional 
ideal, keeping in mind that  it is only unique up to a trivial unit factor. 

If A is a reduced fractional ideal with a minimum 0 E J[, then it is easy to see 
that  A* = (1/8)A is reduced. Fhrthermore, if 8" is the minimum adjacent to 1 
in .4", then 88* is the minimum adjacent to 8 in `4. 
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The basic idea for our algorithm is the same as in the unit rank 1 case of number  
fields. Star t  with the reduced ideal A1 = (9, and recursively define a sequence of 
reduced fractional ideals -A,~ as follows. Let #n be the minimum adjacent to 1 in 
.An and set An+l = (pn l )An.  Then An+l is a reduced fractional ideal. Define 

•--1 

8 1 = 1 ,  O~ = H #i f o r n > 2 .  (3.1) 
i=1 

Then  An = (0~ 1) and 0n+1 = #nO~, so by our above remarks,  0~+1 is the 
minimum adjacent to 0~ in (9 (n 6 IN). Thus we have a chain 

0 1 - - 1 ,  02, 03, . . .  (3.2) 

of successive minima in (9. This sequence can easily be shown to contain all the 
min ima in (9 of nonnegative degree. In particular,  the fundamental  unit e must  
appear  in the sequence (3.2), and since e is the unit of smallest positive degree, 
the first index l 6 IN such that  N(0t+l)  is a trivial unit yields 0t+l -- e (up to a 
constant  factor), l is the period of e (or of K) .  We have .Az+l = ,41, #t+l -- #1 
and in fact #mt+i -- #i for m, i 6 IN, where the last two equalities again only 
hold up to a trivial unit factor. Hence the sequence (3.2) is equal to 

1 ,02 , . . . , 0 t , e ,  e02 , . . . , e0 t ,e  2,e202, . . . ,~3, . . .  

and contains all nonnegative powers of e. 

A simpler termination condition for the computat ion of the chain (3.2) tha t  
avoids computing norms is given as follows. Let .4 = (0 -1) = [1, #, v] where 0 is 
an element of the chain (3.2) and # = (mo+mlp+m2~v)/d, v = (no+nlp+n2~v)/d 
with m0, ml ,  m2, no, n l ,  n2, d 6 kit] and gcd(m0, ml ,  m2, no, n l ,  n2, d) = 1. Then 
N(O) 6 k* if and only if d 6 k*. 

We are now ready to present our algorithm for computing the fundamental  unit 
of K .  In each iteration, we have a basis {1, f~,~ = (too + mlp  + m2w)/d,  ?~ = 
(no+nlp+n2w)/d}  of our current ideal .An = (0n I) where On = (eo+elp+e2w)/ f  
(m~,ni, d ,e~, f  6 k[t] for i = 0,1,2) .  This basis is replaced by a reduced basis 
{1, #,~, v~}; tha t  is, a basis containing the minimum #n adjacent to 1 in .A,~. 
Details on how to obtain such a basis are given in the next section. Then 0,~ is 
upda ted  to 0~+1 = #,~0,~, and since . A n + l  : (~tnl).An, Pn and v~ are replaced 
b y  ]~n+ l  = 1/#n = ]~'n~"n/N(#n) and ~n/~n = Un/s respectively. Initially, 
01 = 1, #1 = p, and vl = w. According to our termination condition, we end the 
algori thm as soon as we encounter a basis denominator  d tha t  is a constant.  

A l g o r i t h m  3.1 ( F u n d a m e n t a l  U n i t  A l g o r i t h m ) .  

Input: The polynomials G, H where D = GH 2. 
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Output: eo, e l ,  e2 E kit] where e = eo + etp + e2w is the fundamental unit of K .  

Algorithm: 

1. Set eo = f = 1, el = e2 = O; mo = m2 = no = nl  = O, m l  = n2 = d = 1. 
2. Repeat 

(a) ( Reduce  the  basis } 
Use Algorithm 4.1 below to replace m o , m l , m 2 , n o , n l , n 2 , d  by the coef- 
ficients of a reduced basis. 

(b) ( Upda te  On } 
i. Replace (e;) 

e l  

ii. 
f by f / g .  

(c) ( Upda te  # and u } 
i. Set 

ii. Replace 

iii. Replace 

by 

eomo + (elm2 + e 2 m l ) G H ~  
eomt + elmo + e2m2G I 
eom2 + e l m l H  + e2mo | " 

Compute g = gcd(eo, el ,  e2, f ) .  For i = 0, 1, 2, replace ei by ei /g  and 

ao = m ~ -  m l m 2 G H ,  

al = m ~ G - m o m l ,  

a 2  ~ m~H - morn2, 

b=  m~ + m ~ G H 2 +  m~G2H - 3 m o m l m 2 G H .  

too) 
ml  by | a i d |  . 
m2 \ a2d / 

(no)  ao%   ln2 o nl C ) 
nl by ~ aonl + alno + a2n2G . 
n2 \ aon2 + a l n l H  + a2no 

iv. Replace d by b. 
v. Compute h = g c d ( m o , m l , m 2 , n o , n l , n 2 , d ) .  For i = 0 ,1 ,2 ,  replace 

mi  by m i /h ,  ni by n i / h  and d by d/h.  
until d E k*. 

T h e  number  of reduct ion steps is exact ly  the  period l of e. This  number  can be 
quite  large. 

T h e o r e m  3.2 .  l <_ 2R = deg(e) - -  O ( q � 8 9  80 Is = O(qq�89 
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Proof .  For n G IN, let (in = deg(0n) E ~T0. Since 51 = 0 and 5n strictly increases 
with n, a simple induction argument shows 5n _> n - 1. Hence l ~ deg(0t+t) = 
deg(e) = 2R. Using the inequality h _< ( v ~ +  1) 2g deduced in [12], together with 
(1.1) and (1.2), we obtain R < (v~  + 1) deg(z~)-a = O ( q l / 2 d e g ( a ) - 2 ) ,  whence 
follows the bound on e. [] 

The above theorem shows that  the coefficients e0, el, e2 of e can be so huge that  
it might be infeasible to compute or even simply write down the fundamental 
unit for large values of [A[. For this situation, we modify Algorithm 3.1 to 
avoid calculating the minima 0n and compute only the regulator R of K as 
follows. In step 1, initialize only the mi, n/ (i = 0, 1, 2), and d, as well as setting 
R -- 0. Perform step 2 as in Algorithm 3.1, except omit part (b) of step 2. 
Instead, we need to add deg(#n) to R. Since deg(#n) = d e g ( m o / d )  (see Theorem 
4.4), we replace step 2 (b) of Algorithm 3.1 by the instruction "replace R by 
R + deg(m0) - deg(d)". Since the algorithm with these modifications computes 
deg(c) -- 2R, we must divide the value of R by 2 after the loop in step 2 
terminates to obtain the correct value for the regulator. 

4 C o m p u t a t i o n  o f  a m i n i m u m  a d j a c e n t  t o  1 

The above discussion shows that  the task of finding e (or R) reduces to the prob- 
lem of computing a reduced basis of a reduced fractional ideal A. In particular, 
we need to be able to generate the minimum adjacent to 1 in .4. This is accom- 
plished by applying a sequence of suitable unimodular transformations to the 
pair (/~, P) where {1,/5, ~} is a k[t]-basis of .4, until a basis {1, #, u} is obtained 
such that  # is our desired minimum. Before we present the details of this reduc- 
tion technique, we require several somewhat technical definitions. Henceforth, 
we exclude the characteristic 2 case; that  is, we require k to be a finite field of 
characteristic at least 5. If a = a + bp + cw E K with a, b, c E k(t), let 

~a = bp § cm = o~ - a, 
1 

, ,  = bp - c ~  - 2~ + 1 (~ '  - ~ ' ' ) '  (4.1) 

~ = 2 a -  b p -  cw = a I +c~' ,  

where we recall that  e is a primitive cube root of unity. Then ~f~+g~ = f~a + g ~ ,  
y f~+g~ = f ~ a + g y ~ ,  ~ a + g ~  = f ~ a + g ~  for any ~,/~ e K and f , g  E k ( t ) .  Simple 
calculations show 

= (3~a + ~,), (~'c~" = ~(3ya + r (4.2) 

and if .4 = [1, #, v] is a fractional ideal, then 

get \ ~  ~/v~) = ~ V  - ~ = -2X/A(.4) '  (4.3) 



600 Scheidler and Stein 

so this determinant is independent of the choice of basis of ,4. 

We are now ready to present our reduction method. 

A l g o r i t h m  4.1 ( R e d u c t i o n  A lgo r i t hm) .  

Input: ft, ~ where {1,/5, ~} is a basis of some reduced fractional ideal ,4. 

Output: #, ~ where {1,#,~,} is a basis o f , 4  such that I~,1 < 1, I~1 < 1, 15,1 > 
I,f,,I, I~,,I < 1 _ 1,7,,I. 
Algorithm: 

1. Set p = fit, ~, = D. 
2. I f  I~,<1 < I,'~1 or if I<~,ul = I,~z,I and I~.1 < I,~,,I, replace 

( P )  by ( 7 1  1 0 ) ( ~ ) .  

3. I f  I~#.1 >_ Iv,,I 
(a) while L,~./<~,.I = L~.l~7.l, replace 

(b) Replace 

(e) y lU.I = Ivvl, replace 

where a = sgn(~,)sgn(~?,) -1 E k*. 
4. (a) While I~lu I < 1, replace 

(b) While 17.1 _> 1, replace 

5. I f  l~,l >_ 1, replace ~ b y e - ( 1 / 2 ) K , J .  
ffl4vl-> 1, replace ~ by ~ -  (1/2)Levi. 
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P r o p o s i t i o n  4 .2 .  Algorithm 4.1 terminates and produces the output specified 
above. 

Proof. I t  is easy  to see t h a t  all t r ans fo rma t ions  of  it and  u in s teps 2, 3 and  
4 ma in t a in  a basis  {1, it, u} of ~4 because  the  basis t r an s fo rma t ion  mat r i ces  all 
have d e t e r m i n a n t  1. 

We cla im tha t  af ter  s tep 3, we have 

I,~.1 > I~vl, I , . I  < Ivvl. (4.4) 

This  can  be seen as follows. Since s tep  2 replaces  it by z~ and  u by  - # ,  we have  
]~.l > I~l  or I~.l --- I&l and I~.l > I~.l af ter  s tep 2. If  a t  the  beginning of s tep 
3, I~.1 < I.~1, then from the previous s tep I~.1 > I&l, so condi t ions (4.4) hold 
and s tep  3 is skipped.  

Assume  now t h a t  I~,1 >- I~?~1, so s tep  3 is entered.  Consider  s tep 3 (a) and  set  
c~ = u and  fl = L ~ , / ( . J u  - it, so c~ and  fl are ob ta ined  by app ly ing  the  l inear 
t r a n s f o r m a t i o n  of s tep 3 (a) to it and  u. Then  

I~,~1 = I L,~ J < I~.1 = l&l, 

< I~.l = tv~l- 

Hence,  I~-I and  17/. I s t r ict ly decrease in each i terat ion,  so the  loop mus t  t e r m i n a t e  
a t  the  la tes t  before t~YvI -< 1, for o therwise  by (4.3): I ~ 1  = I~/~llff , /~?~ - 
~t,/~-I < I~-~/-I -< 1, cont radic t ing  T h e o r e m  2.1. After  s tep 3 (b), we have  
I~1 < I~1 = I~1 and 

ql 
because  IL~./~.J - L~ . /~J I  >- 1 and I L v . / v . J v . -  v.I < Iv~l. Finally, observe  
t h a t  in s tep 3 (c), a = L~7./~.]. If  we set a = it - au and fl = u, then  as before  
]r/~ l < I77~I, and  since I~.l > I~1, we have  I~aI = I~. - a ~ l  = I~.l > I ~ I  = l~] -  
So s tep 3 achieves the  inequalit ies (4.4) above.  

In s tep 4, we ensure t h a t  I~?~1 < 1 _< I~/.I. F rom (4.4), it is clear t h a t  a t  mos t  one 
of the  while loops in s tep 4 is entered.  Consider  first the  case I~/,I < 1, i.e. case 
4 (a). Set c~ = u and fl = [ ~ / ~ J v  - it. T h e n  

so inequali t ies  (4.4) and  the  condit ion [~?,[ < 1 are ma in ta ined  t h r o u g h o u t  the  
loop. Fu r the rmore ,  I~- [ s tr ict ly increases in each i tera t ion,  so the  while loop will 
t e r m i n a t e  wi th  the  desired basis.  S tep  4 (c) can be  ana lyzed  analogously.  
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Finally, step 5 achieves < 1. To see this, let a = ~ -  (1/2) L~,J, then  by 
(4.1) lea[ = [ ~  - (1/2)~LGj[--  [~u - LGII < 1. Similarly for v. D 

We proceed to prove tha t  the basis of Algori thm 4.1 is indeed a reduced basis, 
Using the identities (4.2), one can show tha t  if a E K ,  then [a'[ < 1 if and only 
if [y~[ < 1 and [~a[ < 1. 

T h e o r e m  4.3.  Let {1, #, v} be a basis of a reduced fractional ideal ,4 such that 
[~u[ < 1, [~v[ < 1, [~u[ > 1~[, [~u[ < 1 < 1~[. Then # is the minimum adjacent 
to 1 in ,4, so {1 ,# ,v}  is a reduced basis of,4. 

Proof. Let 0 be the min imum adjacent  to  1 in ,4, 0 = 1 + m #  + nv  with l, m,  n E 
kit]. We need to show tha t  l = n = 0 and m E k*. Since [0'[ < 1, we have 
[r < 1 and [~0[ < 1. Also [r < 1 and [~/u[ < 1 imply [#'[ < 1. Then [#[ > 1 
as o therwise /z  E k. Hence [#[ _> [0[ since otherwise 1 < [#[ < [0[ and [#'[ < 1, 
contradict ing (M3) for 0. Now [~o[ = [20 - r so since [r < 1 and [0[ > 1, 
[0[ = [~0 [- Similarly, I/z[ = [~ul- 

If n = 0, then m ~ 0 as 0 r k[t], so Iml > Inl and Ireful > [nh, I. If n # 0, 
then  1 > [fi0[ = [m~u + n~,l with [n~v[ >_ 1 implies [my~[ = [n~[ .  Thus,  
In[ < [n??~[ = [m~u [ < [m[, so [m[ > In[ and [m~u [ > [n~[  as well. It  follows tha t  

101 = Ir = ImP.  + = Imr  = I m , I  > Im0h 

so Ira[ < 1. Thus,  1 > [m[ > [n[, so n = 0 and m e k*. 

Now 1 > [~e[ = [~l+m,[ = [2l + ~u[, so since [~[ < 1, [/[ < 1, so l = 0 and 
8 = m #  E k*~. [] 

The  coefficients of the basis generated by Algori thm 4.1 are small: 

T h e o r e m  4.4.  Let ,4 be a reduced fractional ideal and let {1,#,  v} be the basis 
o f ,4  produced by Algorithm 4.1. Let l~ = (too + m i p + m 2 w ) / d ,  v = (no + n i p +  
n2w) /d  with mo, ml ,  m2, no, hi ,  n2, d E k[t] and gcd(mo, ma, m2, no, nl ,  n2, d) = 
1. Then Idl < Idol = Imol = ImlPl = Im2 l _< Iv l, and Inol,lnlPl,ln2 l < 
IY- l. 

Proof. Idl < Idul follows from [/~[ > 1. From [#[ > 1 and [r = [3mo/d - #[ < 
1, it follows tha t  [d/~[ -- [mol. The inequalities [~[ > 1 and [~/~1 < I imply 
]mlpl = ]m2wI = ]d~,l. From [~uI = i 2 m o / d -  ~ul < 1, we obtain [d~u [ = [mo[. 
So IdI < Id#I = [moI = Imlpl = Im2wI �9 

Now dA is a reduced integral ideal with L(dA) = sgn(d ) - ld ,  so d3N(A)  = 
g(d`4)  [ d 2, and thus ]dN(A)I < 1. From (2.1) and (4.3), we obtain 

I V/-~[ >-IdN(A) v ~ [  = I d O l  = Id(~u~?~ , -~,??u)I >-Id~.I 

as [G[ >[r and ]~u[ < 1 _< [7/v[. 
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Since I~ul > I~',1, we have Iv l [mlp+m2wl > Inlp+n2w[. Also, = 
[~u~[ > [~7~[, so IVY[ > [dr/u[ = [nlp-n2w[. Hence [nip[, [n2w[ < [V~[. Finally, 
[~u[ < 1 implies I2no - nip + n2wl < [dl < [v/-~[, so [no[ < [v/Z[. [] 

5 I m p l e m e n t a t i o n  

We implemented our algorithm on a Silicon Graphics Challenge workstation us- 
ing the computer algebra system SIMATH developed by the research group of 
Professor H. G. Zimmer at the Universit~it des Saarlandes in Saabrficken, Ger- 
many. To compute with Puiseux series, it was necessary to use truncated series 
as approximations, in analogy to using rational approximations when comput- 
ing with real numbers. To that  end, we employed the method for extracting 
cube roots as described in [8] and implemented by Mang in [9] to compute "ap- 
proximations" /5 and & of the basis elements p and w, respectively. That  is, if 

o o  . i 6 P = ~i=-deg(p) r,/t  , then for ~ > 0,/5 = Y]-i=-deg(p) ri/ti is an approximation 
of precision 6 to p, so ]p --/5] < q-~. Similarly for w. In contrast to Voronoi's 
algorithm in number fields, it was possible to establish conditions on the re- 
quired precision 6 that  could be checked throughout the algorithm; it is a simple 
matter  to flag the cases where the precision is not large enough and increase it 
as required. It turned out that  a uniform precision of ~ = deg(A) was sufficient 
throughout our computations. Examples show that  reducing the precision to 
deg(A)/2 or even deg(A)/4 might still produce correct results, but computation 
times improved only marginally with smaller precision. 

Since the polynomials and series approximations in our algorithm generally had 
few zero coefficients, they were given in dense representation; that  is, as a list 
starting with the degree of the polynomial or the series, followed by the coeffi- 
cients in order of decreasing degree of monomial. 

The main difficulty in our implementation was the computation of the principal 
parts of quotients as required in steps 3 - 5 of Algorithm 4.1. Here, an approx- 
imation ~u of ~u = (map + m2w)/d was represented as a pair (au, d) where 
a u = ml/5 + m2&; similarly for ~',, flu, and r/',. To compute a quotient L ~ / ~ J  
for example, we performed "division with remainder" on the quanitities au and 
a',  = nl/5 + n2&. Note that  it is possible to reduce the division with remainder 
of two truncated series to a division of a truncated series by just a polynomial 
by using formulas such as 

where 

~u _ A - B y , ,  

A = m , n ~ H  +m2n22 G, B = m , n 2 - m 2 n , ,  C = n 3 H  +n32 a. 
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Then [ ~ / ~ . J  = [ ( A -  B~) /CJ ,  provided [nil, In2[ < IC[ which is extremely 
likely. Here, ~ is an approximation of precision deg(B) to ~/~. Similar formulas, 
involving different values of A and C, but  using the same B value, hold for 
the other quotients. Note that  N(dA) = dB/sgn(dB), so B is independent of 
the basis and need only be computed once per reduction. Furthermore,  IB[ < 
[A[/[d[ < [A[ by Corollary 2.2, so deg(B) < deg(A). We performed computations 
with both  explicit division with remainder and the above formulas, and the 
division with remainder version of the algorithm turned out to be about  20 
percent faster. 

In step 5 of Algorithm 3.1, we approximate ( ,  --- 2mo/d + ~ by ~ = (2too + 
a~)/d. Then the principal part  [~ J  of (~ can be computed as simply [(2too - 
a~)/dJ. This will always produce the correct polynomial as I(~ - (2too + a , ) /d  I < 
max{[m1[, lm2[)/Id[ q-~ < 1 since Id[ > 1 and at this point [mll, [m2[ < [ v ~ [  
by Theorem 4.4. Similarly for (~. 

6 N u m e r i c a l  E x a m p l e s  

All our examples were done over prime fields k - -  ] F p  where p is a prime with 
p -- - 1  (mod 3), and used monic polynomials G and H.  Not surprisingly, our 
regulator algorithm was significantly faster than our unit algorithm due to the 
time-consuming polynomial arithmetic involved in updating ON in step 2 (b) of 
each iteration of Algorithm 3.1. 

The largest unit we computed was the fundamental unit e of K = IF17( 3 G~- -~)  
where G = t + 4 and H = t 4 + t 3 + l l t  2 + 5t + 12. Here, e = e0 + elp + e2w 
where deg(e0) = 1554, deg(el) = 1551, and deg(e2) = 1552, so H = 171~54, a 
number of 3109 decimal digits. The period of e is 775. It took just under 15 CPU 
minutes to compute e. 

For the examples given in the table below, we randomly generated monic polyno- 
mials G, H E ]Fp[t] so that  deg(GH 2) - 0 (mod 3), G and H are both squarefree, 
and gcd(G, H)  = 1. Each row of the table specifies the prime p, the polynomials 
G and H,  the period l of the fundamental unit e of K = ]Fp(t, 3Gv/-GH-Y), the 
regulator R of K,  and the CPU time required to compute R. 

We point out that  for small genus and large field of constants, knowledge of the 
regulator oftentimes uniquely determines the divisor class number h of the field, 
or at least narrows h down to only a few possible values. From the Hasse-Weil 
Theorem (see [13, Theorem V.I.15, p. 166, and Theorem V.2.1 , p. 169]), we can 
infer tha t  (x/q - 1) 2g < h < (x/~ + 1) 2g. By (1.2), h is a multiple of R. Usually, 
there are only a few multiples of R that  fall within these bounds. For example, 
the last five examples in our table below each permit  only three possible values 
for h. We plan to investigate the computation of a suitable approximation of h 
by means of t runcated Euler products in a forthcoming paper. 
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G 

T a b l e  1. Regula tor  C o m p u t a t i o n s  

T 
I H ~ Time 

6387 6655 38.52 sec 5 t 4- 4 t74-t64-t54-4t44-2t34- 
t 2 + t 4 . 1  

5 t 2 4. 4t 4- 2 t s 4- t 7 4- 3t 5 4- 3t 4 4- 
3t 3 + 2t 2 4. t 4. 2 

5 t 4 + t a + 2t 2 4. 3t 4- 3 t 4 + t 2 4. 2t 4. 3 
I 

5 t 5 4. t 4 4- 3t s 4- 2t 2 + 2t 4- 4 t 5 4- t 4 4- 4t 3 4- 4t 2 4- 3 

11 t + 4  t 7 4 . 4 t  6 4 - 2 t  5 4 - 9 t  34- 
t 2 4- 4t 4- 10 

I 

11 t 3 4- 4t 2 4- 7t 4- 8 t 3 4- 2t 2 4- t 4- 1 

11 t 4 4- 10t 2 4- 2t 4- 6 t4+2ts4-10t24-6t4-6 
11 t 5 + 2 t  4 4 .8t  3 4-t  2 + t 4 . 2  t 2 4. 4t 4. 8 

171t 3 4- 9t 2 4- 12t 4- 2 It s 4- 5t 2 4- 3t 4- 5 
I 

17 t a 4- 15t 3 4-12t 2 4-14t + 6 t 4. 3 

17 t ~ 4- 3t 4 4- 13t a + 15t 2 4- 12 4- 6t 4- 3 

7t 4- 13 

23 t 4. 3 t 4 + 3t 3 4. 17t 4- 13 
I 

23 t 3 4- 5t 4- 2 t 3 + 22t 2 4. 2t 4- 2 

23 t 4 4- 22t 3 4- 16t 2 4- 4t 4- 4 t 4- 7 
I 

23 t ~ 4- 15t a 4- 16t 3 4- 16t 2 4- t 2 + 21t + 10 

4t 4- 16 

29 t ~ 4- 24t 2 4- 12t + 24 t 3 4. 16t 2 + 10t 4. 1 
I 

29 t 4 4- 22t 3 4- 17t 2 + 12 t 4. 5 
I 

29 t 5 4. 27t 4 4- 13t 3 4- lOt 2 4- t 2 4- 4t + 17 

23t 4. 3 

41 t a 4- 15t 3 4- 4t 2 4- 37t 4 - 1 4 t  4- 28 

41 t 3 4- 30$ 2 4- 35t 4- 9 t 3 + 29t 2 4. 15t 4. 38 

~ 4. 9t  3 4. 9t  2 4. 3t 4. 20 

4- 30t 2 4- 37t 4- 2 

+ 5 6  

t 3 4- 13t 2 4- 66t 4- 34 

t 2 4- 22t 4- 67 

t + 7 9  

t 2 4. 54t 4. 86 

t 2 4. 65t 4. 158 

t 2 4- 71t 4- 59 

t 2 + 765t + 687 

t 2 + 740t 4. 864 

89 t 2 4. 8t 4- 56 

89 t 4 4- 23t 3 4- 50t 2 4- 67t 4- 35 

11071t2 + 58t + 74 

11971t2 4. 27t 4- 125 

1401112+ 51t + 400 
17971 2 4. 526  4- 353 
1983Lt2 4.15  4- 279 

57105 59501 8 min  13 sec 

2834 2950 17.31 sec 

251783 262322 37 min  9 sec 

189893 i 191487 22 min  58 sec 

855 870 3.97 sec 

122619 123718 15 min  7 sec 

617021 62204 8 min  45 sec 

31987 32077 2 min  40 sec 

892 894 3.38 sec 

562601 564510 58 min  3 sec 

1145 1146 4.20 sec] 

102347 102553 8 min  42 sec 

4251 4256 16.50 sec 

744378 745808 1 h 21 min 

80008 80103 7 rain 3 sec I 

I 
8508 8520 33.62 sec 

1483564 1485310 2 h 44 min 

24238 24248 1 rain 37 se( 

961413 962005 1 h 25 mix 

~ 2 min  49 sec 

140840911408658 ] 2 h 7 min  
J m 

1317 1318 3.87 sec 

116511 116520 8 rain 1 sec 

11.98 sec 

20.20 sec 

1 min  24 sec] 

3 min  42 sec 

5 min  33 sec 

38621 3863 I 
65251 65261 

269251 26926 I 
7o68o1 7o6811 

1o75741 1o75751 
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