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Divisor class group arithmetic on C3,4 curves

Evan MacNeil, Michael J. Jacobson Jr., and Renate Scheidler

We present novel explicit formulas for arithmetic in the divisor class group of a C3,4 curve. Our formulas
handle all cases of inputs and outputs without having to fall back on a generic method. We also improve
on the most commonly occurring case by reducing the number of required field inversions to one at the
cost of a small number of additional field operations, resulting in running times that are between 11 and
21% faster than the prior state of the art depending on the field size, and even more for small field sizes
when nontypical cases frequently arise.

1. Introduction

Computing in the divisor class group of an algebraic curve is a nontrivial component in computing L-
series. L-series in turn are at the heart of the Sato–Tate conjecture and related conjectures. The Sato–Tate
conjecture has been proved for elliptic curves with complex multiplication, but its analogues for other
classes of algebraic curves remains open [14]. In order to test these conjectures for other curve families,
it is desirable to have efficient algorithms to perform divisor class group arithmetic; see, for example, [7;
6; 13].

The C3,4 curves are a family of genus 3 plane curves. While they are rare among genus 3 curves,
such special families of curves make interesting settings in which to study Sato–Tate-related conjectures.
Fast explicit formulas exist to perform divisor class group arithmetic for genus 1 and genus 2 curves.
However, the picture for genus 3 curves, and C3,4 curves in particular, is incomplete. Existing formulas
for arithmetic on C3,4 curves were developed with cryptographic applications in mind, where the curves
are defined over very large finite fields of characteristic greater than 3. A C3,4 curve over such a field is
isomorphic to one given by a short-form equation (see Section 2), yielding faster arithmetic. Moreover,
with very high probability, one will only encounter “typical” divisors (see Section 2) and many degenerate
cases need not be considered. When these assumptions are violated, one may fall back on slower divisor
addition algorithms that work on any algebraic curve.
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In [2], Arita specialized the algorithm for addition in the class group of a general Ca,b curve in [1] to
the C3,4 case. He classified divisors of C3,4 curves into 19 types based on the forms of their Gröbner basis
representations. The method allows addition of divisors of any type, although it handles this in a recursive
manner that does not terminate for some curves over very small finite fields; Arita was predominantly
interested in the cryptographic setting over a large finite field where this does not present a problem.
However, number theoretic applications require extensive curve arithmetic over far smaller finite fields.

Other algorithms are less general but much faster. In [8], the most recent of these, Khuri-Makdisi,
building upon the work of Flon et al. [4] and Abu Salem and Khuri-Makdisi [11] assumed a C3,4 curve
defined by a short-form polynomial equation. In addition to restricting to disjoint divisors without mul-
tiple points, they assume that divisors being added or doubled are typical. They represent divisors by
a pair of polynomials of minimal degree and obtain sums of divisors by computing kernels of maps
between vector spaces. This yields the most efficient explicit formulas, describing the operation as an
optimized sequence of field operations instead of via polynomial arithmetic or linear algebra, for the
typical case. Thus, prior to our work herein, the state of the art for C3,4 curves was the addition and
doubling procedures of [11] and the reduction method of [8]. Both of these are limited to typical divisors,
and one had to resort to general arithmetic for all other cases.

Our contribution is to marry the methods of Salem and Khuri-Makdisi — who have the fastest explicit
formulas to date — with the methods of Arita — whose formulas are the most general — in order to pro-
duce fast and fully general explicit formulas that cover all cases of C3,4 curve arithmetic. This approach
is facilitated by the fact that Salem and Khuri-Makdisi’s representation of typical divisors resembles
type 31 divisors from Arita’s classification. Our algorithms work in full generality: the curve may be
defined over a field of any size and any characteristic, including 0, 2, and 3 (though our implementation
only extends to finite fields), the curve equation may be in long or short form (see Section 2), divisors may
be typical or atypical, nondisjoint, and have multiple points, and all our algorithms provably terminate.

We extend the approach of [11] for finding the kernel of the aforementioned map to computing its
image as well and are thus able to handle atypical and nondisjoint divisors. We also improve on the state
of the art of [8; 11] for typical divisors. Fully general algorithms for adding, doubling, and reducing
divisors are presented in Sections 3, 4 and 5, respectively. These algorithms are used to develop fast
explicit formulas in Section 6 that handle the most typical cases arising in C3,4 curve divisor arithmetic;
specifically, adding/doubling disjoint typical divisors on a curve in short form over a field of characteristic
greater than 3. The operation counts of these formulas are summarized in Table 1.1, where I, M, S, A
refer to the number of field inversions, multiplications, squarings, and additions in the base field of the
curve.1 Our formulas improve on the prior state of the art by requiring only a single field inversion at
the cost of a sufficiently small number of other field operations. Experiments confirm an overall running
time speed-up by approximately 11–21% depending on the size of the field. Our algorithms are also
used to produce explicit formulas for all atypical cases, including nondisjoint or atypical divisors and

1Arita did not distinguish between field multiplications and squarings, and neither Arita nor Flon et al. counted field additions
in their work.
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Add Double

I M S A I M S A

Arita [2] 5 204 – – 5 284 – –
Flon et al [4] 2 148 15 – 2 165 20 –
Khuri-Makdisi and Salem [8; 11] 2 97 1 132 2 107 3 155
This work 1 111 3 99 1 127 4 112

Table 1.1. Comparison of operation counts in prior work.

curves of arbitrary form and in any characteristic. These cases are so numerous that we choose instead
to publish them in the form of Sage code on GitHub [9] and present their operation counts in Section 7.

By improving upon the typical case and completing the picture for the atypical cases, our results
will have a significant impact on number theoretic computations heavy on arithmetic in the divisor class
group of a C3,4 curve. As in [14] for example, one may wish to take a curve over Q, reduce it modulo
all primes up to some bound, and compute the order of the divisor class group of that reduced curve.
The improvement in the typical case remains significant over all the computations, while the completion
of the atypical cases becomes more significant over the smaller fields, where one frequently encounters
these cases.

2. Preliminaries

Let K be a perfect field. A C3,4 curve is a nonsingular nonhyperelliptic projective curve C of genus 3
whose affine model is given by F(x, y)= 0 where F ∈ K [x, y] is of the form

F(x, y)= y3
+ x4
+ c8xy2

+ c7x2 y+ c6x3
+ c5 y2

+ c4xy+ c3x2
+ c2 y+ c1x + c0.

We denote the unique point at infinity on C by P∞. When K has characteristic 0 or at least 5, the curve
isomorphism (x, y) 7→ (x − a/4, y − (c8/3)x + (ac8− 4c5)/3), a = (27c6− 9c7c8+ 2c3

8)/27, over K
transforms the polynomial F to the short form

F(x, y)= y3
+ x4
+ c7x2 y+ c4xy+ c3x2

+ c2 y+ c1x + c0.

Let Div0
K (C) denote the group of degree zero divisors on C defined over K . Elements of Div0

K (C) are
of the form

D =
∑

P∈C(K )−{P∞}

ordP(D)P − n P∞, n =
∑

P∈C(K )−{P∞}

ordP(D),

where the sum defining D is fixed under Galois automorphisms on K . For brevity, we identify D with
its finite part and refer to n = deg(D) as its degree. A divisor D is effective if ordP(D) ≥ 0 for all
P ∈ C(K )−{P∞} and reduced if in addition n is minimal among the degrees of all the divisors in the
linear equivalence class of D. If D is reduced, then deg(D)≤ 3. Every element of Div0

K (C) is linearly
equivalent to an effective divisor and to a unique reduced divisor in Div0

K (C).
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For any two effective divisors D, D′ ∈ Div0
K (C), define

lcm(D, D′)=
∑

P∈C(K )−{P∞}

max{ordP(D), ordP(D′)}(P − P∞),

gcd(D, D′)=
∑

P∈C(K )−{P∞}

min{ordP(D), ordP(D′)}(P − P∞).

Then D+ D′ = gcd(D, D′)+ lcm(D, D′).
There is a canonical isomorphism from Div0

K (C) to the group of fractional K [C]-ideals, written as
D 7→ ID , with inverse I 7→ div(I ). D is effective if and only if ID is integral. If g1, g2, . . . ∈ K [C] are
polynomials, then we write div(g1, g2, . . .) in place of div(〈g1, g2, . . .〉).

In [2], Arita described a monomial order on K [C] induced by the pole orders ordP∞(x) = −3 and
ordP∞(y)=−4. Every ideal I of K [C] has a unique reduced Gröbner basis with respect to this ordering
that contains the minimum polynomial of I , i.e., the unique polynomial f I in any Gröbner basis of I with
the smallest leading monomial and leading coefficient 1. Under this isomorphism, we have the following
correspondence between effective divisors and their associated K [C]-ideals:

Divisors D+ D′ lcm(D, D′) gcd(D, D′) D D ≤ D′

Ideals ID ID′ ID ∩ ID′ ID + ID′ f ID : ID ID ⊇ ID′

Here, f ID : ID is the unique K [C]-ideal satisfying ID( f ID : ID)= 〈 f ID 〉, the principal ideal generated
by f ID . The corresponding divisor D= div( f ID : ID) is the flip of D; it is equivalent to−D and is reduced.
It follows that D is reduced if and only if D = D, and D is the reduction of D, i.e., the unique reduced
divisor linearly equivalent to D. This gives rise to the following high-level algorithm for addition in the
degree zero divisor class group of a C3,4 curve, found also in [2]. Given two reduced divisors D and D′,
represented by the reduced Gröbner bases of their respective ideals ID and ID′ , perform the following:

(1) Compute the reduced Gröbner basis of J := ID ID′ .

(2) Compute the reduced Gröbner basis of J ∗ := f J : J .

(3) Compute the reduced Gröbner basis of J ∗∗ := f J ∗ : J ∗.

Then div(J ∗∗) is the unique reduced divisor equivalent to D+ D′. In [8], Khuri-Makdisi showed how to
combine the last two steps into a single efficient step.

Following [8], an effective divisor D is said to be semitypical if the reduced Gröbner basis of ID

consists of three polynomials, i.e., ID = 〈 f, g, h〉. A divisor is typical if it is semitypical with h ∈ 〈 f, g〉,
where h is the generator with the largest pole order at infinity. A divisor that is not typical is called
atypical. All typical divisors are semitypical, but atypical divisors may or may not be semitypical.

In [2], Arita classified all divisors of degree ≤ 6 into 19 types according to the leading monomials
of their reduced Gröbner bases. Table 2.1 reproduces Arita’s classification, along with a 20-th type
corresponding to the zero divisor. Note that a divisor of degree d ≤ 6 is semitypical if and only if it
is of type 31, 41, 51, or 61, and a type 31 divisor D is typical if and only if f2, the coefficient of y in
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Deg Type Gröbner Basis

0 0 1

1 11 x + f0, y+ g0

2
21 y+ f1x + f0, x2

+ g1x + g0

22 x + f0, y2
+ g2 y+ g0

31 x2
+ f2 y+ f1x + f0, xy+ g2 y+ g1x + g0, y2

+ h2 y+ h1x + h0

3 32 y+ f1x + f0, x3
+ g3x2

+ g1x + g0

33 x + f0

41 xy+ f3x2
+ f2 y+ f1x + f0, y2

+ g3x2
+ g2 y+ g1x + g0, x3

+ h3x2
+ h2 y+ h1x + h0

4
42 x2

+ f1x + f0, xy+ g2 y+ g1x + g0

43 x2
+ f2 y+ f1x + f0, y2

+ g4xy+ g2 y+ g1x + g0

44 y+ f1x + f0

51
y2
+ f4xy+ f3x2

+ f2 y+ f1x + f0, x3
+ g4xy+ g3x2

+ g2 y+ g1x + g0,
x2 y+ h4xy+ h3x2

+ h2 y+ h1x + h0

5
52 xy+ f3x2

+ f2 y+ f1x + f0, y2
+ g3x2

+ g2 y+ g1x + g0

53 xy+ f3x2
+ f2 y+ f1x + f0, x3

+ g5 y2
+ g3x2

+ g2 y+ g1x + g0

54 x2
+ f2 y+ f1x + f0, xy2

+ g5 y2
+ g4xy+ g2 y+ g1x + g0

x3
+ f5 y2

+ f4xy+ f3x2
+ f2 y+ f1x + f0,

61 x2 y+ g5 y2
+ g4xy+ g3x2

+ g2 y+ g1x + g0,
xy2
+ h5 y2

+ h4xy+ h3x2
+ h2 y+ h1x + h0

6
62 y2

+ f4xy+ f3x2
+ f2 y+ f1x + f0, x3

+ g4xy+ g3x2
+ g2 y+ g1x + g0

63 y2
+ f4xy+ f3x2

+ f2 y+ f1x + f0, x2 y+ g6x3
+ g4xy+ g3x2

+ g2 y+ g1x + g0

64 xy+ f3x2
+ f2 y+ f1x + f0, x4

+ g6x3
+ g5 y2

+ g3x2
+ g2 y+ g1x + g0

65 x2
+ f2 y+ f1x + f0

Table 2.1. Arita’s classification of divisors into types.

f ID , is nonzero (see [8, Proposition 2.12]). The types of D and D are determined by the type of D as
summarized in Table 2.2. Examples of computing the type of D are found in Section 7.3 of [10]. A
divisor is reduced if and only if it is of type 0, 11, 21, 22 or 31; in particular, all divisors of degree d ≤ 2
are reduced.

Divisor Type

D 0 11 21 22 31 32 33 41 42 43 44 51 52 53 54 61 62 63 64 65
D 0 22 21 11 31 11 0 31 22 21 0 31 22 21 11 31 22 21 11 0
D 0 11 21 22 31 22 0 31 11 21 0 31 11 21 22 31 11 21 22 0

Table 2.2. Divisor types and the type of their flip and double flip.
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3. Addition

In this section, we describe how to add two distinct reduced divisors. Analogous to [11], we make
use of certain Riemann–Roch spaces. For any nonzero function f ∈ K [C], denote by LM( f ) the
leading monomial of f . Let m ∈ K [C] be a monomial and D an effective divisor in Div0

K (C). De-
fine

W m
= L(− ordP∞(m)P∞)= { f ∈ K [C] | LM( f )≤ m},

W m
D = L(− ordP∞(m)P∞− D)= { f ∈ ID | LM( f )≤ m} =W m

∩ ID.

Given a reduced Gröbner basis for ID , it is easy to construct an echelon basis for W m
D by taking monomial

multiples of the basis elements and removing all those that result in duplicate leading monomials. Given
an echelon basis for W m

D with m sufficiently large, a reduced Gröbner basis for ID can be obtained
by removing any basis element whose leading monomial is divisible by that of another basis element.

Now let D, D′ be distinct reduced divisors of respective degrees d = deg(D) and d ′ = deg(D′), with
d ≥ d ′. Let m be the largest monomial appearing in the reduced Gröbner basis of any ideal I such that
div(I ) has degree d+d ′. For example, if d+d ′ = 6, then the reduced Gröbner basis of an ideal of a type
64 divisor contains a polynomial with leading monomial m = x4, and no other degree 6 divisor type has
a larger monomial.

Put L = lcm(D, D′) and G = gcd(D, D′). The divisors L and G arise from the kernel and image,
respectively, of the matrix M in the diagram below. Here, ι denotes inclusion and π is the natural
projection:

W m
L W m

D W m W m

W m
D′

W m
G

W m
D′

ker M ι

M

π im M

A proof of this crucial result can be found in [10, Theorem 8.7]. This is a generalization of the addition
procedure of [11], where the authors compute ker M for m = x2 y only. This is sufficient when D and D′

are disjoint (or equivalently, G = 0) and typical, but their approach fails otherwise. A larger bounding
monomial m can handle atypical divisor sums, and computing the image im M allows nondisjoint input
divisors D, D′.

The kernel and image of M are obtained by first computing the reduced row echelon form of M ,
denoted RREF(M), which in particular reveals the rank of M as well as the dimensions of its kernel
and image. If M has full rank, which is typically the case, then G = 0 and ker M produces a reduced
Gröbner basis for IL = ID+D′ . If M has rank 0, then D′ < D, in which case we find the divisor A such
that D = D′+ A and return 2D′+ A via a call to the doubling algorithm in Section 4. Otherwise, we
recursively compute the sum L +G. In this recursive call, one of the input divisors has degree strictly
less than d ′, so this recursion terminates. Details of the algorithm and toy examples can be found in [10,
Chapter 8].
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4. Doubling

Doubling a reduced divisor D is similar to adding two distinct reduced divisors. Here, we find a (not
necessarily reduced) divisor A 6= D equivalent to D and compute the reduction A+ D = 2D using the
addition algorithm from Section 3. We describe an optimized approach for finding A that represents a
significant improvement over the doubling method presented in [10, Chapter 9].

We begin with the most common case when D is a type 31 divisor. Let { f, g, h} be a reduced Gröbner
basis of its associated ideal ID .

Lemma 4.1. Let D be of type 31. Then there exist polynomials

r = y+ r0, s =−(x + s0), t = t0,

r ′ = x2
+ r ′2 y+ r ′1x + r ′0, s ′ = s ′0, t ′ = y+ t ′0,

r ′′ = r ′′0 , s ′′ = y+ s ′′0 , t ′′ = x + t ′′0

in K [C] such that r f + sg+ th = 0, r ′ f + s ′g+ t ′h = F and r ′′ f + s ′′g+ t ′′h = 0.

Proof. Explicit formulas for r, s, t, r ′, s ′, t ′ are given in Table 6.2. The polynomials r ′′ = h1, s ′′ =
y− g1+ h2 and t ′′ =−x − g2, with g1, g2, h1, h2 as given in (6-1), are easily verified to satisfy the third
identity. �

The quantities r ′′, s ′′, t ′′ are only auxiliary to the proof of Proposition 4.2. Put

A = div( f̃ , g̃, h̃) with f̃ = st ′− ts ′, g̃ = tr ′− r t ′, h̃ = rs ′− sr ′. (4-1)

Then the leading monomials of f̃ , g̃, h̃ are xy, y2, x3, respectively, so A is of type 41 by Table 2.1. It is
easy to verify that f g̃ = g f̃ and f h̃ = h f̃ in K [C]. It follows that f̃ ID = f IA and hence div f + A =
div f̃ + D, so A is equivalent to D.

The following proposition shows that A and D are typically disjoint. If not, we have D 6≤ A. Either
way, we may add D and A using the addition algorithm from the previous section.

Proposition 4.2. Let D be of type 31 and put G = gcd(D, A). If D is typical, then G = 0, otherwise G
has degree 1.

Proof. We have deg(G) ≤ deg(D) = 3. Suppose deg(G) ≥ 2. Then D−G and A−G are equivalent
divisors of degree ≤ 2. So these two divisors are reduced and hence equal, which is impossible since
deg(D) 6= deg(A). It follows that deg(G)≤ 1.

Suppose deg(G)= 1. Then deg(D−G)= 2, deg(A−G)= 3 and D−G = A−G, which by Table 2.2
forces D−G to be of type 22 and A−G to be of type 32. Let x+a and x+b be the minimum polynomials
of IG and ID−G , respectively. Then f = (x + a)(x + b) ∈ ID . Appealing to the form of ID characterized
in Table 2.1, f is the minimum polynomial of ID and has a vanishing y-coefficient, so D is atypical.

Conversely, suppose that D is atypical. Referring to the quantities of Lemma 4.1, we have t =− f2= 0.
Put I = 〈r, s〉. Then I is a prime ideal of degree 1. From (4-1), we see that IA ⊆ I . A simple symbolic
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computation yields f = st ′′, g = r t ′′ and h = r ′′s− s ′′r , so ID ⊆ I . It follows that IG = IA+ ID ⊆ I , so
div(I )≤ G, which in turn implies deg(G)≥ 1, and hence deg(G)= 1. �

An optimization is possible when computing the kernel of M in

W m
L W m

A W m W m

W m
D

W m
G

W m
D
.

ker M ι

M

π im M

The kernel consists of K [C]-linear combinations of { f̃ , g̃, h̃} that belong to W m
L . However, the following

theorem shows that when D is typical, we may instead perform our computations on f, g, h. The latter
have fewer monomials, so the resulting linear combinations are faster to generate.

Theorem 4.3. Let D be of type 31, L = lcm(D, A) and G = gcd(D, A). Let a, b, c ∈ K [C]. Then
a f + bg+ ch ∈ I2D−G if and only if a f̃ + bg̃+ ch̃ ∈ IL .

Proof. We have 2D−G+ div( f̃ )= L + D− A+ div( f̃ )= L + div( f ). Since f g̃ = g f̃ and f h̃ = h f̃ ,
the claim follows. �

If D is typical, then I2D−G = I2D by Proposition 4.2.
Next, we provide analogous results for divisors D of types 11, 21, and 22. Here, ID = 〈 f, g〉.

Theorem 4.4. Let D be of type 11, 21, or 22, and write ID = 〈 f, g〉. Then there exist nonzero polynomials
f̃ , g̃ ∈ K [C] such that f g̃+ g f̃ = F and f̃ 〈 f, g〉 = f 〈 f̃ , g̃〉. The divisor A = div( f̃ , g̃) is equivalent to
D and gcd(A, D)= 0. Finally, for any a, b ∈ K [C], we have a f +bg ∈ I2D if and only if a f̃ +bg̃ ∈ IA+D .

Proof. The first assertion follows from F ∈ 〈 f, g〉. Since f g̃ = −g f̃ in K [C], we have f̃ 〈 f, g〉 =
〈 f f̃ , g f̃ 〉 = 〈 f f̃ , f g̃〉 = f 〈 f̃ , g̃〉, so div( f̃ ) + D = div( f ) + A. This identity also yields the last
assertion, provided that gcd(A, D)= 0.

Suppose first that D is of type 11. Then the leading monomials of f and g are x and y, respectively. A
solution to f g̃+ g f̃ = F then requires that the leading monomials of f̃ and g̃ are y2 and x3, respectively.
Therefore A = div( f̃ , g̃) is a type 62 divisor. Suppose gcd(A, D) 6= 0. Then A− D would be a principal
divisor of degree 5 which is impossible by Table 2.1.

Likewise, suppose D is of type 21. Then A = div( f̃ , g̃) is of type 43. Suppose G = gcd(A, D) 6= 0.
Since A−G ≡ D−G, we either have a degree 3 divisor that is equivalent to a degree 1 divisor, or a
degree 2 divisor that is equivalent to 0, depending on the degree of G. Appealing to Table 2.1, we see
that both cases are impossible. The case when D is of type 22 is similar. �

Our addition and doubling routines call one another, but this process terminates. The doubling routine
terminates on all inputs except atypical type 31 divisors (Proposition 4.2), in which case we must add
L+G where deg G = 1 and there is no need to subsequently double another type 31 divisor. Furthermore,
the addition routine may call itself, but the degree of the smaller divisor strictly decreases, forcing it to
eventually terminate.
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5. Reduction

Reducing a divisor may be accomplished by flipping it twice, as was done in [2; 11]. However, in
[8], it was shown that for typical degree 6 divisors, both flips can be combined into a single operation
that is more efficient than even just the first flip. Below, we generalize this result to all typical and
nonsemitypical divisors (of any degree). The remaining divisors, those that are semitypical but atypical,
are addressed in Theorem 5.2.

Theorem 5.1. Let D be an effective divisor on C and let {u, v} be any generating set for ID such that u
is the minimum polynomial of ID . Then there exist polynomials f, g ∈ K [C] such that f v = gu in K [C]
and D = div( f, g).

Proof. Let f be the minimum polynomial of the colon ideal u : v. Then there exists g ∈ K [C] such that
f v= gu in K [C]. The divisor A= div( f, g) is equivalent to D since uIA = 〈 f u, gu〉 = 〈 f u, f v〉 = f ID .
The minimality of u and f implies that A is reduced and is hence the reduction of D. �

In particular, Theorem 5.1 makes efficient reduction of all divisors listed in Table 2.1 straightforward,
except for atypical semitypical divisors, where ID might be generated by no two of its Gröbner basis
elements. Given ID = 〈u, v〉, the type of D is first read from Table 2.2. Then the leading monomials of
f, g, with ID = 〈 f, g〉, are obtained from Table 2.1. The coefficients of f, g are now easily computed
by equating coefficients in the relation f v ≡ gu (mod F) and solving the resulting system of linear
equations.

Reduction of atypical semitypical divisors is done via Theorem 5.2 which represents an improvement
for type 41 and 51 divisors over the method presented in [10, Section 10.1].

Theorem 5.2. Let D be an atypical semitypical divisor, and write ID = 〈 f, g, h〉. Put I = 〈 f, g〉. Then
there exist K -rational points P , Q on C such that div(I )= D+ (P − P∞) and div(I )= Q− P∞.

Proof. We have deg div(I ) = dimK (K [C]/I ) and deg D = dimK (K [C]/ID). Computing these dimen-
sions for each atypical case using Table 2.1 (the dimensions are determined by the leading coefficients
of f and g) yields deg div(I )= deg D+ 1 which establishes the existence of P .

Analogous to Lemma 4.1, there exist polynomials r = x + r0, s = y + s1x + s0 ∈ K [C] such that
f s + gr = F when D is of type 51 and f s = gr otherwise. Since div(r, s) has degree 1, it is reduced
and of the form Q− P∞. As in the proof of Theorem 5.1, we see that I is equivalent to 〈r, s〉, which is
hence the reduction of div(I ). �

Corollary 5.3. D = (Q− P∞)+ P − P∞.

Proof. By Theorem 5.2, D = div(I )− (P − P∞) and div(I )= Q− P∞. The reduced divisor equivalent
to −(P − P∞) is P − P∞. It follows that D is equivalent to (Q− P∞)+ P − P∞. Since D is reduced
and both D and (Q − P∞)+ P − P∞ have the same degree, they must both be reduced and therefore
equal. �
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Obtaining P amounts to finding polynomials p = x + p0 and q = y+ q1x + q0 such that hp, hq ∈ I .
The polynomials r and s of Theorem 5.2 determine Q.

6. Explicit formulas for typical divisors

Here, we derive explicit formulas handling the most typical cases in C3,4 arithmetic: adding disjoint type
31 divisors whose sum is typical, and doubling a typical type 31 divisor whose double is typical. If ever
we detect that we are outside these cases, we may fall back on another series of explicit formulas.

Let D and D′ be typical type 31 divisors, with respective associated ideals and Gröbner bases ID =

〈 f, g, h〉 and 〈 f ′, g′, h′〉, where

f = x2
+ f2 y+ f1x + f0, f ′ = x2

+ f ′2 y+ f ′1x + f ′0,

g = xy+ g2 y+ g1x + g0, g′ = xy+ g′2 y+ g′1x + g′0,

h = y2
+ h2 y+ h1x + h0, h′ = y2

+ h′2 y+ h′1x + h′0.

(6-1)

The optimal choice of monomial in the addition and doubling algorithms of Section 3 and Section 4
is m = x2 y. Bases for the vector spaces W x2 y

D and W x2 y
D′ are { f, g, h, x f, xg} and { f ′, g′, h′, x f ′, xg′},

respectively. The matrix

M =

 a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15


for adding D and D′ is constructed by reducing the former basis modulo the latter; e.g., the reduction of
f modulo { f ′, g′, h′, x f ′, xg′} is ( f2− f ′2)y+ ( f1− f ′1)x + ( f0− f ′0), so a1 = f0− f ′0, a6 = ( f1− f ′1),
etc. Computing the first three columns requires only subtractions (counted as additions). The last two
columns are given in terms of the first two by a4 a5

a9 a10

a14 a15

=
0 − f ′0 −g′0

1 − f ′1 −g′1
0 − f ′2 −g′2

  a1 a2

a6 a7

a11 a12

 .

For doubling D, we construct the divisor A defined in Section 4 using the polynomials defined in (4-1)
and Lemma 4.1. Then the left three columns of the matrix M used in the computation of D+ A are the
reductions of f̃ , g̃, h̃ modulo f, g, h. Let e1 =−( f1+ g2) and e2 = r ′2− f2. Then the left three columns
of M are t ′0s0+ s ′0t0− g0 t ′0r0+ t0( f0− r ′0)− h0 f0e1+ g0e2− s ′0r0− r ′0s0

t ′0− g1 t0( f1+ f1)− h1 f1(e1+ s0)+ g1e2− r ′0+ f0

s0− g2 t ′0− h2+ r0− t0e2 f2(e1− g2)+ r ′2(g2− s0)− s ′0

 .

The right two columns relate to the first three as above, with D in place of D′.
If the first column is zero, then D+ D′ (or D+ A) is atypical and we must fall back on other formulas.

Otherwise, we assume a1 6= 0 by swapping rows if necessary. Then elementary row operations convert
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M into row echelon form: a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15

−→
a1 a2 a3 a4 a5

0 b1 b2 b3 b4

0 0 b5 b6 b7

 .

If b1 or b5 are zero, then D + D′ (or D + A) either contains points of multiplicity exceeding 1 or is
atypical. To avoid an expensive inversion operation, we compute a scalar multiple of the reduced row
echelon form RREF(M) and defer the necessary inversion until later:a1 a2 a3 a4 a5

0 b1 b2 b3 b4

0 0 b5 b6 b7

−→
Z 0 0 A1 A2

0 Z 0 B1 B2

0 0 Z C1 C2

 .

Now ker(M)= SpanK {U, V }, where

U = Z x f −C1h− B1g− A1 f, V = Z xg−C2h− B2g− A2 f.

Let

U = Z x3
+U5 y2

+ · · ·+U0 and V = Z x2 y+ V5x2 y+ · · ·+ V0.

Formulas for the coefficients Ui , Vi are found in Table 6.3, although note that the constant coefficients
U0 and V0 are not needed and therefore not computed. Let u0, . . . , u5, v0, . . . v5 be the coefficients of
u :=U/Z and v := V/Z . To compute ui , vi , we will need the inverse of Z . However, we will also need
the inverse of f ′′2 = u2

5+ u4− v5 later on. We compute both inverses at once with only a single inversion
using a variation of Montgomery’s Trick. Formulas for ζ := Z−1 and τ := ( f ′′2 )

−1 are found in Table 6.3.
We note that the intermediate value z0 is equal to Z2 f ′′2 . If this is zero, then the sum is atypical and we
fall back on other formulas. Once ζ is known, we compute ui = ζUi and vi = ζVi for i = 1, . . . , 5.

Now ID+D′ (or I2D) is generated by {u, v}. We apply Theorem 5.1 and find polynomials

f ′′ = x2
+ f ′′2 y+ f ′′1 x + f ′′0 and g′′ = xy+ g′′3 x2

+ g′′2 y+ g′′1 x + g′′0

satisfying

f ′′v ≡ g′′u (mod F).

We would then have to reduce g′′ modulo f ′′ to eliminate the x2 term in g′′. Since g′′3 = u5, this means
subtracting u5 times f ′′ from g′′. We avoid this by instead finding g′′ = xy+ g′′2 y+ g′′1 x + g′′0 such that
f ′′v ≡ (g′′+ u5 f ′′)u (mod F), thereby saving a multiplication and a few additions.

The third polynomial in the Gröbner basis of ID+D′ (or I2D) is

h′′ = τ((y+ g′′1 ) f ′′− (x + f ′′1 − g′′2 )g
′′).

Explicit formulas and operation counts for all the quantities above are given in Tables 6.1, 6.2, and 6.3.
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Addition 12M+17A

Input: ID = 〈 f, g, h〉, ID′ = 〈 f ′, g′, h′〉
f = x2

+ f2 y+ f1x + f0 f ′ = x2
+ f ′2 y+ f ′1x + f ′0

g = xy+ g2 y+ g1x + g0 g′ = xy+ g′2 y+ g′1x + g′0
h = y2

+ h2 y+ h1x + h0 h′ = y2
+ h′2 y+ h′1x + h′0

Output: Madd =

 a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15


Compute elements ai of Madd 12M+17A

a1 = f0− f ′0 a2 = g0− g′0 a3 = h0− h′0 a4 =− f ′0a6− g′0a11

a5 =− f ′0a7− g′0a12 a6 = f1− f ′1 a7 = g1− g′1 a8 = h1− h′1
a9 = a1− f ′1a6− g′1a11 a10 = a2− f ′1a7− g′1a12 a11 = f2− f ′2 a12 = g2− g′

a13 = h2− h′2 a14 =− f ′2a6− g′2a11 a15 =− f ′2a7− g′2a12

If a1 = a6 = a11 = 0, then abort.
If a1 = 0 is zero but a6 6= 0 or a11 6= 0, then swap rows so a1 6= 0.

Table 6.1. Construction of matrix M — typical addition.

7. Implementation and testing

A Sage implementation of C3,4 curve arithmetic based on the algorithms in this paper is available
at [9]. This implementation includes optimized addition and doubling subroutines fast_add_31_31,
fast_add_31_31_high_char, fast_double_31, and fast_double_31_ high_char. The high char-
acteristic versions assume that the curve equation is given in short form and implement the formulas in
Tables 6.1, 6.2, and 6.3. The other versions implement similar formulas with no assumptions on the
coefficients c5, c6, and c8. The optimized subroutines assume the typical cases described in Section 6.
When any of these assumptions are violated, an exception is thrown, and a less-optimized subroutine is
called instead.

The less-optimized subroutines are nonetheless implemented via explicit formulas. These include
addition subroutines for every pair of reduced divisor types (e.g., add_31_21), a doubling subroutine for
every reduced divisor type (e.g., double_31), and a reduction subroutine for every unreduced divisor
type (e.g., reduce_61).

Addition subroutines, given input divisors D and D′, compute L = lcm(D, D′) and G = gcd(D, D′)
by computing the kernel and image of a matrix as described in Section 3. If G = 0, then the reduction
of L is computed via the appropriate subroutine and L is returned. Otherwise L and G are added by
calling another addition subroutine. The cost of evaluating D + D′ depends on the type of L . Costs
are given in Table 7.1(A) for the cases when G = 0. When G > 0, one or more recursive calls must be
made. A full analysis of the cost in these cases was not done, due to the large number of subcases that
can occur.
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Doubling 28M+1S+41A

Input: ID = 〈 f, g, h〉
f = x2

+ f2 y+ f1x + f0, g = xy+ g2 y+ g1x + g0, h = y2
+ h2 y+ h1x + h0

Output: Mdoub =

 a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15


Compute polynomials r = y+ r0, s =−(x + s0), t = t0 such that r f + sg+ th = 0 1A

r0 = g1 s0 = f1− g2 t0 =− f2

Compute polynomials r ′ = x2
+ r ′2 y+ r ′1x + r ′0, s ′ = s ′0, t ′ = y+ t ′0 2M+1S+7A

such that r ′ f + s ′g+ t ′h = F

r ′2 = c7− f2 r ′1 =− f1 t ′0 =−h2− f2r ′2
s ′0 = c4− h1+ f1( f2− r ′2) r ′0 = c3+ f 2

1 − f0

Compute reductions 14M+25A

f̃ = f̃2 y+ f̃1x + f̃0, g̃ = g̃2 y+ g̃1x + g̃0, h̃ = h̃2 y+ h̃1x + h̃0

e1 =− f1− g2 e2 = r ′2− f2

f̃2 = s0− g2 f̃1 = t ′0− g1

f̃0 = t ′0s0+ s ′0t0− g0 g̃2 = t ′0− h2+ r0− t0e2

g̃1 = t0( f1+ f1)− h1 g̃0 = t ′0r0+ t0( f0− r ′0)− h0

h̃2 = f2(e1− g2)+ r ′2(g2− s0)− s ′0
h̃1 = f1(e1+ s0)+ g1e2− r ′0+ f0

h̃0 = f0e1+ g0e2− s ′0r0− r ′0s0

Compute matrix Mdoub 12M+8A

a1 = f̃0 a2 = g̃0 a3 = h̃0

a4 =− f0a6− g0a11 a5 =− f0a7− g0a12 a6 = f̃1

a7 = g̃1 a8 = h̃1 a9 = a1− f1a6− g1a11

a10 = a2− f1a7− g1a12 a11 = f̃2 a12 = g̃2

a13 = h̃2 a14 =− f2a6− g2a11 a15 =− f2a7− g2a12

If a1 = a6 = a11, then abort.
If a1 = 0 but a6 6= 0 or a11 6=, then swap rows so a1 6= 0.

Table 6.2. Construction of matrix M — typical doubling.

Doubling subroutines, given an input divisor D, find generators for a divisor A equivalent to D, and
compute G = gcd(A, D) and 2D−G as outlined in Section 4. We recursively compute 2D−G +G.
The cost depends on the type of 2D−G, if G = 0, and if a recursive call must be made. Table 7.1(B)
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Computing ker M 1I+99M+3S+72A

Input: ID = 〈 f, g, h〉, M
f = x2

+ f2 y+ f1x + f0, g = xy+ g2 y+ g1x + g0, h = y2
+ h2 y+ h1x + h0

M =

 a1 a2 a3 a4 a5

a6 a7 a8 a9 a10

a11 a12 a13 a14 a15


Output: ID+D′ = 〈 f ′′, g′′, h′′〉 (or I2D = 〈 f ′′, g′′, h′′〉)
f ′′ = x2

+ f ′′2 y+ f ′′1 x + f ′′0 , g′′ = xy+ g′′2 y+ g′′1 x + g′′0 , h′′ = y2
+ h′′2 y+ h′′1x + h′′0

Compute row echelon form of M 21M+12A

d1 = a1a12− a2a11 d2 = a6a12− a7a11

b1 = a1a7− a2a6 b2 = a1a8− a3a6 b3 = a1a9− a4a6

b4 = a1a10− a5a6 b5 = b1a13− d1a8+ d2a3 b6 = b1a14− d1a9+ d2a4

b7 = b1a15− d1a10+ d2a5

Compute Z ·RREF(M) 18M+6A

Y = a1b1 Z = Y b5

e1 = b3b5− b2b6 e2 = b4b5− b2b7

A1 = b1(a4b5− b6a3)− a2e1 B1 = a1e1 C1 = Y b6

A2 = b1(a5b5− b7a3)− a2e2 B2 = a1e2 C2 = Y b7

Compute ker(M) 18M+14A

U1 = Z f0−C1h1− B1g1− A1 f1 U2 =−C1h2− B1g2− A1 f2

U3 = Z f1− A1 U4 = Z f2− B1 U5 =−C1

V1 = Zg0−C2h1− B2g1− A2 f1 V2 =−C2h2− B2g2− A2 f2

V3 = Zg1− A2 V4 = Zg2− B2 V5 =−C2

Compute ζ = Z−1, τ = ( f ′′2 )
−1 1I+5M+2S+3A

z0 =U 2
5 + Z(U4− V5) z1 = Zz0 z2 = z−1

1 z3 = Zz2 ζ = z0z2 τ = Z2z3

Compute u1, . . . , u5, v1, . . . , v5 10M

u1 = ζU1 u2 = ζU2 u3 = ζU3 u4 = ζU4 u5 = ζU5

v1 = ζV1 v2 = ζV2 v3 = ζV3 v4 = ζV4 v5 = ζV5

Compute f ′′, g′′, h′′ 27M+1S+37A

r0 = u5( f ′′2 + u4− c7)+ u3− v4 r1 = f ′′2 ( f ′′2 − u4)

g′′0 = u5(c3− f ′′0 − u1− f ′′1 u3)− g′′1 u3+ f ′′1 v3+ v1

g′′1 = r1− u5(u3+ r0)+ v3 g′′2 =−u4u5+ v4− r0+ τ(u4r0− u5g′′1 − u2)

f ′′0 =−c7(r1+g′′2 u5)+u5( f ′′2 u3+ f ′′1 u4−c4+u2)+g′′2 u3+g′′1 u4− f ′′2 v3− f ′′1 v4+u1−v2

f ′′1 = r0+ g′′2 f ′′2 = u2
5+ u4− v5

h′′0 = τ( f ′′0 g′′1 − g′′0r0) h′′1 = τ(g
′′

1 g′′2 − g′′0 ) h′′2 = g′′1 + τ( f ′′0 − g′′2r0)

Table 6.3. Computing ker M .
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contains the costs for the cases where G = 0. Here, “t” and “a” under the type column refer to typical
and atypical divisors, respectively.

Our operation counts for the high characteristic formulas compare to the previous state of the art in
[8] as follows:

Addition Doubling

Khuri-Makdisi [8] 2I+97M+1S+132A 2I+107M+3S+155A
This work 1I+111M+3S+99A 1I+127M+4S+112A

These counts include a trade-off of one inversion for several multiplications. An inversion is generally
considered to be as expensive as 80 multiplications, depending on implementation and environment
details [3; 5]. Our formulas also significantly decrease the number of additions required, and the total
number of field operations in both of our formulas is less than that of [8]. Over large fields such as those
considered in [8], additions are generally considered to have negligible cost compared to multiplications
and inversions, but in number theoretic computations such as [13] over smaller (typically word-sized)
primes, this has been observed not to be the case.

To verify that our results represent an improvement over the previous state-of-the-art, we implemented
the formulas from [11] and [8] in Sage and ran benchmark tests as follows. Given a prime p, choose
a random C3,4 curve C over Fp (with defining polynomial in short form) and two random divisors D1

and D2 on C . Details on random divisor generation are given in Section 12.2 of [10]. We counted how
many terms in the Fibonacci-like sequence Di+2 = Di+1 + Di , i ≥ 1 (for addition) and the sequence
Di+1 = 2Di , i ≥ 1 (for doubling) each algorithm is able to compute in 10 minutes. We chose to run these
tests over the first 23 primes greater than 228, as primes on this order are of interest in number theoretic
applications (see [14], for example), and because degenerate cases are so rare that we can strictly compare
our formulas to those of [11] and [8]. Our algorithm computed 126,310,162 additions as compared to
112,041,012 using the algorithm from [8], for a speedup of 12.74%. Similarly, our algorithm computed
120,827,482 doublings as compared to 108,489,487 for a speedup of 11.37%.

This benchmark was repeated over the first 11 primes larger than 2255, where we found a more signifi-
cant speed-up, likely due to the increasing cost of inverting in large finite fields. Our algorithm computed
63,151,623 additions versus 52,185,141 using the algorithm from [8], for a speedup of 21.01%. Similarly,
our algorithm computed 56,795,783 doublings as compared to 48,395,712 for a speedup of 17.36%.

We found the most significant speed-up over very small primes, where atypical cases are frequently
encountered and our explicit formulas are much faster than generic arithmetic. Over the ten largest
primes below 28, we compared our formulas against those of [11] and [8], falling back on Sage’s generic
ideal arithmetic for cases not handled by those papers. Our algorithm computed 53,670,222 additions
as compared to 31,685,426 using the algorithm from [8], for a speedup of 69.38%, and 48,156,514
doublings as compared to 39,152,564 for a speedup of 23.00%.

It is important to acknowledge the role that the implementation environment plays in these results.
The benchmarks were run in the Sage interpreter, which adds significant overhead to the calculations.
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Op count Type
Subroutine I M S A of L

add_11_11 1 3 0 4 21
add_11_11 0 1 0 3 22

add_21_11 1 13 0 14 31
add_21_11 0 12 0 17 32

add_21_21 2 68 1 58 41-t
add_21_21 2 67 0 58 41-a
add_21_21 1 27 0 19 42
add_21_21 1 39 0 32 43
add_21_21 0 12 0 9 44

add_21_22 2 40 1 41 41-t
add_21_22 2 39 0 41 41-a
add_21_22 0 2 0 2 42

add_22_11 1 5 0 5 31-a
add_22_11 0 1 0 3 33

add_22_22 1 11 0 17 43

add_31_11 2 43 1 49 41-t
add_31_11 2 22 0 49 41-a
add_31_11 0 6 0 10 42
add_31_11 1 16 0 32 43

add_31_21 2 80 1 77 51-t
add_31_21 2 78 1 74 51-a
add_31_21 1 35 1 33 52
add_31_21 1 57 1 51 53
add_31_21 1 43 1 41 54

add_31_22 2 69 0 64 51-t
add_31_22 2 67 0 61 51-a
add_31_22 1 24 0 20 52
add_31_22 1 46 0 38 53
add_31_22 1 36 0 29 54

fast_add_31_31 1 111 3 99 61-t
_high_char

fast_add_31_31 1 114 2 102 61-t
add_31_31 2 127 0 110 61-a
add_31_31 1 69 0 54 62
add_31_31 1 85 0 67 63
add_31_31 1 94 0 75 64
add_31_31 0 32 0 28 65

(A) Addition

Op count Type of
Subroutine I M S A 2D−G

double_11 1 15 1 20 21
double_11 0 8 1 13 22

double_21 2 86 1 85 41-t
double_21 2 85 0 85 41-a
double_21 1 50 0 47 42
double_21 1 60 0 60 43
double_21 0 7 0 12 44

double_22 1 22 0 22 42
double_22 1 25 0 29 43

fast_double_31_high_char 1 127 4 112 61
fast_double_31 1 138 2 130 61
double_31 2 159 0 156 61-t
double_31 2 152 0 149 61-a
double_31 1 94 0 90 62
double_31 1 110 0 103 63
double_31 1 119 0 111 64
double_31 0 57 0 64 65

(B) Doubling

Op count
Subroutine I M S A

reduce_32 0 8 0 11
reduce_33 0 0 0 0
reduce_41t 1 23 1 28
reduce_41a 1 22 0 28
reduce_42 0 0 0 1
reduce_43 0 6 0 11
reduce_44 0 0 0 0
reduce_51t 1 24 0 32
reduce_51a 1 22 0 29
reduce_52 0 1 0 3
reduce_53 0 12 0 14
reduce_54 0 7 0 10
reduce_61t 1 35 0 46
reduce_61a 1 28 0 39
reduce_62 0 2 0 5
reduce_63 0 8 0 13
reduce_64 0 12 0 21
reduce_65 0 0 0 0

(C) Reduction

Table 7.1. Operation counts for C3,4 arithmetic.
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If implemented in a low level language, such as C/PARI, our improvements over [11; 8] may be more
dramatic.

Correctness testing was accomplished by a combination of unit testing and random testing. Unit tests
were constructed testing every branch of code in the addition, doubling, and reduction subroutines. These
subroutines were also tested via hundreds of thousands of random inputs and the results were compared
against Sage’s vetted ideal arithmetic.

8. Conclusion

By generalizing the techniques of Abu Salem and Khuri-Makdisi [11] to atypical divisors as classified by
Arita [2], we provided a fully general framework for efficient divisor arithmetic on C3,4 curves. Taken
together with our additional improvements to the setting of typical divisors, we obtain speedups of
between 11 and 21% depending on the field size, and even more for small fields were atypical cases
arise more frequently.

There is room for further speed advances in C3,4 curve arithmetic, and work on this topic is ongoing.
In our formulas for atypical divisors, addition/doubling and reduction are performed separately. Savings
could be effected by combining these into a single optimized subroutine, as was done in Section 6 for the
typical case. It is also possible to eliminate all inversions using an analogue of projective coordinates, but
this would likely not help with number-theoretic computations where frequent equality tests of divisors
are required.

Arithmetic on C3,4 curves continues to be significantly more expensive than arithmetic on genus 3
hyperelliptic curves. Preliminary results indicate that Shanks’ NUCOMP algorithm [12] achieves signifi-
cant savings in the latter setting, which raises the question whether a NUCOMP-like idea may be applied
to C3,4 curve arithmetic as well.
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