
Tatra Mt. Math. Publ. 47 (2010), 31–65

DOI: 10.2478/v10127-010-0030-9

tmMathemati
al Publi
ations
CRYPTOGRAPHIC ASPECTS OF REAL

HYPERELLIPTIC CURVES

Michael J. Jacobson, Jr. — Renate Scheidler — Andreas Stein

ABSTRACT. In this paper, we give an overview of cryptographic applications
using real hyperelliptic curves. We review previously proposed cryptographic pro-
tocols and discuss the infrastructure of a real hyperelliptic curve, the mathemat-
ical structure underlying all these protocols. We then describe recent improve-
ments to infrastructure arithmetic, including explicit formulas for divisor arith-

metic in genus 2, and advances in solving the infrastructure discrete logarithm
problem, whose presumed intractability is the basis of security for the related
cryptographic protocols.

1. Introduction and motivation

In their highly influential 1976 paper [8], D i f f i e and H e l l m a n intro-
duced public-key cryptography to the research community, and presented the
first protocol by which two parties can agree on a common secret by exchang-
ing information across a public channel only. While the original Diffie-Hellman
key agreement protocol was introduced in the context of finite fields, it can
be generalized to other suitable finite abelian groups. Suitable in this context
means that the group must be sufficiently large, its elements should have a com-
pact representation that supports efficient arithmetic, and the underlying Diffie-
-Hellman problem (and discrete logarithm problem) should be computationally
intractable. Prominent examples of such groups include the group of rational
points on an elliptic curve over a finite field [32], [28] and the Jacobian of an
imaginary hyperelliptic curve of genus 2 (or 3) over a finite field [29]. The use
of real hyperelliptic curves for discrete logarithm based cryptography was sub-
sequently proposed in [39].

2010 Mathemat i c s Sub j e c t C l a s s i f i c a t i on: Primary 94A60; Secondary 14H45, 11Y40,
11Y16.
Keywords: hyperelliptic curve, Jacobian, infrastructure, public-key cryptography, discrete
logarithm.

The first and second authors’ research is supported by NSERC of Canada.

31

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

Generally speaking, a hyperelliptic curve over a finite field Fq is given by an
equation of the form

C : y2 + h(x)y = f(x),

where h(x) and f(x) are polynomials with coefficients in Fq that satisfy certain
conditions. Depending on these conditions, C is a real or imaginary model; for
example, if q is odd, then h(x) = 0, and f(x) is monic of even degree if C is real
and of odd degree if C is imaginary. Geometrically, the main distinction between
the two models is that real models have two points at infinity, while imaginary
models have only one (ramified) point at infinity. Algebraically, the function field
Fq(x, y) of a real, respectively, imaginary hyperelliptic curve exhibits a structural
behaviour that is very similar to that of a real, respectively, imaginary quadratic
number field. While imaginary models have traditionally been more popular
in cryptographic applications, real models are more general; every imaginary
hyperelliptic curve can be transformed into a real curve over the same base
field Fq, while the reverse process may require a significantly larger base field.

Every hyperelliptic curve has an associated group referred to as its Jacobian
whose cardinality is exponentially large in the size of the curve. Elements of this
group are certain equivalence classes of infinite cardinality that are uniquely
representable by so-called reduced elements whose size is small. The Jacobian
of an imaginary model supports efficient arithmetic that is well understood and
a discrete logarithm problem that appears to be difficult. Thus, Jacobians of
imaginary hyperelliptic curves (of small genus) are highly suitable for crypto-
graphic use, and a large body of literature has been devoted to this subject.
While Jacobians of real models can also potentially be employed in cryptog-
raphy, their arithmetic tends to be somewhat slower than arithmetic on their
imaginary cousins. As a result, real hyperelliptic curve cryptography is conducted
in a different structure referred to as the infrastructure of the curve.

The infrastructure is a large finite subset of the identity class of the Jaco-
bian whose cardinality is in general roughly the same as that of the Jacobian.
Elements of the infrastructure have a small representation analogous to that of
reduced representatives in the imaginary Jacobian setting, and can be endowed
with a distance function that imposes an ordering on these elements. The group
operation on the Jacobian, generally referred to as a giant step, can in fact also
be applied to infrastructure elements. Under giant steps, distances are almost
additive. As a result, the infrastructure is almost an abelian group under giant
steps that only barely fails associativity.

The main difference between the two structures is that the infrastructure
supports a second baby step operation that has no analogue in the Jacobian.
Baby steps move iteratively from one element to the next in the distance-imposed
ordering, and are much faster than giant steps. Distance advances effected by
both baby steps and giant steps can be ascertained approximately, and in fact,

32

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

in the cryptographically interesting case when q is large, they can be predicted
exactly with very high heuristic probability. This leads to a third operation on
the infrastructure that is analogous to scalar multiplication. It computes for any
scalar n and any infrastructure element D of (possibly unknown) distance δ(D)
the infrastructure element E of distance δ(E) = nδ(D). This in turn makes it
possible to efficiently compute for any non-negative integer d the infrastructure
element of distance d.

Diffie-Hellman key agreement using the Jacobian is conducted as in any ad-
ditive abelian group, via reduced representatives. Two parties, Alice and Bob,
agree on an imaginary hyperelliptic curve and a public random class in its Ja-
cobian, represented by a reduced element D. Alice generates a random secret
scalar a and sends the reduced element Da in the class of aD to Bob. Similarly,
Bob sends the reduced element Db in the class of bD to Alice, where b is his
secret random scalar. The common key is the reduced element Dab in the class
of abD = a(bD) = b(aD). The underlying discrete logarithm problem reads as
follows: given D and the reduced element in the class of nD, find n. This prob-
lem has undergone considerable study and is widely believed to be intractable
for hyperelliptic curves of small genus.

In the infrastructure Diffie-Hellman analogue, Alice and Bob agree on a real
hyperelliptic curve. They respectively compute and exchange the infrastructure
elements Da of distance a and Db of distance b, where a and b are their re-
spective scalars. Each party can in turn compute the infrastructure element
Dab of distance ab which is the common key. Other discrete logarithm based
protocols, such as the public-key cryptosystem and signature scheme due to
E l G am a l [9], can similarly be adapted to the infrastructure setting. The in-
frastructure discrete logarithm problem is the problem of finding the distance of
a given infrastructure element.

The discrete logarithm problems in the Jacobian and the infrastructure ap-
pear to be equally intractable. Algorithms for extracting discrete logarithms
in the Jacobian, such as the index calculus method, have been adapted to the
infrastructure setting and yield equal asymptotic runtimes. In fact, there is a dis-
tance preserving embedding that maps the infrastructure into a very large cyclic
subgroup of the Jacobian. Hence, any algorithm for finding discrete logarithms
in a cyclic group can immediately be applied to the infrastructure.

Real models of hyperelliptic curves have not been widely investigated for cryp-
tographic applications because their arithmetic was traditionally thought to be
more cumbersome and less efficient than Jacobian arithmetic using imaginary
models. However, recent advances in this area have shown that real model arith-
metic can be competitive to its imaginary counterpart, since it is able to take
advantage of certain speed-ups in infrastructure scalar multiplication. Any scalar
multiplication algorithm in the Jacobian is comprised of a suitable series of giant

33

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

steps. The crucial point that makes the infrastructure scenario attractive is that
here, a large number of these giant steps can be replaced by baby steps which
are much faster.

The goal of this article is to explain the mathematical background of real
hyperelliptic curves, describe the realization of their arithmetic as well as their
applications to cryptography, and present recent progress on this subject. We will
demonstrate that real hyperelliptic curves are readily available for efficient use in
cryptography, and explain how to speed up all previously known cryptographic
protocols on real hyperelliptic curves so that these protocols are comparable in
speed with their imaginary hyperelliptic curve analogues.

This paper is organized as follows. In Section 2, we discuss imaginary and
real hyperelliptic curves as well as transformations between the real and the
imaginary model. Section 3 provides a review of divisors and the Jacobian of
a hyperelliptic curve, and Section 4 describes the infrastructure of a real hy-
perelliptic curve. Scalar multiplication is the main ingredient of hyperelliptic
curve based cryptographic protocols; recent improvements to this operation in
the infrastructure are presented in Section 5, and the use of these improved
versions in infrastructure based cryptography is illustrated in Section 6. A brief
discussion of infrastructure divisor arithmetic is provided in Section 7. We will
survey the mathematical security of real hyperelliptic curve based cryptosystems
in Section 8. A short history of real hyperelliptic curve cryptography as well as
an overview of related relevant work are given in Section 9, followed by final
conclusions and further open problems.

2. Hyperelliptic curves

Given the vast body of literature on hyperelliptic curves and their crypto-
graphic applications, it suffices to cite the surveys [31], [37], [23] and the refer-
ence work [7] here. Recent advances on real hyperelliptic curve protocols were
described in [24].

Throughout this paper, let q be any prime power, Fq a finite field of q elements,

F
∗

q = Fq \ {0}, and Fq an algebraic closure of Fq. Also, let Fq[x] and Fq(x) denote
the ring of polynomials and the field of rational functions, respectively, over Fq.
For any non-zero polynomial F ∈ Fq[x], let deg(F) denote the degree of F.

For our purposes, a hyperelliptic curve of genus g over Fq is defined to be an
absolutely irreducible, non-singular curve of the form

C : y2 + h(x)y = f(x), (2.1)

where f, h ∈ Fq[x] and h = 0 if q is odd. One distinguishes two models as follows:

34

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

• Imaginary model/form: f is monic, deg(f) = 2g + 1, and deg(h) ≤ g if q
is even.

• Real model/form: if q is odd, then f is monic and deg(f) = 2g + 2. If q is
even, then h is monic, deg(h) = g+1, deg(f) ≤ 2g+2, and the coefficient
of x2g+2 in f is of the form s2 + s for some s ∈ Fq.

Of cryptographic interest are the cases of low genus, in particular the cases g = 1
(elliptic curves) and g = 2. We also note that for all q, a real model as given in
(2.1) is always isomorphic over Fq to a real model of the form z2+h(x)z = F (x)
with deg(F) ≤ g; see [1, Theorem 9.1].

If E = Fq or E = Fqn for some n ∈ N, then the set of (finite) E-rational points
on C is the set

C(E) =
{

(a, b) ∈ E× E | b2 + h(a)b = f(a)
}

.

Hyperelliptic curves also have infinite points (or points at infinity). Specifically,
any imaginary model has one such point, while every real model has two points at
infinity. The hyperelliptic involution onC sends any finite point p = (a, b) ∈ C(E)
to its opposite p =

(

a,−b− h(a)
)

∈ C(E). It also sends ∞, the point at infinity
of an imaginary hyperelliptic curve, to itself and permutes (i.e., swaps) the two
infinite points ∞,∞ of a real hyperelliptic curve.

The coordinate ring of C is the ring Fq[C] =
{

A + By | A,B ∈ Fq[x]
}

; its

field of fractions Fq(C) =
{

A + By | A,B ∈ Fq(x)
}

is the function field of C.
The hyperelliptic involution on C extends to maps on Fq[C] and Fq(C), sending
α = A+By to α = A−Bh−By.

A (finite or infinite) point is said to be ramified if it is equal to its own
opposite, and unramified otherwise. The finite ramified points on C are exactly
the points (a, b) with h(a) + 2b = 0, i.e., the points (a, 0) with f(a) = 0 if q is
odd, and (a, b) with h(a) = 0 and f(a) = b2 if q is even; if C is imaginary, then
∞ is also ramified. Since C is non-singular, we must have h′(a)b 6= f ′(a) for any
finite ramified point p = (a, b), where for any polynomial F (x) ∈ Fq[x], F

′(x)
denotes the formal derivative of F with respect to x.

Under certain conditions, there are genus and function field preserving bira-
tional transformations over Fq from one model to the other (see also [35] for the
case q odd).Proposition 2.1. Any imaginary hyperelliptic curve C : y2 + h(x)y = f(x)
of genus g with an unramified Fq-rational finite point p = (a, b) is birationally
equivalent to a real hyperelliptic curve C′ : v2 +H(u)v = F (u) of genus g with
F (0) = H(0) = 0, and Fq(C) = Fq(C

′). Here,

u =
1

x− a
, v =

y

b(x− a)g+1
=

yug+1

b
,

35

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

F (u) =
u2g+2

e
f

(

1

u
+ a

)

, H(u) =
ug+1

e2
h

(

1

u
+ a

)

,

with e = b if q is odd and e = h(a) if q is even.

Any real hyperelliptic curve C : y2 + h(x)y = f(x) of genus g with a ramified
Fq-rational finite point p = (a, b) is birationally equivalent to an imaginary model
C′ : v2 +H(u)v = F (u) of genus g, and Fq(C) = Fq(C

′). Here,

u =
1

e(x− a)
, v =

y + b

(e(x− a))g+1
= (y + b)ug+1,

F (u) = u2g+2f

(

1

eu
+ a

)

+ bG(u) + b2u2g+2 , G(u) = ug+1h

(

1

eu
+ a

)

,

with e = f ′(a) + bh′(a).

P r o o f. Suppose there exists p = (a, b) ∈ C(Fq), and write

f(x) =

2g+2
∑

i=0

fi(x− a)i

with fi ∈ Fq for 0 ≤ i ≤ 2g + 2, and

h(x) =

g+1
∑

i=0

hi(x− a)i

with hi ∈ Fq (note that hi = 0 for 0 ≤ i ≤ g + 1 if q is odd). Setting

t = (x− a)−1 and w = y(x− a)−g−1 = ytg+1,

and subsequently multiplying by t2g+2, transforms C into C′′ : w2 + G(t)w =
E(t), where Fq(C

′′) = Fq(C) and

G(t) = tg+1h(t−1 + a) = h0t
g+1 + h1t

g + · · ·+ hg+1,

E(t) = t2g+2f(t−1 + a) = f0t
2g+2 + f1t

2g+1 + · · ·+ f2g+2.

Assume first that C is imaginary. Then

hg+1 = f2g+2 = 0,

so

G(0) = H(0) = 0.

Suppose also that p 6= p. Then 2b 6= h0. If q is odd, then f0 = b2 6= 0, so
deg(E) = 2g + 2. Hence, setting (u, v) = (t, b−1w) and dividing by b2 generates
the desired curve C′. If q is even, then h0 6= 0, so deg(G) = g + 1. Setting
(u, v) = (t, h−1

0 w) and dividing by h0 produces the curve C
′ : v2+H(u)v = F (u),

where H(u) = G(u)/h0 is monic of degree g + 1, and F (u) = E(u)/h2
0 has

coefficient f0/h
2
0 at t2g+2. Now b2 + h(a)b = f(a) implies

(

b/h(a)
)2

+ b/h(a) =

f(a)/h(a)2 = f0/h
2
0, so this coefficient is of the required form.

36

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

Next, assume that C is real, with p = p. Then 2b+ h0 = 0, so b = f0 = 0 if q
is odd, and h0 = 0, f0 = b2 if q is even. Thus, deg(G) ≤ g if q is even. Set

w̃ = w + btg+1 and Ẽ(t) = E(t) + bG(t)tg+1+ b2t2g+2;

note that w̃ = w and Ẽ = E if q is odd. Adding b2t2g+2 to C′′, and noting that
2b = 0, yields the curve C̃ : w̃2 +G(t)w̃ = Ẽ(t). The coefficient of t2g+2 in Ẽ(t)
is f0+b2, which vanishes, and that of t2g+1 is e = f1+bh1, which is non-zero due
to non-singularity. It follows that deg(Ẽ) = 2g+1. Setting (u, v) = (t/e, w̃/eg+1)
and dividing by e2g+2 now yields the desired curve C′. �

Proposition 2.1 shows that real models are much more general than imaginary
models. If q is odd and exceeds 2g+2, then any imaginary hyperelliptic curve of
genus g over Fq has an unramified point, since f(x) can have at most 2g+2 roots;
for q even, q > g+1 is even sufficient. Thus, over sufficiently large base fields, such
as cryptographically suitable fields, imaginary curves can always be transformed
to their real counterparts of the same genus. However, a transformation in the
opposite direction is only possible over the splitting field of h(x) if q is even, and
that of f(x) if q is odd. This field extension can have degree over Fq as large
as g + 1 if q is even and 2g + 2 if q is odd. Arithmetic on an imaginary model
over this larger base field would be highly inefficient compared to arithmetic on
a real model over Fq.

3. Divisors and the Jacobian

We continue to let C be a hyperelliptic curve of genus g over a finite field Fq

as given in (2.1). Let S denote the set of infinite points on C, i.e., S = {∞} if
C is imaginary, and S = {∞,∞} if C is real.

A divisor D on C is a formal finite sum of (finite and infinite) points p on C;
write D =

∑

p npp where np ∈ Z and np = 0 for all but finitely many p. The

support of D, denoted by supp(D), is the set of points p on C for which np 6= 0,
and the degree of D is deg(D) =

∑

p np ∈ Z. A principal divisor has the form

D =
∑

p vp(α)p for some α ∈ Fq(C)∗, where vp(α) is the order of vanishing of α

at p; write D = div(α). Every principal divisor has degree zero.

A divisor D is finite if supp(D) ∩ S = ∅ and infinite if supp(D) ⊆ S. For
any divisor D =

∑

p npp, let DS =
∑

p/∈S npp denote its finite portion. If D has
degree zero, then there is a unique representation

D =

{

DS − deg(DS)∞ if C is imaginary,

DS − deg(DS)∞+ n∞(∞−∞) if C is real.
(3.1)

37

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

The hyperelliptic involution on C can be linearly extended to send DS to DS =
∑

p/∈S npp, and hence D to the divisor

D =

{

DS − deg(DS)∞ if C is imaginary,

DS − deg(DS)∞− (deg(DS) + n∞)(∞−∞) if C is real.

We note that D +D is a principal divisor.

Recall that the Frobenius automorphism πq is the map on Fq that sends every

element in Fq to its qth power. The map πq can be defined on finite points
on C via action on the coordinates of the point, and on infinite points as the
identity. This action extends linearly to divisors on C. A divisor D on C is said
to be defined over Fq if it is invariant under πq. Henceforth, we only consider
divisors D defined over Fq. Note that D is defined over Fq if and only if DS is
defined over Fq.

Clearly, the divisors defined over Fq form an infinite abelian group D under
formal addition, of which the divisors of degree zero defined over Fq form an
infinite subgroup D0. Moreover, the set of principal divisors P defined over Fq

is an infinite subgroup of D0, and div(α) + div(β) = div(αβ) for α, β ∈ Fq(C)∗.
The factor group J = D0/P is the (degree zero) divisor class group or Jacobian
of C; it is a finite abelian group whose order h = |J | is the degree zero divisor
class number, or simply the class number, of C. The Hasse-Weil bounds (see for
example [47, Theorem 5.2.3, p. 198,]) state that (

√
q − 1)2g ≤ h ≤ (

√
q + 1)2g,

implying h ≈ qg. It follows that the class number is exponentially large in the
size of the curve, i.e., in log(q) and g.

The finite divisors defined over Fq are in one-to-one correspondence with the
fractional ideals of the coordinate ring Fq[C]. A finite divisor D =

∑

p/∈S npp

on C defined over Fq is said to be effective if np > 0 for all p ∈ supp(D).
These divisors correspond exactly to the integral Fq[C]-ideals. D is semi-reduced
if it is non-zero, effective, and for all p ∈ supp(D), np = 1 if p is ramified
and p /∈ supp(D) if p is unramified. In this case, D can be represented by two
polynomials Q,P ∈ Fq[x] as follows: for every p ∈ supp(D), write p = (ap, bp)

with ap, bp ∈ Fq. Set

Q(x) =
∏

p∈ supp(D)

(x− ap)
np ,

and let P (x) be any interpolation polynomial defined via bp = −P (ap) for all p

in supp(D). Then Q is monic of degree deg(D) and divides f + hP − P 2. The
divisor D is uniquely represented by Q and P (mod Q), so we can write D =
(Q,P); this is generally referred to as the Mumford representation of D. The
semi-reduced divisors D = (Q,P) correspond to primitive Fq[C]-ideals, as these
ideals are exactly the free Fq[x]-modules of rank 2 generated by Q and P + y.

38

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

Note that if D = (Q,P) is semi-reduced, then D = (Q,−h − P) is also semi-
reduced. A semi-reduced divisor D = (Q,P), and its corresponding primitive
ideal in Fq[C], are reduced if deg(Q) ≤ g.

The above notions naturally extend from finite divisors to arbitrary degree
zero divisors. A degree zero divisor D is simply called (semi-)reduced if its finite
portionDS is (semi-)reduced. The Fq[C]-ideal corresponding to a reduced divisor

is also said to be reduced. Note that if D is reduced, then so is D.

If C is imaginary, then every divisor class in J contains a unique reduced
divisor. Thus, arithmetic in the Jacobian of C can be performed via reduced
representatives; given reduced divisors D,D′ on C, one defines D⊕D′ to be the
unique reduced divisor in the class ofD+D′. The divisorD⊕D′ can be computed,
for example, using C a n t o r’ s algorithm [4], the NUCOMP algorithm [25], or
(in the case of small genus) explicit formulas; see [7, Chapter 14]. The first two of
these methods apply to curves of arbitrary genus g and require O(g2) operations
in the base field Fq.

Using the operation ⊕ on the Jacobian of an imaginary hyperelliptic curve,
it is straightforward to conduct discrete logarithm based cryptography in this
group. Diffie-Hellman key agreement using imaginary hyperelliptic curves was
first presented by K o b l i t z [29], and a description of the Digital Signature Al-
gorithm (DSA) on imaginary hyperelliptic curves is given in [7, pp. 570f.]. Other
discrete logarithm based schemes can be adapted to this setting in a similar
manner.

If C is real, then every divisor class contains a unique reduced divisor D such
that n∞ as given in (3.1) lies in a specified range of length g + 1 − deg(DS).
For example, [35] proposed the interval [0, g− deg(DS)], and more recently, [15]
introduced a balanced divisor representation where the interval containing n∞

is centered around ⌈deg(DS)/2⌉. The term stems from the fact that balanced
divisors have essentially equal contributions at the two infinite places.

Once again, these unique representatives allow for Jacobian arithmetic, and
hence discrete logarithm based cryptography, on real hyperelliptic curves. On
both imaginary and real models, addition of divisor classes can be performed in
O(g2) operations in the base field Fq [43], [35]. However, the resulting operation in
the real setting is potentially slower than in the imaginary case, since the unique
reduced divisor in the class of D +D′ is obtained by computing D ⊕ D′ as in
the imaginary setting, and subsequently applying “adjustment” baby steps to
guarantee an n∞ -value in the desired range. The Paulus-Rück representation [35]
requires up to g such adjustment steps, while the balanced representation of [15]
eliminates all but at most one of these baby steps.

Before the discovery of balanced divisors, arithmetic in the Jacobian of a real
hyperelliptic curve was rightfully regarded as clearly less efficient than in the

39

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

imaginary case. As a result, real models utilized instead a different group-like
structure referred to as the (principal) infrastructure of C.

4. The infrastructure of a real hyperelliptic curve

For this section, we restrict C to be a real hyperelliptic curve of genus g over
a finite field Fq. In this context, the infinite degree zero divisor ∞ − ∞, which
already appeared in (3.1), plays an important role. The order R of the divisor
class of ∞−∞ in the Jacobian J of C is the regulator of C. Thus, the divisor
R(∞ − ∞) is principal, and if we write R(∞ − ∞) = div(ǫ), then ǫ is a unit
in Fq[C]; it is called a fundamental unit of C, since every unit in Fq[C] is of the
form aǫm with a ∈ F

∗

q and m ∈ Z. The regulator R divides the class number h
of C, and the quotient h/R is exactly the ideal class number of the coordinate
ring Fq[C]. Generically, the ideal class number is small, so R ≈ h ≈ qg. In fact,
the ideal class number is very frequently equal to one, in which case J is cyclic
of order R and generated by the class of ∞−∞.

There are three ways of describing the (principal) infrastructure R of C.
The first is to define R to be the set of all reduced principal finite divisors,
or equivalently, the set of all reduced principal Fq[C]-ideals; this was done in
[39]. The second description stems from [25], [24] and specifies R to consist
of all divisors of the form D = DS − deg(DS)∞, where DS corresponds to
a reduced principal Fq[C]-ideal; note that all these divisors have degree zero
and no support at ∞, and they represent distinct divisor classes in J. The
third definition of the principal infrastructure, which we will use here, is to
simply declare R to be the collection of all reduced principal divisors D with
0 ≥ n∞ > −R, where n∞ is given by (3.1). The finite portions of the collection of
divisors in R are identical in each of these descriptions; only the infinite portions
differ. Furthermore, in all three cases, every D ∈ R is uniquely defined by its
finite portion DS , so henceforth, we will specify infrastructure divisors simply by
their Mumford representation D = (Q,P). Since Q, and hence also P (mod Q),
both have bounded degree, R is a finite set.

The reason that we chose the third description above is that it allows for the
simplest definition of the distance of a divisor. Namely, the distance of D ∈ R is
δ(D) = −n∞. Since no two infrastructure divisors have the same distance, this
imposes an ordering on R by distance:

R = {D1, D2, . . . , Dr}, 0 = δ1 < δ2 < · · · < δr < R ,

where D1 = 0 is the trivial divisor and δi = δ(Di) for 1 ≤ i ≤ r. It can be
shown that δ2 = g + 1, δi ≤ δi−1 + g for 3 ≤ i ≤ r, and R ≤ δr + g. It follows

40

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

inductively that g + i− 1 ≤ δi ≤ (i− 1)g + 1 for 2 ≤ i ≤ r. This in turn implies
r + g ≤ R ≤ rg + 1, so |R| = r ≈ R ≈ qg.

The operation Di → Di+1 that moves iteratively forward through R is re-
ferred to as a baby step. A baby step computes the Mumford representation of
Di+1 from that of Di as well as the relative distance δi+1 − δi. The baby step
operation is cyclic, in the sense that when applied to Dr it yields D1. From our
previous remarks, a baby step results in an advance in distance of at most g
(and g + 1 for the very first baby step), which is very small compared to the
total distance range of approximately qg. This fact gives the baby step its name.
Formulas for the baby step are given in, for example, [23], [25]. A baby step can
be computed in O(g) operations in Fq (see [43]). We point out that baby steps
are closely related to the continued fraction expansion of a reduced quadratic
irrationality in Fq(C) [25].

Besides the baby step, the set R supports a second operation, namely the
operation ⊕ mentioned earlier in the context of imaginary hyperelliptic curves.
This operation imposes an interesting structure on R, whence the infrastructure
derives its name. In fact, R is almost an abelian group with identity D1 = 0
under the operation⊕, failing only associativity. Note that the inverse of a divisor
D = (Q,P) ∈ R different from D1 is D = (Q,−h− P) ∈ R of distance δ(D) =
R+ deg(Q)− δ(D). Moreover, if D,D′ ∈ R, then

δ(D ⊕D′) = δ(D) + δ(D′)− d with 0 ≤ d ≤ 2g . (4.1)

Here, the “shortfall” d in distance is effectively computable as part of the giant
step. The identity (4.1) implies that R is almost associative, in the sense that
for D,D′, D′′ ∈ R, D ⊕ (D′ ⊕ D′′) and (D ⊕ D′) ⊕ D′′ are close (i.e., within
4g) in distance. The binary operation (D,D′) → D ⊕D′ on R is called a giant
step. A giant step computes the Mumford representation of D⊕D′, given those
of D and D′, as well as the shortfall d = δ(D) + δ(D′)− δ(D ⊕D′) in distance.
Thus, for any divisor D, the giant step (D,D′) → D ⊕D′ results in a distance
leap of almost δ(D′). The giant step derives its name from this fact. Recall that
giant steps have quadratic asymptotic running time in the genus in terms of
base field operations, while baby steps have linear time. Thus, baby steps are
asymptotically much faster that giant steps; in fact, this holds in practice as
well, even for very small genus.

Unfortunately, the fact thatR is not associative under giant steps foils a direct
adaptation of discrete logarithm based cryptography from the Jacobian to the
infrastructure. If two parties were to perform for example Diffie-Hellman key
agreement in R using giant steps, they would arrive at different divisors after
execution of the protocol. This leads to the following concept, first introduced
in [39], and more appropriately termed in [37]. For any s ∈ [0, R − 1], the
infrastructure divisor below s is defined to be the unique divisor D(s) = Di ∈ R
with δi ≤ s < δi+1 if s < δr, and δr ≤ s < R if s ≥ δr.

41

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

It is now not hard to see thatR is in fact an abelian group under the operation
(Di, Dj) → E = D(δi + δj). E is obtained by first computing the giant step
Di ⊕ Dj and d = δi + δj − δ(Di ⊕ Dj), and subsequently applying at most
d “adjustment” baby steps to Di ⊕ Dj until E is reached; again, the relative
distance δ(E)−δi−δj is obtained in the process. Note that this operation is again
slower than the group operation on the Jacobian of an imaginary hyperelliptic
curve, due to the extra adjustment baby steps required. It is in essence identical
to the arithmetic in the Jacobian of a real hyperelliptic curve presented in [35].
Using a technique akin to scalar multiplication, one can now use this operation
to compute for any s ∈ [0, R− 1] the divisor D(s) below s. Again, the distance
shortfall δ

(

D(s)
)

− s is obtained when computing D(s), so this process finds

δ
(

D(s)
)

from s.

The original version of Diffie-Hellman key agreement using real hyperelliptic
curves given in [39], and its subsequent improvement given in [37], were based on
the first infrastructure description provided above. Here, Alice and Bob agree on
a finite field Fq and a real hyperelliptic curve C over Fq with regulator R. They
each generate respective secret values a, b ∈ [g + 1, R − 1]. Alice computes the
infrastructure divisor D(a) below a which also yields its distance δa = δ

(

D(a)
)

.
She sends D(a) (in Mumford representation) to Bob, keeps δa secret, and dis-
cards a. Similarly, Bob computes D(b), thereby obtaining its distance δb, sends
the Mumford coefficients of D(b) to Alice, keeps δb secret, and discards b. From
δa and D(b) = D(δb), Alice now computes the divisor K = D(δaδb), while Bob
uses his information δb and D(a) = D(δa) to also compute K.

To ensure the mathematical security of this protocol, the following two prob-
lems should be computationally intractable:

• Infrastructure Diffie-Hellman Problem (DHP): given D(a) and D(b), find
the divisor in R below δ

(

D(a)
)

δ
(

D(b)
)

.

• Infrastructure Discrete Logarithm Problem (DLP): given D ∈ R, find
δ(D).

It is easy to see that the infrastructure DLP can be used to solve any instance of
the infrastructure DHP: given D(a) and D(b), find their respective distances by
solving the appropriate instances of the infrastructure DLP, and subsequently
obtain the divisor in R below δ

(

D(a)
)

δ
(

D(b)
)

.

For clarity, we emphasize here that it is

• computationally easy to find for any given value δ ∈ [0, R− 1] the divisor
D ∈ R of distance δ (or at least of distance as close to δ as possible);

• computationally intractable to find for any divisor in R its distance.

In other words, it is easy to derive divisors from distances, but hard to derive
distances from divisors; the latter task is exactly the infrastructure DLP. Solving
the infrastructure DLP for a divisor D ∈ R is tantamount to finding a generator

42

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

of the principal Fq[C]-ideal corresponding to DS. This latter task represents an
instance of the principal ideal problem which is believed to be computationally
difficult.

Not surprisingly, this version of Diffie-Hellman, as well as the other infrastruc-
ture based protocols using real models described in [37], proved to be consider-
ably less efficient and much more technically involved than their corresponding
imaginary hyperelliptic curve counterparts. Nevertheless, it is possible to per-
form public key cryptography in the infrastructure, and recent improvements to
these cryptographic schemes given in [24] actually make them competitive with
their imaginary hyperelliptic curve counterparts. These improvements will be
described in Sections 5 and 6 below.

5. Scalar multiplication

In any real or imaginary hyperelliptic curve based cryptographic protocol,
some version of scalar multiplication features as the central ingredient. As in-
dicated earlier, a technique much like scalar multiplication is employed when
computing the infrastructure divisor D(s) below any value s ∈ [0, R− 1]; details
of this method are provided in this section. It is therefore desirable to optimize
scalar multiplication as much as possible. This can be done at three levels:

• Optimization of the scalar multiplication algorithm itself.

• Optimization of the arithmetic in the underlying structure (Jacobian or
infrastructure); this means optimizing arithmetic on Mumford representa-
tions of reduced divisors in the imaginary setting and infrastructure divi-
sors in the real setting.

• Optimization of the arithmetic in the underlying base field Fq.

We discuss the first of these optimization levels in this section, and illustrate
how to take advantage of these improvements in the context of real hyperelliptic
curve based cryptography in the next section. Optimization of divisor arithmetic
will be discussed in Section 7. There is an extensive body of literature on efficient
arithmetic in finite fields. As improvements at this level are equally applicable
to both the imaginary and real setting, we will ignore this third optimization
level here and simply refer the reader to [21], [7].

Most of the material in this section can be found in Section 3 of [24]; here,
we only provide an overview and refer the reader to the given source for details
and proofs. As before, let C be a hyperelliptic curve of genus g over Fq as given
in (2.1). In order to analyze the performance of scalar multiplication in terms
of the number of Jacobian or infrastructure operations, we distinguish between
the following basic operations in the underlying structure:

43

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

• Doubles : operations of the form E ⊕E for some arbitrary divisor E.

• Adds : operations of the form E ⊕D where D is a fixed known divisor and
E is an arbitrary divisor.

• Baby steps : baby steps in the infrastructure (real model), or adds E ⊕D
where D is a special divisor, i.e., a divisor of the form D = p−∞ with p
an Fq-rational point on C (imaginary model).

As pointed out by G a l b r a i t h et al. [15], the baby step described above for
imaginary models is the closest analogue to an infrastructure baby step and can
also be computed in O(g) field operations.

All known discrete logarithm based cryptographic schemes employ two types
of scalar multiplication scenarios:

• Fixed base: both parties perform scalar multiplication on the same fixed
base divisor, but using different scalars;

• Variable base: both parties perform scalar multiplication on different base
divisors.

For example, the fixed and variable base scenarios are used in the first and sec-
ond round of Diffie-Hellman key agreement, respectively. The digital signature
algorithm uses the fixed base scenario for signature generation and both the
fixed and variable base scenarios in its signature verification procedure. There
is a third scenario that considers both fixed bases and fixed scalars, and can be
optimized by precomputing addition chains for the scalars. Moreover, the fixed
base scenario can also be further optimized using, for example, windowing meth-
ods by precomputing certain small powers of the fixed base divisor. However,
these topics go beyond the scope of this paper; here, we focus only on the basic
fixed and variable base scenarios listed above.

Recall that computing inverse divisors in both the Jacobian and the infras-
tructure is essentially free. In any structure where this is the case, it is desirable
to perform scalar multiplication using the non-adjacent form (NAF) of the scalar
n ∈ N. This is the unique representation

n =

l
∑

i=0

bi2
l−i,

where b0 = 1, bi ∈ {−1, 0, 1} for 1 ≤ i ≤ l, and no two consecutive dig-
its bi are non-zero. The NAF of n can easily be computed using, for example,
[21, Algorithm 3.30, p. 98]. The length l + 1 of the NAF of n is at most one
more than the length of the standard binary representation of n. Moreover, in
a randomly generated integer n ∈ N, one third of the NAF digits are expected
to be non-zero, so this representation is sparser than the binary representation
where half the bits are expected to be one; see [21, p. 98].

44

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

In the setting of imaginary hyperelliptic curves, both the fixed and the variable
base scenario require the computation of the reduced divisor in the class of nD,
given a reduced divisor D and an integer n. If precomputations are not used,
optimization of the fixed base scenario happens only at the level of Jacobian
arithmetic, i.e., on the group operation involving the base divisor; for example,
the base could be a special divisor. Scalar multiplication in the Jacobian is done
as follows:

SCALAR-MULT(D,n) (Scalar multiplication, imaginary model)

Input: A reduced divisor D and a scalar n =
∑l

i=0 bi2
l−i ∈ N given in NAF.

Output: The reduced divisor in the class of nD.
Algorithm:

(1) set E = D;

(2) for i = 1 to l do
(a) replace E by E⊕E;
(b) if bi = 1, then replace E by E⊕D;
(c) if bi = −1, then replace E by E⊕D;

(3) output E.

For a real hyperelliptic curve C of genus g, the variable base scenario corre-
sponds to the variable distance scenario that reads as follows: given an infrastruc-
ture divisor D∈R of unknown distance δ(D) and a“scalar”n, find the divisor in
R below nδ(D). It involves the same steps as algorithm SCALAR-MULT above,
except after each double in step 2 (a), adjustment baby steps have to be per-
formed to find the infrastructure divisor below 2δ(E). Similar adjustment baby
steps are needed after steps 2 (b) and (c) in each loop iteration; see algorithm
VAR-DIST1 on [24, p. 205] for details. These adjustment baby steps decrease
performance in the real model as compared to the imaginary model.

The fixed base scenario corresponds to the fixed distance scenario which re-
quires finding the divisor D(n) ∈ R below a given scalar n. Here, one applies the
variable distance algorithm to the fixed base divisor D2 ∈ R of known distance
δ2 = g+1 and the scalar s = ⌊n/(g+1)⌋ given in NAF to compute D

(

s(g+1)
)

.
Then one applies a further n− s(g + 1) ≤ g baby steps to this divisor to obtain
D(n). So this procedure is also slower than its imaginary hyperelliptic curve
counterpart.

In [24], significant improvements to the infrastructure setting over the versions
given above were described that make the real model competitive for cryptog-
raphy relative to its imaginary counterpart. The main idea here is to eliminate
the repeated adjustment steps by performing one initial adjustment, along with
other improvements that will be detailed below.

Henceforth, let C be a real hyperelliptic curve of genus g and infrastructure R
over a finite field Fq. Denote by D+ the divisor obtained by applying a baby step

45

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

to the divisor D ∈ R. Similarly, D− is the divisor obtained by applying a baby
step backwards from D, i.e., (D−)+ = (D+)− = D. Backward baby steps are
just as fast as forward baby steps and use equally simple formulas using the
Mumford representation of D (see, for example, [12]).

The key to our improvements is the following heuristics on the average be-
havior of the distance function:

Heuristics (H): For sufficiently large q, the following properties hold with
probability 1− O(q−1):

• δ(D+)− δ(D) = 1 for all D ∈ R \ {0}.
• The quantity d in (4.1) is always equal to ⌈g/2⌉. That is, for all D,D′ ∈

R \ {0}, we have δ(D ⊕D′) = δ(D) + δ(D′)− ⌈g/2⌉.
These heuristics make it possible to predict with high probability relative dis-
tances between infrastructure divisors, thereby eliminating the need to keep track
of these relative distances during our computations. The heuristics are supported
by plausible theoretical considerations as well as overwhelming numerical evi-
dence, especially for large q; see [24] for a justification. The first statement above
is equivalent to the assertion that deg(Q) = g with probability 1 − O(q−1) for
every non-trivial divisor D = (Q,P) ∈ R; divisors violating this assertion are
usually referred to as degenerate and include the special divisors.

We henceforth assume the truth of (H) for all our algorithms. For the variable
distance scenario, all previously required adjustment baby steps are eliminated
and replaced by one initial adjustment of d = ⌈g/2⌉ baby steps applied to the
input divisor at the beginning. This results in the following algorithm VAR-DIST
(referred to as VAR-DIST2 in [24]):

VAR-DIST(D,n) (Variable distance scenario, real model)

Input: D ∈ R, n =
∑l

i=0 bi2
l−i ∈ N given in NAF.

Output: The divisor in R of distance nδ(D) + ⌈g/2⌉.
Algorithm:

(1) for i = 1 to ⌈g/2⌉ − 1 do
(a) replace D by D+;

(2) set D′ = D, D′′ = D+, E = D+;

(3) for i = 1 to l do
(a) replace E by E⊕E;
(b) if bi = 1, then replace E by E⊕D′′;
(c) if bi = −1 and g is even, then replace E by E⊕D′′;
(d) if bi = −1 and g is odd, then replace E by E⊕D′;

(4) output E.

Note that the computational effort of this procedure is identical to that of
SCALAR-MULT except for the extra ⌈g/2⌉ baby steps at the beginning.

46

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

The idea for the fixed distance scenario is to compute the divisor in R whose
distance is some known and easily computable function of the input scalar n.
Once again, all adjustment steps are eliminated. Moreover, all the adds in steps
2 (b) and (c) of algorithm SCALAR-MULT are replaced by much faster baby
steps. The algorithm uses the base divisor Dd+3 ∈ R of distance δd+3 = g+d+2,
with d = ⌈g/2⌉, which needs to be precomputed by applying d + 2 baby steps
to the trivial divisor D1 ∈ R. It is stated as algorithm FIXED-DIST below
(algorithm FIXED-DIST2 in [24]):

FIXED-DIST(n) (Fixed distance scenario, real model)

Input: n =
∑l

i=0 bi2
l−i ∈ N given in NAF.

Output: The divisor in R of distance 2l(g + 1) + n+ d, with d = ⌈g/2⌉.
Precomputed: The divisor Dd+3 of distance δd+3 = g + d+ 2.
Algorithm:

(1) set E = Dd+3;

(2) for i = 1 to l do
(a) replace E by E⊕E;
(b) if bi = 1, then replace E by E+;
(c) if bi = −1, then replace E by E−;

(3) output E.

Proofs of correctness of algorithms VAR-DIST and FIXED-DIST, assum-
ing heuristics (H), can be found in [24, Propositions 3.1 and 3.2], respectively.
In Table 1, we compare the expected computational effort, i.e., the number of
doubles, adds and baby steps, of all three algorithms presented in this section.
For the imaginary setting, we distinguish between scalar multiplication using
an arbitrary or a special base divisor; recall that additions involving a special
divisor were referred to as baby steps in this context. For the real setting, we
assume Heuristics (H). In algorithm FIXED-DIST, we ignore the precomputa-
tion of Dd+3 as this need only be done once; this divisor could be included in
the domain parameters of any cryptographic scheme using this procedure.

Table 1. Operation counts for scalar multiplication.

Model Algorithm Doubles Adds Baby Steps

Imaginary SCALAR-MULT, arbitrary base l l/3 0
Imaginary SCALAR-MULT, special base l 0 l/3

Real VAR-DIST l l/3 ⌈g/2⌉
Real FIXED-DIST l 0 l/3

47

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

We see that algorithm VAR-DIST requires only ⌈g/2⌉ more baby steps than
SCALAR-MULT involving an arbitrary base divisor; for the cases of interest
g = 2, 3, this means only one or two extra baby steps, respectively. FIXED-
-DIST has the same number of operations as SCALAR-MULT involving a special
base divisor. Scalar multiplication timings for various genera and base field sizes
from [24] show that when using generic divisor arithmetic and an arbitrary base
divisor in the imaginary case, the practical performance matches the predictions
of Table 1 very well.

6. Infrastructure based cryptographic protocols

The two most well-known hyperelliptic curve based cryptographic protocols
are the already mentioned Diffie-Hellman key establishment procedure and the
Digital Signature Algorithm (DSA). Here, we will limit our discussion to these
two schemes, but mention that other elliptic curve based schemes as described
in [21, Sections 4.4–4.6, pp. 183–196] can be similarly adapted to work in the
Jacobian of a hyperelliptic curve. Any such protocol can then be converted to
a corresponding infrastructure based scheme by replacing scalar multiplications
involving an arbitrary divisor by calls to VAR-DIST, and scalar multiplications
involving a fixed special divisor (baby steps) by calls to FIXED-DIST.

Much of this discussion can be found in [24, Section 4]. The domain param-
eters for infrastructure based Diffie-Hellman include a prime power q, a real
hyperelliptic curve C over Fq of genus g as described in (2.1), the regulator R
of C, and the divisor Dd+3 of distance g + d + 2. Here, and throughout this
section, we put d = ⌈g/2⌉ and assume that heuristics (H) apply to C. Note that
in the imaginary setting, Dd+3 is replaced by a (possibly special) reduced base
divisor D, and R by the order of the cyclic group generated by D, so the domain
parameters are very similar in both settings. The protocol executes as follows:

Infrastructure based Diffie-Hellman key agreement
Domain parameters: q, C, R, Dd+3.
Round 1:

(1) Alice generates random a ∈ [g + 1, R − 1] of NAF length l + 1, computes
DA = FIXED-DIST(a) and sends DA to Bob;

(2) Bob generates random b ∈ [g + 1, R − 1] of NAF length l + 1, computes
DB = FIXED-DIST(b), and sends DB to Alice.

Round 2:

(1) Alice computes K = VAR-DIST
(

DB , 2
l(g + 1) + a+ d (mod R)

)

;

(2) Bob computes K = VAR-DIST
(

DA, 2
l(g + 1) + b+ d (mod R)

)

.

48

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

Assuming heuristics (H), Alice and Bob arrive at a common divisor in K ∈ R
of distance

δ(K) ≡
(

2l(g + 1) + a+ d
)(

2l(g + 1) + b+ d
)

+ d (mod R).

There is a modified version of the above protocol that can be used if R is not
known, but has worse running time; details can again be found in [24]. The data
in [24] (see in particular Table 6) shows that the new version of key exchange
in the infrastructure offers a significant improvement over the previous version,
and when using generic divisor arithmetic is slightly faster than key exchange in
the imaginary case.

The domain parameters for real hyperelliptic curve based DSA are the same as
those for infrastructure based Diffie-Hellman. In addition, all participants agree
on a public hash function H that maps messages to integers in [1, R− 1] and on
a public function that maps infrastructure divisors to integers, for example, by
converting the first Mumford coefficient Q to an integer.

A user’s private key is an integer n ∈ [1, R − 1] of NAF length l + 1. The
corresponding public key is the divisor D = D(n) ∈ R of distance n which
is obtained as follows. First, generate the divisor of distance 2l(g + 1) + d by
applying l successive doubles, starting with the divisor Dd+2 of distance g+d+1;
Dd+2 can be found by applying a backward baby step to Dd+3. Next, apply g−d
baby steps, starting with the divisor D

(

2l(g+1)+d
)

thus obtained, to generate

the divisor D∗ = D
(

2l(g + 1) + g
)

of distance 2l(g + 1) + g. Finally, compute

D(n) = FIXED-DIST(n)⊕D∗.

The total cost of generating the public key is 2l doubles, one add, and l/3+ g−
d+ 1 baby steps. DSA on C is performed as follows:

Infrastructure based digital signature algorithm
Domain parameters: q, C, R, Dd+3.
Private key: n ∈ [1, R− 1].
Public key: D = D(n).

Signature Generation: To sign a message m, the signer:

(1) generates random k ∈ [1, R− 1] with gcd(k,R) = 1;

(2) computes Dk = FIXED-DIST(k) and converts Dk to an integer N ;

(3) sets r ≡ N (mod R); if r = 0, returns to step 1;

(4) computes s ≡ k−1
(

H(m) + nr
)

(mod R); if s = 0, returns to step 1;

(5) signs m with signature (r, s).

Signature Verification: Upon receiving message m and signature (r, s), the veri-
fier:

(1) checks that 1 ≤ r, s < R; if not, rejects the signature;

49

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

(2) computes w ≡ s−1 (mod R), u1 ≡ H(m)w (mod R), u2 ≡ rw (mod R);

(3) obtains the signer’s public key D;

(4) computes E1 = FIXED-DIST(u1) and E2 = VAR-DIST(D, u2);

(5) computes E3 = E1 ⊕E2; if E3 = 0, rejects the signature, else converts E3

to an integer N ;

(6) accepts the signature if r ≡ N (mod R) and rejects it otherwise.

If the signature is valid, bothDk and E3 can be shown to have distance 2l(g +1)+
k + d (mod R), assuming heuristics (H). Therefore, E3 = Dk, and thus r ≡ N
(mod R).

The other elliptic curve based protocols described in [21, Sections 4.4–4.6,
pp. 183–196] can similarly be adapted to the infrastructure setting. Operation
counts for all these schemes (not considering special base divisors in the imagi-
nary setting) can be found in [24, Table 2].

7. Divisor arithmetic

In order to optimize hyperelliptic curve protocols further, it is necessary to
make the basic building blocks of scalar multiplication, namely doubles, adds and
baby steps, as fast as possible. We first discuss generic algorithms that apply
to curves of any genus, and then consider explicit formulas for genus 2 curves
which represent the most interesting case for cryptography.

7.1. Cantor’s algorithm and NUCOMP

As mentioned in Section 3, the two main generic giant step algorithms are
due to C a n t o r [4] and the NUCOMP method that was first presented in [27]
and later discussed in detail in [25]. Given a hyperelliptic curve C of genus g,
Cantor’s algorithm essentially first adds two reduced divisors on C, obtaining
a semi-reduced divisor with Mumford coefficients of degree as large as 2g, and
then reduces the result. NUCOMP improves Cantor’s method by performing the
reduction step during the addition step. The reduction is in essence performed
on intermediate operands occurring during the addition, keeping their degrees
well below 2g. Both algorithms have an asymptotic run time that is quadratic
in the genus, but NUCOMP performs significantly faster than Cantor’s method
for moderate sized genus, and improves as the genus increases.

Tables 2 and 3, taken from [25], contain numerical data comparing basic
scalar multiplication using NUCOMP and Cantor’s algorithm in real hyperellip-
tic curves over prime fields and characteristic 2 fields, respectively. These com-
putations were performed on a Pentium IV 2.4 GHz computer running Linux,

50

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

using the computer algebra library NTL [41] for finite field and polynomial arith-
metic and the GNU C++ compiler version 3.4.3. The data in the table is the ratio
of the total time using NUCOMP to perform 1000 scalar multiplications using
100-bit multipliers over the time to perform the same operations using Cantor’s
algorithm. This data shows that NUCOMP does indeed outperform Cantor’s
algorithm for relatively small genus, and improves as the genus increases.

Table 2. Scalar multiplication ratios (NUCOMP / Cantor) over Fp, real.

log
2
p

g 2 4 8 16 32 64 128 256 512

2 0.8943 1.1268 1.2192 1.2763 1.0659 1.0987 1.0872 1.0731 1.0835

3 1.0449 1.1497 1.1165 1.1330 1.0503 1.0515 1.0434 1.0376 1.0500

4 1.0745 1.1081 1.0932 1.0784 1.0169 1.0137 1.0150 0.9847 1.0060

5 1.0549 1.0659 1.0300 1.0570 0.9635 0.9771 0.9650 0.9664 0.9787

6 1.0507 1.0124 1.0350 1.0327 0.9444 0.9555 0.9243 0.9540 0.9569

7 0.9705 0.9525 0.9231 0.9209 0.9144 0.9309 0.8950 0.9289 0.9512

8 0.9724 0.9539 0.9426 0.9338 0.9094 0.9195 0.8816 0.9244 0.9254

9 0.9591 0.9179 0.9028 0.9023 0.8726 0.8876 0.8608 0.8913 0.9013

10 0.9105 0.9056 0.8818 0.8877 0.8625 0.8879 0.8642 0.8933 0.8955

11 0.9396 0.9043 0.9159 0.9145 0.8402 0.8596 0.8415 0.8836 0.8862

12 0.9668 0.9341 0.9149 0.9135 0.8356 0.8536 0.8512 0.8832 0.8745

13 0.9581 0.9128 0.8856 0.8942 0.8047 0.7877 0.8201 0.8637 0.8560

14 0.9596 0.9098 0.8782 0.8912 0.8051 0.7874 0.8205 0.8502 0.8471

15 0.9356 0.8696 0.8640 0.8670 0.7789 0.7656 0.8037 0.8425 0.8387

20 0.8065 0.7549 0.7519 0.7638 0.7463 0.7275 0.8110 0.8108 0.8008

25 0.7717 0.7303 0.7215 0.7186 0.6996 0.7124 0.7818 0.7842 0.7723

30 0.7651 0.7337 0.7270 0.7392 0.6873 0.7212 0.7687 0.7749 0.7801

7.2. Explicit formulas

Although the basic formulas for divisor arithmetic, for example Cantor’s al-
gorithm, are described in terms of polynomials, the most efficient formulations
are achieved using so-called explicit formulas. By breaking down the polynomial
operations in terms of sequences of finite field operations, a number of simplifi-
cations and improvements can be obtained. A great deal of work has gone into
developing efficient explicit formulas for low genus imaginary curves [7]. For-
mulas exist for genus 2, 3, and 4 using an affine coordinate representation. For
genus 2 and 3, inversion-free formulas using projective coordinates also exist.
Explicit formulas for real hyperelliptic curves are not yet as well-developed as
in the imaginary case. Complete explicit formulas for genus 2 curves in affine

51

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

Table 3. Scalar multiplication ratios (NUCOMP / Cantor) over F2n , real.

log
2
p

g 2 4 8 16 32 64 128 256 512

2 0.9277 1.0896 1.0930 1.0854 1.1152 1.0998 1.0653 1.0787 1.0661

3 0.8948 0.9597 0.9860 0.9622 0.9695 0.9791 0.9640 0.9824 0.9814

4 1.0213 1.0360 1.0375 1.0274 1.0267 1.0252 1.0289 1.0421 1.0440

5 0.9587 0.9672 0.9630 0.9505 0.9372 0.9295 0.9499 0.9516 0.9491

6 0.9989 0.9776 0.9743 0.9838 0.9718 0.9715 0.9689 0.9777 0.9790

7 0.9370 0.9193 0.9025 0.9126 0.8990 0.9041 0.9311 0.9413 0.9424

8 0.9534 0.9439 0.9222 0.9379 0.9365 0.9476 0.9650 0.9785 0.9842

9 0.9008 0.8771 0.8685 0.8928 0.8707 0.8727 0.8891 0.8954 0.8963

10 0.9053 0.8863 0.8854 0.9142 0.9098 0.9115 0.9252 0.9384 0.9491

11 0.8601 0.8518 0.8504 0.8713 0.8624 0.8595 0.8755 0.8838 0.8870

12 0.8878 0.8679 0.8589 0.8705 0.8938 0.9006 0.9154 0.9220 0.9301

13 0.8377 0.8230 0.8171 0.8281 0.8478 0.8476 0.8675 0.8729 0.8770

14 0.8393 0.8258 0.8206 0.8384 0.8659 0.8783 0.8863 0.8957 0.9031

15 0.7970 0.7775 0.7800 0.7942 0.8204 0.8423 0.8548 0.8594 0.8659

20 0.7221 0.7313 0.7312 0.7552 0.7968 0.8291 0.8311 0.8548 0.8638

25 0.6565 0.6298 0.6678 0.6954 0.7907 0.7356 0.7520 0.7756 0.8010

30 0.6576 0.6649 0.6722 0.6936 0.7353 0.7663 0.7823 0.8043 0.8187

representation have only recently been found [11], [12]. Inversion-free formulas
for real genus 2 curves are presented in [10].

Table 4 lists the most recent operation counts for explicit formulas in genus 2
imaginary and real hyperelliptic curves assuming an affine model. In the imagi-
nary case, the formulas are due to L a n g e [30]. In the table, I denotes inversions,
S denotes squarings, and M denotes multiplications in the base field; as usual,
field additions and subtractions are not counted. The operation count for the
addition operation includes the reduction of one field squaring described in [11].
Operation counts for the real case are taken from [11], [12].

Table 4. Operation counts for explicit formulas.

Model Double Add Baby Step

Imaginary 1I, 5S, 22M 1I, 3S, 22M 1I, 1S, 10M
Real (q odd) 1I, 4S, 28M 1I, 2S, 26M 1I, 2S, 4M
Real (q even) 1I, 2S, 29M 1I, 1S, 27M 1I, 1S, 5M

In Tables 5 and 6, we list running times, taken from [12], for executing fixed
base scalar multiplication (Algorithm SCALAR-MULT with a special divisor

52

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

for the imaginary case and FIXED-DIST for the real case), variable base scalar
multiplication (Algorithm SCALAR-MULT for the imaginary case and the ver-
sion of VAR-DIST from [24] without the regulator R for the real case), and one
iteration of Diffie-Hellman key exchange (i.e., one fixed base and one variable
base scalar multiplication) on genus 2 hyperelliptic curves using explicit formu-
las. Times for the imaginary case and real case (using the infrastructure in the
latter) are both included. The finite fields used were of size 2b where b denotes
the specified security level in bits, resulting in the Jacobian and infrastructure
each having expected size 22b. The scalar multipliers used had twice the number
of bits as the security level. The programs were run on an Intel Core Duo 2.66
GHz CPU running Linux, using g++ 4.1.2 and NTL [41] for finite field and
polynomial arithmetic. The runtimes are given in milliseconds and represent the
average taken over 5000 iterations of each algorithm.

Table 5. Key exchange timings, q odd.

Security Imaginary Real

(in bits) Fixed Var DH Total Fixed Var DH Total

80 2.137 2.304 4.440 2.307 2.618 4.925
112 3.545 3.942 7.487 3.809 4.469 8.278
128 4.702 5.149 9.851 5.003 5.869 10.872
192 10.526 11.562 22.088 11.192 13.048 24.240
256 15.560 17.077 32.636 16.492 19.168 35.660

Table 6. Key exchange timings, q even.

Security Imaginary Real

(in bits) Fixed Var DH Total Fixed Var DH Total

80 4.721 5.331 10.052 5.112 6.139 11.250
112 4.096 4.475 8.571 4.425 5.076 9.500
128 4.814 5.304 10.118 5.138 5.920 11.057
192 11.700 12.942 24.641 12.715 14.721 27.436
256 22.255 24.572 46.827 24.525 28.326 52.851

Note that when explicit formulas are used, the performance of the real model
in genus 2 is very close to that of the imaginary model. In our experiments, the
real model was always slower, but by at most 6 milliseconds for one application of
Diffie-Hellman key exchange. Using the version of VAR-DIST that makes use of
the regulator would improve the timings for the real case. In addition, shaving

53

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

one or two field operations from the explicit formulas in the real case would
almost certainly result in the real model being more efficient.

8. Security

As mentioned in Section 4, the security of cryptographic protocols based on
the infrastructure of a real hyperelliptic curve is closely related to the infras-
tructure discrete logarithm problem, namely computing the distance δ(D) of
a given infrastructure divisor D. In every infrastructure-related protocol, this
unknown distance plays the role of a private key or allows one to compute the
Diffie-Hellman secret, so an adversary who recovers it completely compromises
the protocol.

Like the usual discrete logarithm problem in a cyclic group, the infrastructure
discrete logarithm problem can be solved generically in square-root time. Using
the infrastructure baby step and giant step operations yields a straightforward
adaptation of the well-known baby step giant step algorithm. As the distance
around the entire infrastructure is equal to the regulator R, this algorithm has
complexity O(

√
R) infrastructure operations. We generally expect the regulator

to be of size roughly qg, so in the typical case the complexity is O(qg/2+ǫ) field
operations, the same as the discrete logarithm problem in the Jacobian. If the
regulator is known, as is usually assumed for cryptographic applications, the
Pollard rho algorithm can also be used, yielding an algorithm with expected
complexity O(qg/2+ǫ) field operations but with constant storage requirement.

The index-calculus method, which has been used successfully for solving the
discrete logarithm problem in the Jacobian of an imaginary hyperelliptic curve,
has also been adapted to the infrastructure discrete logarithm problem. As in the
imaginary case, this method is most effective when the genus is large compared
to log q, yielding subexponential complexity in that case. The first description
of an index-calculus algorithm for the infrastructure discrete logarithm problem,
due to M ü l l e r, S t e i n, and T h i e l , was presented in [34]. Their algorithm
has complexity

O
(

Lq2g+2 [1.44 + o(1)]
)

if g > log q,

where

LN [β] = exp
(

β
√

logN log logN
)

,

indicating that high genus hyperelliptic curves should not in general be used for
cryptographic purposes.

The authors of [34] did not provide an implementation of their algorithm. The
first implementation of any index-calculus algorithm for real hyperelliptic curves
was provided recently by H amm e l l [19], [20]. In these sources, algorithms

54

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

for solving the infrastructure discrete logarithm problem, as well as computing
the regulator and the structure of the ideal class group of the corresponding
function field, are presented. In addition to the numerical results, asymptotic
improvements to the algorithm of [34] are described. By taking advantage of
the fast baby step operation in the relation generation process, and using newer
linear algebra algorithms with better complexity than those considered in [34],
a complexity of O

(

Lqg [2.45 + o(1)]
)

is obtained, assuming that g > log q and
that smooth reduced ideals are distributed evenly amongst equivalence classes.
Note that, although the constant 2.45 in the new complexity statement is larger
than that from [34], the subexponential function is expressed in terms of qg as
opposed to q2g+2, so the new result is in fact an improvement.

Tables 7 and 8 contain some sample runtimes for computing the regulator R,
extracted from [20]. Computing R is a special case of the infrastructure dis-
crete logarithm problem, and gives a good indication of the difficulty of that
problem. A simple version of the baby step giant step algorithm, the improved
algorithm using baby steps for relation generation, and another version using
sieving (adapted from V e l i c h k a’ s work in the imaginary case [48], [26]) for
relation generation were all implemented and compared. These computations
were performed on a Pentium 4 CPU running at 3.0 GHz with 1 GB of RAM.
The software was written in C++, the NTL library [41] was used for finite field
and polynomial arithmetic, and IML [6] was used for linear algebra. Note that,

Table 7. Runtimes for computing R (in hh:mm:ss), q even.

q g logR BSGS Baby Walk Sieving

22 5 9 :00 :00 :00
22 10 21 :00 :01 :00
22 15 31 :06 :02 :02
22 20 39 2:27 :29 :25
22 25 50 35:47:10 2:59 1:39
22 30 61 — 17:56 6:34
22 35 71 — 1:24:53 32:35
22 40 80 — 14:29:13 7:11:32

26 5 31 :03 :02 :13
26 10 61 — 3:39 2:24
26 15 91 — 18:39:49 17:11:07

as expected, both versions of the index-calculus algorithm out-perform baby
step giant step for larger genus. Sieving appears to only be worthwhile in even
characteristic, but as the routines from [48], [26] were used, and these were only

55

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

Table 8. Runtimes for computing R (in hh:mm:ss), q odd.

q g logR BSGS Baby Walk Sieving

5 5 8 :00 :00 :00
5 10 17 :00 :01 :00
5 15 20 :00 :03 :03
5 20 33 :04 :01 :09
5 25 41 2:41 :07 :27
5 30 51 18:02:51 :31 1:33
5 35 58 — 4:22 12:47
5 40 64 — 22:00 1:43:35

67 5 30 :01 :03 :10
67 10 60 — 2:14 17:07
67 15 85 — 13:31:10 167:34:27

optimized for even characteristic, more work on the odd characteristic case may
yield improvements.

To date, these computations represent the only results obtained using index-
-calculus in the infrastructure of a real hyperelliptic curve. In particular, there
has not been any work applying these techniques, or recent methods designed
for use in the imaginary case such as [18], to low genus real hyperelliptic curves.

8.1. Recent results

Until recently, it was an open question whether the smoothness of the regula-
tor R has any bearing on the complexity of the infrastructure discrete logarithm
problem. It is well-known that the complexity of the discrete logarithm problem
in a cyclic group depends on the size of the largest prime divisor of the order
due to the P o h l i g- H e l l m a n algorithm [36]. However, as the infrastructure
is not a group, it is not immediately obvious that similar techniques would work
in this setting.

F o n t e i n [13], [14] showed that the Pohlig-Hellman algorithm can indeed
be adapted to solve the infrastructure discrete logarithm problem, and that,
consequently, only hyperelliptic curves whose regulator has a large prime divi-
sor should be used for cryptographic purposes. In particular, Fontein described
a concept called f -representations, an explicit method of embedding the ele-
ments of the infrastructure into a cyclic group of order R that preserves dis-
tances. Thus, any generic algorithm for solving the discrete logarithm problem
in a cyclic group, including Pohlig-Hellman, can be used to solve the infrastruc-
ture discrete logarithm by transforming it into a cyclic group of order R using
f -representations.

56

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

The question of whether Pohlig-Hellman applies to the infrastructure was
independently answered by M i r e l e s M o r a l e s [33]. As described in Section 4,
the cyclic subgroup G of the Jacobian generated by the class of ∞ − ∞ has
order R. Recall that an alternative description of the infrastructure, as used
in [24], [25], is

R′ =
{

DS − deg(DS)∞ | D = DS − deg(DS)∞− δ(D)(∞−∞) ∈ R
}

.

Consider the class in G of any divisor of the form δ(D)(∞ −∞), with D ∈ R.
Then the unique divisor representing this class in the Jacobian, in the sense
of [35], is DS − deg(DS)∞ ∈ R′. This yields a one-to-one correspondence be-
tween divisors in R′ (or in R), and most elements of G, namely those classes
represented by a divisor of the form n(∞−∞) where n is the distance of some
infrastructure divisor in R. In the case of genus 1, i.e., elliptic curves, this corre-
spondence was studied by S t e i n [42] and it was shown that the infrastructure
discrete logarithm problem and elliptic curve discrete logarithm problem are
in fact equivalent. The result of [33] generalizes this result to arbitrary genus by
describing an explicit embedding of the infrastructure into the subgroup G of
the Jacobian. Thus, baby steps D → D+ in the infrastructure correspond to ad-
dition by b(∞ − ∞) in the Jacobian, where b = δ(D+) − δ(D), and distances
correspond to discrete logarithms with respect to the base divisor ∞−∞.

Although Mireles Morales’ result is similar to Fontein’s results applied to the
specific case of real hyperelliptic curves, it has the advantage that the group
into which the infrastructure is embedded is a subgroup of a well-studied alge-
braic geometric object (the Jacobian). Although the structure obtained using
f -representations is essentially the same, it is likely not as amenable to com-
putation. For example, arithmetic in the Jacobian can be performed efficiently
using the balanced divisor representation of [15], whereas some more work would
be required to describe efficient arithmetic using f -representations. Fontein’s re-
sults, on the other hand, are more general in the sense that they also apply to
multi-dimensional infrastructures, not just the one-dimensional ones that occur
for example in the case of real hyperelliptic curves.

In addition to an independent proof that Pohlig-Hellman applies to the in-
frastructure discrete logarithm problem, Mireles Morales’ result has the useful
consequence of enabling problems and applications in the infrastructure to be
interpreted in the (perhaps) more familiar setting of a subgroup of the Jacobian.
For example, cryptographic key exchange in the infrastructure can be thought
of as key exchange in the Jacobian using ∞ − ∞ as a fixed base divisor, and
the infrastructure discrete logarithm problem is nothing more than the usual
discrete logarithm problem in the subgroup generated by the class of ∞−∞. As
a result, any algorithm for solving the discrete logarithm problem in the Jaco-
bian of a hyperelliptic curve immediately applies to the infrastructure discrete
logarithm problem with the same complexity. For example, the state-of-the-art

57

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

for solving the discrete logarithm problem on a low genus imaginary hyperel-
liptic curve, due to G a u d r y et al. [18], is O(q2−2/g+ǫ). The fact that divisor
arithmetic in the real case has the same asymptotic complexity as the imaginary
case implies that this complexity holds for the real setting as well. Thus, thanks
to the work of Fontein and Mireles Morales, the infrastructure discrete logarithm
problem can also be solved with the same complexity, and furthermore, the same
security considerations as in the imaginary case apply.

9. History and related work

As pointed out in Section 1, the first use of real hyperelliptic curves in cryp-
tography dates back to 1996, when S c h e i d l e r, S t e i n, and W i l l i a m s [39]
introduced a real hyperelliptic curve based Diffie-Hellman type protocol. They
formulated the infrastructure as the set of reduced principal ideals in the maxi-
mal order of a real quadratic function field, or equivalently, the coordinate ring of
a real hyperelliptic curve. The notion of infrastructure was first introduced and
so named by S h a n k s [40] in the context of real quadratic number fields, and
the number field version of this concept had already undergone investigation for
cryptographic applications in 1994 [38]. To our knowledge, the infrastructure, in
real quadratic number fields or real hyperelliptic curves, is the only non-group
structure that supports efficient and secure discrete logarithm based cryptog-
raphy. Compared to its quadratic number field analogue, the infrastructure of
a real hyperelliptic curve has simpler, cleaner arithmetic. It also appears to rep-
resent a cryptographically more secure setting if the curve has small genus, since
the number field infrastructure discrete logarithm problem always has at most
subexponential complexity [3].

A slight improvement to the original infrastructure key agreement proto-
col [39] as well as infrastructure versions of E l G am a l’ s 1985 public key cryp-
tosystem and signature scheme [9] were presented in [37]. As mentioned earlier,
all these schemes proved to be considerably less efficient and much more techni-
cally involved than the corresponding protocols in the imaginary setting. While
not explicitly stated in [39], [37], these protocols employed the infrastructure as
a group, whose operation assigns two infrastructure divisors D,D′ of respective
distances δ, δ′ the infrastructure divisor below δ+δ′. This operation is slower than
Jacobian arithmetic due to extra adjustment baby steps required, as explained
in Section 4. It was also subsequently recognized that this operation in essence
amounts to a version of arithmetic via unique representatives in the Jacobian of
a real hyperelliptic curve as described in [35].

Many of these technical difficulties were resolved in [24]. In addition, this
source as well as [25] provided the first description of the infrastructure in terms

58

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

of divisors on a real hyperelliptic curve, rather than ideals in the coordinate ring.
This divisor theoretic framework matches the traditional description of the Jaco-
bian much more closely. As explained in Section 5, by assuming Heuristics (H),
the authors of [24] were able to effect a number of modifications of previous in-
frastructure based protocols which led to significant improvements in efficiency.
The key ideas were to eliminate all the extra adjustment baby steps, and replace
some of the giant steps by much more efficient baby steps in the scalar multi-
plication routines. These ideas can be employed in all known discrete logarithm
based protocols for key agreement, digital signatures, and encryption.

Operation counts as well as numerical data revealed that the new arithmetic
in the infrastructure of the real model is comparable in efficiency to Jacobian
arithmetic for imaginary models. These observations are also supported when
comparing the explicit formulas for imaginary hyperelliptic curves of genus 2
given in [30] to those for real hyperelliptic curves of genus 2 in [11], [12]. A care-
ful analysis reveals that the latter require only marginally more finite field mul-
tiplications than the former. However, the baby step operation in its explicit
form is significantly more efficient than divisor addition in either setting, and as
a result, the cryptographic protocols in the real setting perform almost as well
as those in the imaginary case when a special base divisor is used. In addition,
even though the formulas are not as fast as those in the imaginary case, they are
certainly more efficient than using generic algorithms. Thus, using the formulas
of [11], [12] will significantly speed up other computations in the divisor class
group or infrastructure of a real hyperelliptic curve, for example, computing the
regulator or the class number (see, e.g., [45], [44], [46]).

As already mentioned in Section 3, an interesting new model for Jacobian
arithmetic on real hyperelliptic curves was recently introduced by G a l b r a i t h,
H a r r i s o n, and M i r e l e s M o r a l e s in [15]. Their balanced divisor repre-
sentation eliminated almost all additional adjustment baby steps required in the
representation from [35] in a similar manner to the infrastructure improvements
of [24]. If the curve has odd genus, at most one adjustment step is required; for
even genus none is needed, making arithmetic in the Jacobian of a real hyper-
elliptic curve almost as efficient as in the imaginary case. Although a similar
representation was suggested by C a s s e l s and F l y n n [5] for genus 2 curves,
this generalization to arbitrary genus is relatively new and has to date only been
applied to an investigation of pairing computations in genus 2 [16]. Moreover, the
balanced divisor situation still needs efficient algorithms for divisor addition and
reduction. In particular, for hyperelliptic curves of genus 2, it will be necessary
to use the explicit formulas of [11], [12].

Additional comments on the results of Fontein and Mireles Morales con-
necting the infrastructure to the Jacobian in the setting of real hyperelliptic
curves are warranted; these results were already mentioned in Section 8. In [33],

59

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

M i r e l e s M o r a l e s showed how to embed the infrastructure into the subgroup
of the Jacobian generated by ∞−∞. In terms of security, this result shows that
the infrastructure discrete logarithm problem reduces to the discrete logarithm
problem in a subgroup of the Jacobian. In terms of implementation, one obtains
cryptographic protocols based on divisor arithmetic only, and the advantageous
situation of replacing giant steps with baby steps for scalar multiplication can
be realized by using ∞−∞ as the base. When combined with balanced divisor
arithmetic in the Jacobian, this results in cryptographic protocols that are very
similar to the improved infrastructure-based protocols of [24]. Although a thor-
ough comparison has not yet been done, both settings will likely be comparable
in efficiency.

Finally, the infrastructure setting was generalized completely by F o n t e i n
in [13], [14]. In addition to independently showing how to embed the infras-
tructure of a real hyperelliptic curve into a group, Fontein interprets the infras-
tructures of essentially any function field in a very broad context using Arakelov
theory and very reasonable basic assumptions. The author presents the concepts
of distance, baby step, giant step, and periodicity in global fields. He discusses
the special case of one-dimensional infrastructures in detail and thus identifies
the settings described in [39], [25], [16], [33], [35] as special cases. His obser-
vations on arithmetic lead to very general cryptographic protocols. The choice
of the base divisor and the situation at infinity is somewhat variable, leaving
plenty of room for improvement in any specific situation. It would be interest-
ing to see whether such a broader point of view yields an interpretation of the
infrastructure that leads to more efficient applications.

10. Conclusions

We saw that every imaginary hyperelliptic curve can be transformed into
a real model, while the reverse process is frequently not possible over the same
base field. Besides representing a far more general class of curves, there are fur-
ther reasons why real models are of interest. Firstly, hyperelliptic curves for use
in cryptography can be generated by special methods such as complex multipli-
cation. Very often, the output of these methods is a real hyperelliptic curve; see,
for example, the construction of pairing-friendly hyperelliptic curves in [17]. It is
therefore desirable to have efficient arithmetic on these curves available. Sec-
ondly, real hyperelliptic curves have gained popularity due to their potential use
in pairing-based cryptography [16]. Finally, note that Edwards models of elliptic
curves [2] are real models. This suggests that the arithmetic on these curves
warrants further investigation and that their hyperelliptic analogues should be
investigated further.

60

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

Cryptography based on real hyperelliptic curves has come a long way since
it was initially proposed. Recent advances have shown that cryptography using
the infrastructure of a real hyperelliptic curve is almost as efficient as using the
Jacobian of an imaginary hyperelliptic curve. The idea of balanced divisors will
likely have a similar effect on cryptosystems using the Jacobian in the real case.
The results of Fontein and Mireles Morales show that real hyperelliptic curves,
when using the infrastructure or the Jacobian, are as secure as their imaginary
counterparts. Nevertheless, these advances are relatively recent and there is still
work to do in the real case.

In terms of security, numerical work on the infrastructure discrete logarithm
problem currently lags behind the discrete logarithm problem in the imaginary
case. To date, the only work on the subject is the investigation of index calculus
in high genus due to H amm e l l [19], [20], and as mentioned above, no compu-
tational work has as yet been done for small genus. It would be interesting to see
how well the state-of-the-art algorithms in the low genus imaginary case, espe-
cially [18], work in the real case. In addition, methods successfully employed in
the high genus case, including sieving and baby step based relation generation,
should be tried in low genus (both real and imaginary). More work on sieving it-
self, especially in odd characteristic, may help improve these algorithms further.
Finally, the connection between the imaginary hyperelliptic curve discrete loga-
rithm problem and the real model, both using the Jacobian and infrastructure,
should be explored for g > 1. If computing discrete logarithms in one of these
models turns out to be faster, for example by exploiting baby steps in the real
case, such relationships would allow the faster model to be used in both cases.

There is also more that can be done to improve the efficiency of cryptographic
protocols using the real model. In particular, implementations for genus 2 imag-
inary curves make use of explicit formulas such as those given in [30]. Anal-
ogous explicit formulas have now been derived for real hyperelliptic curves of
genus 2 [11]. These formulas yield slightly less efficient performance than their
imaginary counterparts, but not nearly as much work has gone into them; re-
search on this subject has only recently begun and is ongoing. It is possible that
further investigation, possibly using alternative algorithms such as NUCOMP,
will yield improvements, and savings of only a few operations should make the
protocols in the real case as fast as or faster than their imaginary counterparts.
Explicit formulas for genus 3 real hyperelliptic curves have yet to be devel-
oped. Many additional improvements to the imaginary case, for example, special
forms and alternative models of the curve equation, and improved exponentia-
tion methods using precomputations [7] and fast tripling formulas [22], could be
generalized to the real case using either the Jacobian or the infrastructure.

As already pointed out in Section 2, every real hyperelliptic curve over a base
field of even characteristic is isomorphic to one over the same base field where

61

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

the right hand side f(x) in (2.1) has degree at most g. This observation is due
to van der Poorten and Scheidler; details can be found in [1]. This alternative
model in the real case warrants particular attention. An analogue of the Edwards
model in genus 1 may also yield efficient arithmetic for genus 2 real hyperelliptic
curves.

It is an open question as to whether the infrastructure or the Jacobian is the
more efficient setting for cryptographic protocols. Thanks to the work of Mireles
Morales, Paulus-Rück, and others, both can be used interchangeably. The bal-
anced divisor representation of elements in the Jacobian [15] has a similar effect
on the improvements to scalar multiplication in the infrastructure described in
Section 5, in that both ideas eliminate almost all the extra adjustment steps re-
quired in other representations. Using ∞−∞ as a base divisor in the Jacobian is
akin to the fixed-base scalar multiplication in the infrastructure using a doubling
and baby step based strategy. Thus, both settings should provide comparable
efficiency, but a thorough comparison of both settings has yet to be published.

The advances in efficient Jacobian arithmetic in the real model open up addi-
tional possibilities for cryptographic applications beyond what is possible in the
infrastructure. For example, a preliminary investigation of pairing-based cryp-
tography in the Jacobian of a genus 2 real hyperelliptic curve is described in [16].
The conclusion is that the real model is not as efficient as the imaginary model,
even when using balanced divisor arithmetic combined with explicit formulas.
However, it is possible that further investigation, including adapting some of the
successful methods from the infrastructure setting, will yield improvements.

One last intriguing possibility is the idea of a Koblitz curve analogue for the
real model. Scalar multiplication using a combination of an efficient Frobenius
operation and baby steps could be exceptionally fast. Unfortunately, this idea
does not work in the infrastructure, as considering a curve over an extension
of the original base field does not enlarge the infrastructure. However, such an
idea might turn out to be fruitful when considering the Jacobian of a real model
instead, and further research is required.

Acknowledgements. The authors are grateful to an anonymous referee’s help-
ful suggestions for improvement of this article.

REFERENCES

[1] AVANZI, R.—JACOBSON, M. J., JR.—SCHEIDLER, R.: Efficient reduction of large

divisors on hyperelliptic curves, Adv. Math. Communications 4 (2010), 261–279.
[2] BERNSTEIN, D. J.—LANGE, T.: Faster addition and doubling on elliptic curves, in:

Advances in Cryptology—ASIACRYPT ’07, Kuching, Malaysia, 2007 (K. Kurosawa, ed.),

Lecture Notes in Comput. Sci., Vol. 4833, Springer, Berlin, 2008, pp. 29–50.

62

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

[3] BUCHMANN, J.: A subexponential algorithm for the determination of class groups

and regulators of algebraic number fields, in: Séminaire de Théorie des Nombres, Paris,
1988–89, Prog. Math., Vol. 91, 1990, pp. 27–41.

[4] CANTOR, D. G.: Computing the Jacobian of a hyperelliptic curve, Math. Comp. 48

(1987), 95–101.
[5] CASSELS, J. W. S.—FLYNN, E. V.: Prolegomena to a Middlebrow Arithmetic of Curves

of Genus 2, in: London Math. Soc. Lecture Note Ser., Vol. 230, Cambridge Univ. Press,

Cambridge, 1996.
[6] CHEN, Z.—STORJOHANN, A.—FLETCHER, C.: IML: Integer Matrix Library (version

1.0.2), http://www.cs.uwaterloo.ca/ z4chen/iml.html, 2007.

[7] COHEN, H.—FREY, G.—AVANZI, R.—DOCHE, C.—LANGE, T.—NGUYEN, K.—
—VERCAUTEREN, F.: Handbook of Elliptic and Hyperelliptic Curve Cryptography, in:
Discrete Math. Appl., Chapman & Hall/CRC, Boca Raton, FL, 2006.

[8] DIFFIE, W.—HELLMAN, M. E.: New directions in cryptography, IEEE Trans. Inform.
Theory 22 (1976), 644–654.

[9] ELGAMAL, V.: A public-key cryptosystem and a signature scheme based on discrete

logarithms, IEEE Trans. Inform. Theory IT-31 (1985), 469–472.
[10] ERICKSON, S.—HO, T.—ZEMEDKUN, S.: Explicit projective formulas for real hyper-

elliptic curves of genus 2, 2009 (in preparation).
[11] ERICKSON, S.—JACOBSON, M. J., JR.—SHANG, N.—SHEN, S.—STEIN, A.: Explicit

formulas for real hyperelliptic curves of genus 2 in affine representation, in: Proceedings
of First International Workshop—WAIFI ’07, Madrid, 2007 (C. Carlet et al., eds.), Lecture
Notes in Comput. Sci., Vol. 4547, Springer, Berlin, 2007, pp. 202–218.

[12] ERICKSON, S.—JACOBSON, M. J. JR.—STEIN, A.: Explicit formulas for real hyper-

elliptic curves of genus 2 in affine representation, 2009 (in preparation).
[13] FONTEIN, F.: Groups from cyclic infrastructures and Pohlig-Hellman in certain infras-

tructures, Adv. Math. Commun. 2 (2008), 293–307.
[14] , The Infrastructure of a Global Field and Baby Step-Giant Step Algorithms. Ph.D.

Thesis, University of Zürich, Zürich, Switzerland, 2008.
[15] GALBRAITH, S. D.—HARRISON, M.—MIRELES MORALES, D. J.: Efficient hyperel-

liptic curve arithmetic using balanced representation for divisors, in: Algorithmic Num-
ber Theory—ANTS ’08, Banff, Canada, 2008 (A. van der Poorten, ed.), Lecture Notes in
Comput. Sci., Vol. 5011, Springer, Berlin, 2008, pp. 342–356.

[16] GALBRAITH, S. D.—LIN, X.—MIRELES MORALES, D. J.: Pairings on hyperelliptic

curves with a real model, in: Pairing-Based Cryptography—Pairing ’08 (S. Galbraith,
ed.) Egham, UK, 2008, Lecture Notes in Comput. Sci., Vol. 5209, Springer, Berlin, 2008,

pp. 265–281.
[17] GALBRAITH, S. D.—PUJOLAS, J.—RITZENTHALER, C.—SMITH, B.: Distortion

maps for supersingular genus two curves, J. Math. Cryptology 3 (2009), 1–18.

[18] GAUDRY, P.—THOMÉ, E.—THÉRIAULT, N.—DIEM, C.: A double large prime vari-

ation for small genus hyperelliptic index calculus, Math. Comp. 76 (2007), 475–492.

[19] HAMMELL, J. F.: Index Calculus in the Infrastructure of Real Quadratic Function Fields.
Master’s Thesis, University of Calgary, Canada, 2008.

[20] HAMMELL, J. F.—JACOBSON, M. J., JR.: Index-calculus algorithms in real quadratic

function fields, 2009 (in preparation).
[21] HANKERSON, D.—MENEZES, A.—VANSTONE, S.: Guide to Elliptic Curve Cryptog-

raphy. Springer, New York, 2004.

[22] IMBERT, L.—JACOBSON, M. J., JR.—SCHMIDT, A.: Fast ideal cubing in imaginary

quadratic number and function fields, Adv. Math. Communications 4 (2010), 237–260.

63

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

MICHAEL J. JACOBSON, JR. — RENATE SCHEIDLER — ANDREAS STEIN

[23] JACOBSON, M. J., JR.—MENEZES, A. J.—STEIN, A.: Hyperelliptic curves and cryp-

tography, in: Selected papers from the International Conference on Number Theory, Banff,
AB, Canada, 2003 (A. van der Poorten, et. al., eds.), Fields Inst. Commun., Vol. 41, Amer.
Math. Soc., Providence, RI, 2004, pp. 255–282.

[24] JACOBSON, M. J., JR.—SCHEIDLER, R.—STEIN, A.: Cryptographic protocols on real

and imaginary hyperelliptic curves, Adv. Math. Commun. 1 (2007), 197–221.
[25] , Fast arithmetic on hyperelliptic curves via continued fraction expansions, in:

Advances in Coding Theory and Cryptology (T. Shaska, T. et al., eds.), Series on Coding
Theory and Cryptology, Vol. 3, World Scientific, Hackensack, NJ, 2007, pp. 200–243.

[26] JACOBSON, M. J., JR.—STEIN, A.—VELICHKA, M. D.: Computing discrete loga-

rithms on high-genus hyperelliptic curves over even characteristic finite fields (in prepa-
ration), 2009.

[27] JACOBSON, M. J., JR.—VAN DER POORTEN, A. J.: , Computational aspects of

NUCOMP, in: Algorithmic Number Theory—ANTS-V, Sydney, Australia, 2002 (C. Fieker
et al., eds.), Lecture Notes in Comput. Sci., Vol. 2369, Springer, Berlin, 2002, pp. 120–133.

[28] KOBLITZ, N.: Elliptic curve cryptosystems, Math. Comp. 48 (1987), 203–209.
[29] , Hyperelliptic cryptosystems, J. Cryptology 1 (1989), 139–150.
[30] LANGE, T.: Formulae for arithmetic on genus 2 hyperelliptic curves, Appl. Algebra

Engrg. Comm. Comput. 15 (2005), 295–328.
[31] MENEZES, A. J.—WU, Y.-H.—ZUCCHERATO, R. J.: An elementary introduction to

hyperelliptic curves, in: Algebraic Aspects of Cryptography, Algorithms Comput. Math.,
Vol. 3, Springer, Berlin, 1998, pp. 155–178.

[32] MILLER, V.: Use of elliptic curves in cryptography, in: Advances in Cryptology—
—CRYPTO ’85, Santa Barbara, California, 1985, Lecture Notes in Comput. Sci., Vol.

218, Springer, Berlin, 1986, pp. 417–426.
[33] MIRELES MORALES, D. J.: An analysis of the infrastructure in real function fields,

Eprint archive no. 2008/299, 2008.

[34] MÜLLER,V.—STEIN, A.—THIEL, C.: Computing discrete logarithms in real quadratic

congruence function fields of large genus, Math. Comp. 68 (1999), 807–822.

[35] PAULUS, S.—RÜCK, H.-G.: Real and imaginary quadratic representations of hyperellip-

tic function fields, Math. Comp. 68 (1999), 1233–1241.

[36] POHLIG, S. C.—HELLMAN, M. E.: An improved algorithm for computing logarithms

over GF (p) and it’s cryptographic significance, IEEE Trans. Inf. Theory 24 (1978),
106–110.

[37] SCHEIDLER, R.: Cryptography in quadratic function fields, Des. Codes Cryptogr. 22

(2001), 239–264.
[38] SCHEIDLER, R.—BUCHMANN, J. A.—WILLIAMS, H. C.: A key exchange protocol

using real quadratic fields, J. Cryptology 7 (1994), 171–199.
[39] SCHEIDLER, R.—STEIN, A.—WILLIAMS, H. C.: Key-exchange in real quadratic con-

gruence function fields, Des. Codes Cryptogr. 7 (1996), 153–174.
[40] SHANKS, D.: The infrastructure of a real quadratic field and its applications, in: Pro-

ceedings of Number Theory Conf., Univ. Colorado, Boulder, Colorado, 1972, pp. 217–224.
[41] SHOUP, V.: NTL: A Library for doing Number Theory (version 5.4.2), 2008,

http://www.shoup.net.
[42] STEIN, A.: Equivalences between elliptic curves and real quadratic congruence function

fields, J. Théorie Nombr. Bordeaux 9 (1997), 75–95.
[43] , Sharp upper bounds for arithmetics in hyperelliptic function fields, J. Ramanujan

Math. Soc. 16 (2001), 1–86.
[44] STEIN, A.—TESKE, E.: Explicit bounds and heuristics on class numbers in hyperelliptic

function fields, Math. Comp. 71 (2002), 837–861.

64

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

CRYPTOGRAPHIC ASPECTS OF REAL HYPERELLIPTIC CURVES

[45] , The parallelized Pollard kangaroo method in real quadratic function fields, Math.

Comp. 71 (2002), 793–814.
[46] , Optimized baby-step giant-step methods in hyperelliptic function fields, J. Ra-

manujan Math. Soc. 20 (2005), 1–32.
[47] STICHTENOTH, H.: Algebraic Function Fields and Codes (2nd ed.), Springer, Berlin,

2009.
[48] VELICHKA, M. D.: Improvements to Index Calculus Algorithms for Solving the Hyperel-

liptic Curve Discrete Logarithm Problem Over Characteristic Two Finite Fields. Master’s
thesis, University of Calgary, Calgary, Canada, 2008.

Received February 24, 2009 Michael J. Jacobson, Jr.

Department of Computer Science

University of Calgary

2500 University Drive NW

Calgary, Alberta

Canada T2N 1N4

E-mail : jacobs@cpsc.ucalgary.ca

Renate Scheidler

Department of Mathematics and Statistics

University of Calgary

2500 University Drive NW

Calgary, Alberta

Canada T2N 1N4

E-mail : rscheidl@math.ucalgary.ca

Andreas Stein

Institut für Mathematik

Carl-von-Ossietzky Universität Oldenburg

D-26111 Oldenburg

GERMANY

E-mail : andreas.stein1@uni-oldenburg.de

65

Authenticated | rscheidl@math.ucalgary.ca author's copy
Download Date | 11/18/12 6:52 PM

