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Abstract. This paper describes a method for computing the fundamen-
tal unit and regulator of a purely cubic congruence function field of unit
rank 1. The technique is based on Voronoi’s algorithm for generating a
chain of successive minima in a multiplicative cubic lattice which is used
for calculating the fundamental unit and regulator of a purely cubic
number field.

1 Introduction

Voronoi’s Algorithm [14, 7] computes a system of fundamental units of a cubic
number field. The method is based on computing chains of successive minima in
the maximal order O of the field K. An implementation in purely cubic number
fields was given by Williams et al. [16,17,15]. Since then, the general method
has been extended to fields of higher degree; see [1-6]. The first algorithm for
computing fundamental units in cubic funcion fields was given by Mang [9]. His
technique is based on the Pohst-Zassenhaus method for number fields [10, Chap.
5]. By Mang’s own admission, his technique is slow and is infeasible for even
modest size fields; an example that took 273 seconds of CPU time on a Siemens
mainframe using Mang’s method required only 0.04 seconds on a Silicon Graphics
Challenge workstation with our algorithm. In this paper, we show how to adapt
Voronoi’s algorithm to purely cubic congruence function fields of unit rank 1.
While the number field and function field situations are similar in many ways,
there are also significant differences between the two settings; most notably, the
different behavior of the valuation (which is non-archimedian in the function
field case) and the lack of geometric lattice structure in function fields.

For an introduction to congruence function fields, see [13]; the purely cubic case
is discussed in more detail in [9]. Let k = I, be a finite field of order ¢ and let ¢
be a an element that is transcendental over k. As usual, we denote by k(t) the
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rational function field and by k[t] the ring of polynomials over k in the variable
t. A purely cubic (congruence) function field K over the field of constants k is
a cubic extension of k(t) of the form K = k(t,p) where p* = D € k[t] and
D = D(t) is cubefree in k[t]; write D = GH? where G, H € k[t] are relatively
prime. The algebraic closure O = k[t] of k[t] in K is a k[t]-module of rank 3
with a (t—)integral basis {1,p = VGH?, w = p*/H = VG2H}. Its unit group
O* is the (t—)unit group of K. O* = k* x £ where £ is the product of r infinite
cyclic groups and r € INg is the (t—)unit rank of K. The units in k* are the
trivial units. If » > 0, an independent set of r generators of £ is a system
of fundamental (t—)units of K. Denote by k((1/t)) the field of Puiseuz series
Yo aiftt (m € Z, a; € k for i > m) over k. Then the number of irreducible
factors over k((1/t)) of the polynomial F(t,y) =y* — D € k[t,y] isr + 1.

Henceforth, we assume that ¢ = —1 (mod 3) (so k does not contain any primitive
cube roots of unity), the degree deg(D) of D is divisible by 3, and the leading
coefficient sgn(D) of D is a cube in k. In this case, p € k((1/t)), so K < k((1/t)),
and F(t,y) splits into two irreducibles over k((1/t)), namely F(¢,y) = (y—p)(y>+
py + p?),s0r =1and O* = k* x (¢) with a fundamental unit € (see [11]). If g
denotes the genus of K, then we have

g = deg(GH) - 2. (1.1)

Let D be the divisor group of K over k, D° the subgroup of D of divisors of
degree 0, and P < D° the group of principal divisors of K|k. The divisor class
group (of degree 0) of K|k is the factor group C°® = D°/P; its order h = #C° is
finite and is the divisor class number of K. In analogy to D and D°, denote by
U the subgroup of D generated by the infinite places (with respect to t) of K
and by U° the subgroup of divisors in U of degree 0. The (t—)regulator of K is
the index R = [U° : PNUO). If Z is the group of fractional (t—)ideals of K and
‘H the subgroup of fractional principal (t—)ideals of K, then the (t—)ideal class
group of K is C = I/H; its order h’' = #C is also finite and is the (t—)ideal class
number of K. We have

h = Rhn'. (1.2)

For a = Y o0, ai/tt € k((1/t)) (m € Z,a; € k for i > m,am # 0), we define

deg(a) = —m,
| =q™™ = ¢,
sgn(a) = apm,
o .
I_aJ = ;

We also set deg(0) = —oco and {0] = 0. Note that {a] € k[t] and |a — |a]] < 1.

If € is a fundamental unit with deg(e) > 0, then € is unique up to a trivial unit
factor. Then we have for the regulator R = deg(e)/2.
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Let ¢ be a primitive cube root of unity in some algebraic closure of k, so :2 +
t+1 =0 and 4 = 1. Then k((1/t))(:) is a quadratic extension of k((1/t))
whose nontrivial K-automorphism is “complex conjugation” ~ : k((1/t))(¢) —
E((1/t))(¢) viaT =471, For ¢ € k((1/t))(:), we define

1 -
deg(9) = 5 deg(¢9), |
16| = \/ || = g% dee(#d) — gdes(®)

K(¢) = k(s,t,p) is a cyclic extension of k(t,t) of degree 3 for which we fix the
k(:,t)-automorphism ' : K(¢) = K(z) via p' = tp. Write 4" for (')’ (v € K(1)).
Note that o’ = o for a € K. For o € K, the norm of a (over k(t)) is N(a) =
aa'a’. We have N(a) € k(t), and if a € O, then N(a) € k[t].

2 Reduced Ideals and Minima

A subset A of O is an integral ideal if for any o, € Aand 8 € O, a4+ B € A
and fa € A. A subset A of K is a fractional ideal if there exists a nonzero
d € k[t] such that dA is an integral ideal of O. A fractional or integral ideal
A is principal if A = (o) = {0 | 8 € O} for some a. Henceforth, we assume
all ideals (fractional and integral) to be nonzero, i.e. the term “ideal” will be
synonymous with “nonzero ideal”. An integral ideal A is primitive if there exists
no nonconstant polynomial f € k[t] such that every a € A is a multiple in O of f.
For a primitive integral ideal A, the greatest common divisor of all polynomials
in A N k[t] is denoted by L(A).

Every integral or fractional ideal A of O is a k[t]-module of rank 3. If A has a k[t]-
basis {, p, v}, write 4 = [\, p, v]. Specifically, if a fractional ideal 4 contains 1,
then A has a k[t]-basis of the form {1, s, v} where

= (mo + mi1p + mew)/d,

v = (ng +ni1p + now)/d,
with mg, my, ma,ng,ny,n2,d € k[t] If gcd(mo, miy, No, N1, N2, d) =1, then dA
is a primitive integral ideal with L(dA) = d/sgn(d).

The (t—)norm of a fractional ideal A = [, u,v] is N(A) = sgn(det(T"))~* det(T)
€ k(t)* where T € Gl3(k(t)) such that

(2)+()

N(A) is independent of the choice of bases for A and O. The norm of an integral
ideal A is N(A) = L(A)3N(L(A)"!A) € k[t]. For an integral ideal .4, we have
L(A) | N(A), and if A is primitive, then N(A) | L(A)2.
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The (t—)discriminant of a fractional or integral ideal A = [\, u, V] is the quantity
AN N 2
_ P k(t) if A is a fractional ideal,
A(A) =det | pp s iy " € {k[t] if A is an integral ideal.
vv' v

A(A) is independent of the choice of k[t]-basis of .A. The discriminant of O =
[1,p,w] is A = —27G?H?. We have

A(A) = a>N(A)% A for some a € k*. (2.1)

If A is a fractional ideal and a € A4, a # 0, then « is a minimum in A if for
B € Awith 8 #0, || <|a| and |F'| < |¢/| imply B € k*a, i.e. B and « differ
only by a factor that is a trivial unit. A is reduced if 1 € A and 1 is a minimum
in A. An integral ideal A is reduced if the fractional ideal (L(A)~1).A is reduced,
i.e. if and only if L(A) is a minimum in A. It is easy to see that O is reduced.
If A is a fractional ideal of O with a minimum @ € A, then 76 is a minimum in
A for every unit € O*. In particular, every unit in ( is a minimum in O.

Theorem 2.1. If A is a reduced fractional ideal, then |A(A)| > 1, so |[N(A)| >
1/|V4].

Proof. See [11]. a

Corollary 2.2. If A is a reduced integral ideal, then |L(A)| < |VA| and |N(A)|
< 4.

Proof. Since A is reduced, we have L(A) | N(A) | L(A)?%. Also B = (L(A)"1)Ais
areduced fractional ideal, so by Theorem 2.1, |L(A)|?> > |N(A)| = |L(A)|3|N(B)|
> |L(A)P/IVA, so |L(A)| < |[VA] and [N(A)| < |L(A)? < 4. 0

Corollary 2.3. If A is a reduced fractional ideal and a € A is nonzero, then
IN(a)| > 1/4].

Proof. Let d € k[t] be of minimal degree so that B = dA is an integral ideal. Then
da € B, so (da)(d?o'a”) = N(da) = d*N(a) € B. Hence L(B) = d | d®*N(a), so
|N(a)| > 1/|d* = 1/|L(B)|?> > 1/|4| by Corollary 2.2. O

Let A be a fractional ideal and let 8 € A be a minimum in A. An element ¢ € A
is a minimum adjacent to 0 in A if

(M1) ¢ is a minimum in A,
(M2) ] < |4},
(M3) Fornoa€ A, |0 <|a|l <|¢| and || < |8}
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Note that conditions (M1) and (M2) imply |¢'| < |¢'], as |6'| < |¢'| would yield
6 € k*¢ by (M1) and hence |0] = |¢|, contradicting (M2).

In the number field setting, the existence of adjacent minima is guaranteed by
Minkowski’s lattice point theorem. However, in function fields, we have no such
tool available, so we need to establish their existence analytically.

Theorem 2.4. Let A be a fractional ideal and let § € A be a minimum in A.
Then a minimum ¢ adjacent to 6 in A exists and is unique up to a trivial unit
factor.

Proof. The set H(f) = {a € A| |a| > |8] and |@'| < |#'|} is nonempty as € €
H(9). Let a € H(6) have minimal degree. Then the set D(f) = {deg(N(a)) |
a € H(6),|o| is minimal} is a nonempty subset of ZZ which is bounded below by
—deg(A) by Corollary 2.3. Let ¢ € H(f) so that |¢| is minimal and deg(N(¢))
is a smallest element of D(#). Then

(a) |¢| > |6] and |¢'| <|6"],
(b) if @ € A with |a| > {6] and |o/| < ||, then |a| > |4,
(¢) if a € Awith |a] =|¢| and |o'| < ||, then |o'| > |¢'|.

Conditions (M2) and (M3) for ¢ follow from properties (a) and (b), respectively,
so we only need to show that ¢ is a minimum in A. Let & € A4, a # 0 with
la| < |¢} and |&'| < [¢']. By (a), |a'| < |6']. If |a| < ||, then a € k*6 as @ is
a minimum in A, implying |¢'| = |a'| < |#'|. So |a| > |8]. By (b), |a| > |4|, so
|a| = |¢|. Hence by (c), |/} > |¢'], so |&/| = |¢'|. Thus we have |a| = |¢| and
o] = I

Let 8 = o — (sgn(a)sgn(4) "')¢, then 5 € A, |8] < |4| and |8'| < max{|o/|,|¢'|}
< |8'|. Suppose g # 0, then by (M3), |8] < |6], so 8 € k*8. But then |¢'| = || <
|6'|. So we must have @ = 0 and thus a € k*¢. Therefore, ¢ is a minimum in A.

To see that ¢ is unique up to a factor in k*, let @1, ¢2 be two minima in A
adjacent to 8. Without loss of generality, assume |¢)| < |¢5|. Both ¢; and ¢ are
minima in 4 by (M1) and 0| < |$1],1¢2| by (M2). If |¢1]| < |¢2|, then by (M3),
|¢7| > 6], so since ¢, is a minimum in A, 8 € k*¢;, implying the contradiction
|0] = |¢1] > |6|. Similarly we can rule out |¢1]| > |¢e|- Hence |¢1] = |@2], so
b1 € k™ 2. O

We will henceforth speak of the minimum adjacent to an element in a fractional
ideal, keeping in mind that it is only unique up to a trivial unit factor.

If A is a reduced fractional ideal with a minimum 8 € A, then it is easy to see
that A* = (1/6)A is reduced. Furthermore, if * is the minimum adjacent to 1
in A*, then #6* is the minimum adjacent to 8 in A.
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3 The Algorithm

The basic idea for our algorithm is the same as in the unit rank 1 case of number
fields. Start with the reduced ideal A; = O, and recursively define a sequence of
reduced fractional ideals A,, as follows. Let p,, be the minimum adjacent to 1 in
An and set Apq1 = (u;')An. Then A, is a reduced fractional ideal. Define

n—1
=1, 6p=][m forn>2 (3.1)
i=1

Then A, = (67!) and p41 = pnbn, so by our above remarks, 6,; is the

n
minimum adjacent to 8, in O (n € IN). Thus we have a chain

=1, 6, 65, ... (3.2)

of successive minima in O. This sequence can easily be shown to contain all the
minima in O of nonnegative degree. In particular, the fundamental unit € must
appear in the sequence (3.2), and since ¢ is the unit of smallest positive degree,
the first index [ € IN such that N(6;41) is a trivial unit yields 6,11 =€ (up to a
constant factor). [ is the period of € (or of K). We have Aj41 = A1, 41 =
and in fact pim4; = pg for m,i € IN, where the last two equalities again only
hold up to a trivial unit factor. Hence the sequence (3.2) is equal to

2 2 3
1,02,...,01,¢,€05,...,€0;,€° €05, ... €, ..

and contains all nonnegative powers of €.

A simpler termination condition for the computation of the chain (3.2) that
avoids computing norms is given as follows. Let A = (8~!) = [1, u, v] where 0 is
an element of the chain (3.2) and p = (mo+m1p+mow)/d, v = (ng+nyp+nqw)/d
with mg, mq,m2,ng,n1,n2,d € k[t] and gcd(mo, mq, ma, no,n1,n2,d) = 1. Then
N(6) € k* if and only if d € k*.

We are now ready to present our algorithm for computing the fundamental unit
of K. In each iteration, we have a basis {1, i, = (mo + m1p + mow)/d, o, =
(no+n1p+naw)/d} of our current ideal A, = (8;;!) where 8,, = (eo+e1p+esw)/ f
(mi,ni,d,e;, f € k[t] for 4 = 0,1,2). This basis is replaced by a reduced basis
{1, ptn,vn}; that is, a basis containing the minimum p, adjacent to 1 in A,,.
Details on how to obtain such a basis are given in the next section. Then 8, is
updated to 0,41 = fnbn, and since A1 = (u;!)An, pn and v, are replaced
by fint1 = 1/ pn = p' o1 /N (tn) and 9p/pin = vnpiny1, respectively. Initially,
61 =1, 1 = p, and v; = w. According to our termination condition, we end the
algorithm as soon as we encounter a basis denominator d that is a constant.

Algorithm 3.1 (Fundamental Unit Algorithm).
Input: The polynomials G, H where D = GH?2.
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Output: eg,e1,e2 € k[t] where ¢ = eg + e1p + eaw is the fundamental unit of K.

Algorithm:

1. Seteg=f=1,e1=e=0,mg=ma=ng=n;1 =0, m; =ny =d=1.
2. Repeat
(a) { Reduce the basis }
Use Algorithm 4.1 below to replace my, my, mg,ng,n1,n2,d by the coef-
ficients of a reduced basis.
(b) { Update 6, }

i. Replace
eo eomo + (exmga + eamy)GH
el b eomy + e1mg + eamsG
€2 y egmaz +eymi H + eamy
f df
it. Compute g = gcd(eo, e1, €3, f). Fori=0,1,2, replace e; by e;/g and
foyflg.
(c) { Update y and v }
i. Set
ap = mg —mimeGH,
a = m%G — moemy,
gy = m%H — MoMa,
b=md +miGH? + m3G*H — 3momm.GH.
1i. Replace

mo aod
my by ald .
me a2d

ng agng + (amz +asn \GH
1 by apny + a1ng + axnG .

No agng + ayny H + asng

145. Replace

1. Replace d by b.
v. Compute h = ged(mg, my, mg,ng,n1,n9,d). Fori =0,1,2, replace
m; by m;/h, n; by n;/h and d by d/h.
until d € k*.

The number of reduction steps is exactly the period [ of €. This number can be
quite large.

Theorem 3.2. | < 2R = deg(e) = O(q2 9842 g0 || = O(qqidesm)—z).
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Proof. For n € IN, let 8, = deg(f#,,) € INy. Since §; = 0 and §,, strictly increases
with n, a simple induction argument shows §, > n — 1. Hence I < deg(6;+1) =
deg(e) = 2R. Using the inequality b < (/g + 1)?¢ deduced in [12], together with
(1.1) and (1.2), we obtain R < (/g + 1)d8(A)—* = O(g'/24¢6(4)~2) whence
follows the bound on e. o

The above theorem shows that the coefficients eg, €1, e2 of € can be so huge that
it might be infeasible to compute or even simply write down the fundamental
unit for large values of |A|. For this situation, we modify Algorithm 3.1 to
avoid calculating the minima 6, and compute only the regulator R of K as
follows. In step 1, initialize only the m;, n; (i = 0,1,2), and d, as well as setting
R = 0. Perform step 2 as in Algorithm 3.1, except omit part (b) of step 2.
Instead, we need to add deg(u,,) to R. Since deg(p,,) = deg(mo/d) (see Theorem
4.4), we replace step 2 (b) of Algorithm 3.1 by the instruction “replace R by
R + deg(myp) — deg(d)”. Since the algorithm with these modifications computes
deg(e) = 2R, we must divide the value of R by 2 after the loop in step 2
terminates to obtain the correct value for the regulator.

4 Computation of a minimum adjacent to 1

The above discussion shows that the task of finding € (or R) reduces to the prob-
lem of computing a reduced basis of a reduced fractional ideal A. In particular,
we need to be able to generate the minimum adjacent to 1 in A. This is accom-
plished by applying a sequence of suitable unimodular transformations to the
pair (fi,7) where {1, i, 7} is a k[t]-basis of A, until a basis {1, s, v} is obtained
such that p is our desired minimum. Before we present the details of this reduc-
tion technique, we require several somewhat technical definitions. Henceforth,
we exclude the characteristic 2 case; that is, we require k to be a finite field of
characteristic at least 5. If @ = a + bp + cw € K with a,b,c € k(t), let

o =bpt+caw =a-—a,

Na =bp— cw = (o —a"), (4.1)

where we recall that ¢ is a primitive cube root of unity. Then ;o195 = féa+9¢a,

Nfat+es = [Mat9n8, (fotes = fCa+glp for any o, 8 € K and f, g € k(t). Simple
calculations show

(3n2 + C2)- (4.2)

oo | et

o= (Hatl), o=

and if A = [1,y,] is a fractional ideal, then

e (1) = - 6, = -2v3TH, (9
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80 this determinant is independent of the choice of basis of A.

We are now ready to present our reduction method.

Algorithm 4.1 (Reduction Algorithm).
Input: i, ¥ where {1,i,0} is a basis of some reduced fractional ideal A.

Output: p, v where {1, p,v} is a basis of A such that [(,| < 1, (] < 1, [€.] >
1€, [7ul <1< mu-

Algorithm:

1. Setpu=jg,v=ro.
2. If |6u| < [&| or if [€u| = |&| and |n,| < |n.|, replace

(1) w (%) (4):
8. If Inul > {mwl

(a) while |€,/&) = [n,/n.], replace

(5) o (Sieser) (£):
(5) by (—Ouéu}m)(ﬁ)‘

(c) If |nul = |nvl|, replace
(4w (67 (%)

where a = sgn(n,)sgn(n,) "' € k*.
4. (a) While |n,| < 1, replace

) o (Sieser) ()
(b) While |n.| > 1, replace
©) » (B

5. If |Gl > 1, replace p by p — (1/2)[ (]
If 16| 2 1, replace v by v — (1/2)|(, ]

(b) Replace
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Proposition 4.2. Algorithm 4.1 terminates and produces the output specified
above.

Proof. 1t is easy to see that all transformations of y and v in steps 2, 3 and
4 maintain a basis {1, u,v} of A because the basis transformation matrices all
have determinant 1.

We claim that after step 3, we have

€ul > 1€l mal < |mul. (4.4)

This can be seen as follows. Since step 2 replaces p¢ by v and v by —u, we have
[€u] > &) or |€u] = [&] and || > |7, after step 2. If at the beginning of step
3, |Inu] < |mv|, then from the previous step || > |&,|, so conditions (4.4) hold
and step 3 is skipped.

Assume now that || > |n.|, so step 3 is entered. Consider step 3 (a) and set
a=vand = |£./6]v— p, s0 o and B are obtained by applying the linear
transformation of step 3 (a) to p# and v. Then

ol =| [ 2] & -] <16l = lea
mal = |2 o -] <l = .

Hence, |¢, | and |n, | strictly decrease in each iteration, so the loop must terminate

at the latest before |{,m,| < 1, for otherwise by (4.3): |\/A(A)| = |&nulne /10 —
€./ < 1&m| < 1, contradicting Theorem 2.1. After step 3 (b), we have

€8] < |&| = |€a| and

= (] =[] (e o)

because ||€,/&v] = |u/mv]| 2 1 and |[mu/m0|n0 — 1| < 0| Finally, observe
that in step 3 (¢), a = [nu/nv]. If we set a = p — av and B = v, then as before

I7a| < |ngl, and since |£,| > |&], we have [&,| = |§, — adu] = [€ul > 161 = [&5).
So step 3 achieves the inequalities (4.4) above.

> m| = Inal

In step 4, we ensure that |n,| <1 < |p,|. From (4.4), it is clear that at most one
of the while loops in step 4 is entered. Consider first the case |n,| < 1, i.e. case
4 (a). Set a = v and B = |£,/& |v — . Then

€l <16l = al, ol = Hﬁ—j —

so inequalities (4.4) and the condition |n,| < 1 are maintained throughout the
loop. Furthermore, |, | strictly increases in each iteration, so the while loop will
terminate with the desired basis. Step 4 {c) can be analyzed analogously.

>l =nal, Il =Im| <1,
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Finally, step 5 achieves ||, |¢,| < 1. To see this, let & = p— (1/2)|(.], then by
(4.1) ol = 16 = (1/2)¢¢, )] = |¢u — [$u]] < 1. Similarly for v. 0

We proceed to prove that the basis of Algorithm 4.1 is indeed a reduced basis,
Using the identities (4.2), one can show that if @ € K, then |a’| < 1 if and only
if |na] < 1 and |(a] < 1.

Theorem 4.3. Let {1,u,v} be a basis of a reduced fractional ideal A such that
Iul <1, 1G] <1, |€u] > &, Imu] < 1 < |n|. Then u is the minimum adjacent
to 1in A, so {1,p,v} is a reduced basis of A.

Proof. Let 8 be the minimum adjacent to 1in A, 8 =l +mu+nv with [,m,n €
k[t]. We need to show that I = n = 0 and m € k*. Since |§'| < 1, we have
I¢o] < 1 and |ng] < 1. Also |(u| < 1 and |n,| < 1 imply |p'| < 1. Then |u| > 1
as otherwise p € k. Hence |u| > |0] since otherwise 1 < |u| < |0] and |i'| < 1,
contradicting (M3) for 8. Now [&s| = |26 — (|, so since |{s| < 1 and |0] > 1,
|6] = [&6|. Similarly, |u| = |€,].

If n =0, then m # 0 as 8 ¢ k[t], so {m| > |n| and |m€,| > |n&|. f n # 0,

then 1 > |npg| = |mn, + nn,| with |nn,| > 1 implies |mn,| = |nn,|. Thus,

|n| < |nny| = |mn,| < |m|, so {m| > |n| and |m&,| > [né,| as well. It follows that
161 = 66| = |m&u + n&u| = [m&y| = |mp| > |mb),

so |m| < 1. Thus, 1 > |m| > |n|, so n = 0 and m € k*.

Now 1 > [¢g| = |Cigmul = |21 + {ul, so since || < 1, |]] < 1,s0! = 0 and
0 =mu € k*p. ]

The coeflicients of the basis generated by Algorithm 4.1 are small:

Theorem 4.4. Let A be a reduced fractional ideal and let {1, u,v} be the basis

of A produced by Algorithm 4.1. Let p = (mo +myp+mew)/d, v = (ng +n1p+

now)/d with mo, my, ma,no,n1,n2,d € k[t] and gcd(mo, m1, ma, ng,n1,n2,d) =

1\-/l’hen ld| < |dul = |mo| = |mup| = |maw| < VA, and |nol, [n1pl, Inow| <
Al.

Proof. |d| < |dy| follows from |u| > 1. From |u| > 1 and || = |3moe/d — p| <
1, it follows that |du| = |mg|. The inequalities |£,| > 1 and |n,| < 1 imply
|mip| = |mow| = |d€,|. From |(,| = |2mg/d — €| < 1, we obtain |d€,| = |mo].
So |d| < |dp| = |mo| = |ma1p| = |maw].

Now dA is a reduced integral ideal with L(dA) = sgn(d)~'d, so d*N(A) =
N(dA) | &2, and thus |dN(A)| < 1. From (2.1) and (4.3), we obtain

[VA| > |dN(A)VA| = |[d/A(A)| = |d(Eumw — Eme)| > |dE,]
as |€u| > €] and || <1 < |m .
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Since |£,] > |€,], we have |vV/A| > |m1p+maw| > [nip +naw|. Also, |\/A(A)| =
|€am0| > |mo], 80 [VA| > |dny| = |n1p — naw|. Hence |nyp, [now| < |V/A]. Finally,
|¢v| <1 implies |2np — nyp + naw| < |d] < |V4|, so [no] < |[VA|. ]

5 Implementation

We implemented our algorithm on a Silicon Graphics Challenge workstation us-
ing the computer algebra system SIMATH developed by the research group of
Professor H. G. Zimmer at the Universitit des Saarlandes in Saabriicken, Ger-
many. To compute with Puiseux series, it was necessary to use truncated series
as approximations, in analogy to using rational approximations when comput-
ing with real numbers. To that end, we employed the method for extracting
cube roots as described in [8] and implemented by Mang in [9] to compute “ap-
proximations” p and @ of the basis elements p and w, respectively. That is, if
pP= o deg(p) r;/tt, then for § > 0, p = Zfz_ deg(p) r;/t* is an approzimation
of precision & to p, so |p — p| < ¢~°. Similarly for w. In contrast to Voronoi’s
algorithm in number fields, it was possible to establish conditions on the re-
quired precision ¢ that could be checked throughout the algorithmy; it is a simple
matter to flag the cases where the precision is not large enough and increase it
as required. It turned out that a uniform precision of § = deg(A) was sufficient
throughout our computations. Examples show that reducing the precision to
deg(A)/2 or even deg(A)/4 might still produce correct results, but computation
times improved only marginally with smaller precision.

Since the polynomials and series approximations in our algorithm generally had
few zero coefficients, they were given in dense representation; that is, as a list
starting with the degree of the polynomial or the series, followed by the coeffi-
cients in order of decreasing degree of monomial.

The main difficulty in our implementation was the computation of the principal
parts of quotients as required in steps 3 — 5 of Algorithm 4.1. Here, an approx-
imation &, of £, = (mi1p + mew)/d was represented as a pair (a,,d) where
a, = mip + mow; similarly for &,, 7,, and 7,. To compute a quotient [£,/&, ]
for example, we performed “division with remainder” on the quanitities a,, and
o, = nip + naw. Note that it is possible to reduce the division with remainder
of two truncated series to a division of a truncated series by just a polynomial
by using formulas such as

§u _ A—Bn,

& C
where

A= mlan + mgngG, B=minys —mon;, C= n?H + ngG.
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Then |£./¢] = [(A — Bij,)/C], provided |ni], |n2| < |C| which is extremely
likely. Here, 7, is an approximation of precision deg(B) to n,. Similar formulas,
involving different values of A and C, but using the same B value, hold for
the other quotients. Note that N(dA) = dB/sgn(dB), so B is independent of
the basis and need only be computed once per reduction. Furthermore, |B| <
|A|/]d| < |4 by Corollary 2.2, so deg(B) < deg(A). We performed computations
with both explicit division with remainder and the above formulas, and the
division with remainder version of the algorithm turned out to be about 20
percent faster.

In step 5 of Algorithm 3.1, we approximate {, = 2mo/d + £, by éu = (2mg +
a,)/d. Then the principal part [{,| of {, can be computed as simply |(2mo —
a,)/d|. This will always produce the correct polynomial as [, —(2mo+a,)/d| <
max{|mi|, |ma|}/|d| g% < 1 since |d| > 1 and at this point |m,], |ms| < |VA]
by Theorem 4.4. Similarly for (,.

6 Numerical Examples

All our examples were done over prime fields k¥ = IF, where p is a prime with
p = -1 (mod 3), and used monic polynomials G and H. Not surprisingly, our
regulator algorithm was significantly faster than our unit algorithm due to the
time-consuming polynomial arithmetic involved in updating 6,, in step 2 (b) of
each iteration of Algorithm 3.1.

The largest unit we computed was the fundamental unit € of K = IF;7(VGH?)
where G = t +4 and H = t* + 3 + 11t2 4 5t + 12. Here, € = eg + e1p + eow
where deg(eg) = 1554, deg(e1) = 1551, and deg(ez) = 1552, so |¢] = 171554 a
number of 3109 decimal digits. The period of € is 775. It took just under 15 CPU
minutes to compute e.

For the examples given in the table below, we randomly generated monic polyno-
mials G, H € IF,[t] so that deg(GH?) = 0 (mod 3), G and H are both squarefree,
and gcd(G, H) = 1. Each row of the table specifies the prime p, the polynomials
G and H, the period [ of the fundamental unit € of K = IF,(¢t, VGH?), the
regulator R of K, and the CPU time required to compute R.

We point out that for small genus and large field of constants, knowledge of the
regulator oftentimes uniquely determines the divisor class number A of the field,
or at least narrows h down to only a few possible values. From the Hasse-Weil
Theorem (see [13, Theorem V.1.15, p. 166, and Theorem V.2.1 , p. 169]), we can
infer that (/g — 1)? < h < (/g + 1)*. By (1.2), h is a multiple of R. Usually,
there are only a few multiples of R that fall within these bounds. For example,
the last five examples in our table below each permit only three possible values
for h. We plan to investigate the computation of a suitable approximation of A
by means of truncated Euler products in a forthcoming paper.
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Table 1. Regulator Computations
| p | G H l l l R | Time
5t +4 t"+® +t5+4t* +2t3+|  6387| 6655 38.52 sec
t24+t+1
5(t2 + 4t + 2 8 +¢7 +3t° + 3t* +| 57105 59501| 8 min 13 sec
32+ +t+2
5itt+t3+2t2+3t+3 [t'4+12+2t+3 2834| 2950 17.31 sec
518° +11 438 + 262 + 2t + 4[5 + ¢ + 4% + 4 + 3] 251783| 262322| 37 min 9 sec
11t + 4 t7 + 448 + 2¢% + 9¢% +| 189893| 191487(22 min 58 sec
12 4+ 4t + 10
1163 + 4> + 7t + 8 B2+t +1 855 870 3.97 sec
11(¢* + 10t + 2t + 6 t* + 263+ 102 +6t+6| 122619] 123718| 15 min 7 sec
11|65+ 26 + 883+ 12+ ¢+ 202 + 4t + 8 61702 62204| 8 min 45 sec
17(t3 + 9t% + 12t 4+ 2 245243t 45 31987 32077} 2 min 40 sec
17[¢* + 15¢% + 12t + 14t +6[t + 3 892 894 3.38 sec
17(¢° + 3t* + 133 + 156 +{t> + 6t + 3 562601| 564510{ 58 min 3 sec
Tt+13
23[t + 3 t*+ 383 +17t + 13 1145 1146 4.20 sec
23[t* + 5t + 2 2 42262 + 2t + 2 102347| 102553| 8 min 42 sec
23\t1 + 2213 4 16t% + 4t + 4|t + 7 4251 4256 16.50 sec
23(t% + 15¢* + 16t° + 16t +|t° + 21t + 10 744378 745808 1 h 21 min
4416
29(1% + 2482 + 12t + 24 {t* +16t° + 10t + 1 80008| 80103| 7 min 3 sec
29t + 2263 + 17t + 12 |t+5 8508| 8520 33.62 sec
29(t5 + 27¢* 4+ 13¢5 4+ 107 +|t® + 4t + 17 1483564(1485310| 2 h 44 min
23t + 3
41t 4+ 1563 + 447 + 37t + 14t + 28 24238 24248| 1 min 37 sec
411t3 + 30t + 35t + 9 2 + 29t + 15¢ + 38 | 961413| 962005/ 1 h 25 min
71(¢* + 9t + 9¢% + 3t + 20 |t + 56 41058| 41064| 2 min 49 sec
71(t3 + 30¢% 4+ 378 + 2 t3 4+ 13t% + 66t + 34 [1408409{1408658 2 h 7 min
891t? + 8t + 56 % 4+ 22t + 67 1317) 1318 3.87 sec
89(t* +23t3+50t2 +67¢+35(t + 79 116511 116520| 8 min 1 sec
[107]¢? + 58t + 74 |¢? + 54t + 86 3862 3863]  11.98 sec|
[197]¢2 + 27t + 125 t2 + 65¢ + 158 6525 6526 20.20 sec]
1401¢% + 51t + 400 t2 4+ 71t + 59 26925 26926] 1 min 24 sec|

|[797[t> + 526t + 353

lt? + 765¢ + 687

70680 70681] 3 min 42 sec|

log3)|

2 + 15¢ + 279

[¢2 + 740t + 864

|
|
|

107574] 107575] 5 min 33 sec
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