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Abstract. We present an extended version of the Castagnos and Laguil-
laumie linearly homomorphic cryptosystem [5] in which the non-maximal
imaginary quadratic order is allowed to have conductor equal to a prod-
uct of prime powers as opposed to a single prime. Numerical results
obtained with an optimized C implementation demonstrate that this
variation improves performance when large messages and exponents are
used. When compared to the cryptosystems of Paillier [11] and Bresson
et al. [3] at the same security levels, the basic version of Castagnos and
Laguillaumie is the fastest at high security levels for small messages.
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1 Introduction

A linearly homomorphic cryptosystem is one for which linear combinations of
ciphertexts can be computed in such a way that the result is the encryption of
the same linear combination of the corresponding plaintexts. Such cryptosystems
have a number of applications. For example, when used for electronic voting,
encrypted votes (encrypting 1 for “yes” and 0 for “no”) can be tallied with a
single decryption by homomorphically adding the ciphertexts and decrypting the
result. Two well-known examples of linearly homomorphic encryption systems
are due to Paillier [11] and Bresson et al. [3]. In both cases, the security relies
on the presumed intractability of integer factorization.

In [5], Castagnos and Laguillaumie presented a linearly homomorphic encryp-
tion scheme whose security is based on the hardness of the decision Diffie-
Hellman (DDH) problem in a group that has a subgroup in which the discrete
logarithm (DL) problem can be solved easily; this setting is referred to as a “DDH
group with an easy DL subgroup”. Assuming the existence of such groups, they
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described a linearly homomorphic encryption scheme that is provably one-way
and semantically secure subject to relatively standard hardness assumptions.
They also gave an instantiation of their cryptosystem using the ideal class group
of a non-maximal imaginary quadratic order with prime conductor as the DDH
group with easy DL subgroup. Subsequently, this cryptosystem was used in com-
bination with a variant of ElGamal in an encryption switching protocol [4],
providing an efficient setting for a secure two-party computation protocol.

The cryptosystem of [5] has two main novel features. Firstly, it is the only
purely linearly homomorphic cryptosystem (not counting the fully homomorphic
cryptosystems based on the learning with errors problem) whose security does
not depend on integer factorization—all hardness assumptions are versions of
Diffie-Hellman and discrete logarithm problems. The second feature is that the
size of the message space can be chosen independently of the security parameter.
This is especially attractive in electronic voting applications, as the message
space can be chosen just large enough to handle the required number of votes.
In contrast, [11] and [3] are both defined in terms of RSA moduli, and the
number of messages that can be encrypted is of the same size as the modulus.
When appropriate security levels are used, these allow far more messages than
necessary for typical voting scenarios.

Castagnos and Laguillaumie [5] also presented numerical results using an
implementation of their cryptosystem, which suggested that it has advantages
over Pailler and Bresson et al. at the 112- and 128-bit security levels. However,
the implementation was done using a general-purpose computer algebra system
as opposed to a more specialized and optimized implementation. In addition,
two possible improvements were suggested, designed to allow larger messages
without increasing the security level, and to speed up decryption via the Chinese
Remainder Theorem. These improvements arise from using conductors that are
prime powers and products of distinct primes, respectively, as opposed to primes.
Exploring both these ideas was left as future work.

In this paper, we fully explore the efficiency of the cryptosystem of Castagnos
and Laguillaumie [5]. Our first contribution is a complete description of the cryp-
tosystem using conductors that are products of prime powers, thereby covering
both the suggested improvements in [5]. We present a detailed benchmarking of
the cryptosystem at the 128-, 192-, and 256-bit security levels, and compare its
performance to both the Pailler [11] and the Bresson et al. [3] cryptosystems.
Our implementation makes use of a state-of-the-art C implementation of class
group arithmetic in imaginary quadratic orders due to Sayles [12]. We use both
the original version of [5] where group elements are sampled from the entire
group, as well as standard short exponent versions that also have provable secu-
rity properties but under variations of the intractability assumptions that are
restricted to short exponents, based on the results of Koshiba and Kurosawa [10].
The variations of Castagnos and Laguillaumie considered here offer performance
improvements when using large exponents and large messages. When compared
to the cryptosystems of Paillier [11] and Bresson et al. [3] at the same security
levels, our results show that the basic version of Castagnos and Laguillaumie is
the fastest at high security levels for small messages.
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2 The Castagnos and Laguillaumie Cryptosystem

2.1 The Basic System

As mentioned in the previous section, Castagnos and Laguillaumie presented a
linearly homomorphic encryption scheme based on a DL related problem, effec-
tively solving a thirty-year-old open problem. Their scheme [5] is based on the
hardness of the DDH problem in certain groups G that contain a subgroup F
where solving the DL problem is easy. Castagnos and Laguillaumie call such a
setting a DDH group with an easy DL subgroup and instantiate an example of
one such group-subgroup pair as the class group of a non-maximal imaginary
quadratic order with prime conductor [5]. The following is a simplified version
of Definition 1 in [5], with unused parameters omitted.

Definition 1 ([5, Definition 1]). A DDH group with an easy DL subgroup is a pair
of algorithms Gen and Solve. The Gen algorithm takes as input two parameters
λ and μ and outputs a tuple (B, f, g, f,G,F). Here, G is a finite cyclic group
generated by g, F is a subgroup of G of order f generated by f, |G|/f is a λ-bit
integer bounded above by B, and f is a μ-bit integer. The Solve algorithm is an
efficient algorithm for solving the DL problem in F which is assumed to be easy,
while the DDH problem in G is assumed to be hard even with access to the Solve
algorithm.

In addition, random powers gr with 0 ≤ r ≤ Bf − 1 are assumed to be sta-
tistically indistinguishable from the uniform distribution on G, and both images
and pre-images under the canonical surjection G → G/F are assumed to be effi-
ciently computable. In slight abuse of terminology, we will refer to G as a DDH
group and F an easy DL subgroup of G, with an implicit assumption of the
associated Gen and Solve algorithms.

For the scheme of [5], we let f,ΔK ∈ Z where f > 0, ΔK < −4, ΔK is
square-free and ΔK ≡ 1 (mod 4). Then ΔK is a fundamental discriminant that
defines an imaginary quadratic field K. Let C(OΔK

) and C(OΔf
) denote the

class group of the maximal order OΔK
of K of discriminant ΔK and the non-

maximal suborder OΔf
of OΔK

of discriminant Δf = f2ΔK and conductor f ,
respectively. Arithmetic in C(OΔf

) is conducted on reduced ideals, uniquely
represented by a pair (a, b) where a, b are bounded integers and a > 0. There
is an efficiently computable canonical injection ψf : C(OΔK

) → C(OΔf
) and a

corresponding canonical surjection ϕ̄f : C(OΔf
) → C(OΔK

) whose kernel has
order

|ker(ϕ̄f )| = f
∏

p|f

(
1 −

(
ΔK

p

)
1
p

)
,

where the product runs over the prime factors p of f and (ΔK/p) is the Kronecker
symbol. If every prime factor of f divides ΔK , then |ker(ϕ̄f )| = f . If in addition
ker(ϕ̄f ) is cyclic, then one can put F = ker(ϕ̄f ) and take G to be a suitable large
cyclic subgroup of C(OΔf

).
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Castagnos and Laguillaumie specifically chose ΔK = −pq and f = p, where
p is prime and q is a positive integer not divisible by p such that q > 4p. Then
the ideal class of f = (p2, p) generates F , and the DL in F is easy since for all
m ∈ {1, 2, . . . , p− 1}, the ideal class of fm is given by (p2, L(m)p) where L(m) is
the unique odd inverse of m (mod p) in the interval [−p, p]; see Proposition 1 of
[5]. In Algorithms 1 and 2, we present the Gen algorithm that constructs the DDH
group G with an easy DL subgroup F and the Solve algorithm that solves the DL
problem in F in this setting; see [5, Figure 2]. For security reasons, as explained
in Subsect. 2.2, we assume that q is also prime and that (p/q) = (q/p) = −1. The
map ψ = ψf in Gen is the aforementioned injection from C(OΔK

) into C(OΔf
);

see [5, Lemma 3] and [8, Algorithm 9] for a method to efficiently compute this
map. The call to Red(·) in Algorithm 2 outputs the two-integer representation
of the unique reduced ideal equivalent to the input.

Algorithm 1. Gen
Input: λ, μ with λ ≥ μ + 2.
Output: B, f, g, f, G, F
1. Pick random integers p and q such that p is a μ-bit prime, q is a (2λ−μ)-bit

prime, pq ≡ 3 (mod 4) and (p/q) = (q/p) = −1
2. Set ΔK ← −pq
3. Set f ← p
4. Set Δf ← f2ΔK

5. Set f ← [(f2, f)] in C(OΔf )
6. Choose a small prime r such that gcd(r, f) = 1 and (ΔK/r) = 1. Set r to

a prime ideal of OΔK lying above r

7. Pick k
$←− (Z/fZ)� and set g ← [ψ(r2)] · fk in C(OΔf )

8. Set B ← f ·
⌈

log(|ΔK |) ·
√

|ΔK |
4π

⌉

9. Return (B, f, g, f, G, F)

Algorithm 2. Solve
Input: f, f,m
Output: m such that m = fm

1. Parse Red(m) as (f2, x̃f)
2. Return x̃−1 (mod f)

Algorithm 3. KeyGen
Input: λ
Output: Public key pk, secret key sk

1. (B, f, g, f)
$←− Gen(λ, μ)

2. x
$←− (Z/BfZ) and h ← gx

3. pk ← (B, f, g, h, f) and sk ← x
4. Return (pk, sk)

Algorithms 3–7 present the linearly homomorphic encryption system first
given in [5]. While we use the notation associated with the specific setting of
class groups, this description applies to the generic setting of a DDH group with
an easy DL subgroup of Definition 1. Here, plaintexts are integers modulo f ,
while ciphertexts are pairs of elements in G. Thus, the size of the message space
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is completely determined by the size of the easy DL subgroup F ; in the class
group setting, this is precisely the conductor f of the non-maximal order OΔf

.

Algorithm 4. Encrypt
Input: λ, pk, message m
Output: Ciphertext (c1, c2)

1. Pick r
$←− {0, · · · , Bf − 1}

2. Compute c1 ← gr

3. Compute c2 ← fmhr

4. Return (c1, c2)

Algorithm 5. Decrypt
Input: λ, pk, sk, (c1, c2)
Output: Message m
1. Compute m ← c2/cx

1

2. m ← Solve(f, f, F ,m)
3. Return m

Algorithm 6. EvalSum
Input: λ, pk,

(c1, c2) = Encrypt(pk, m),
(c′

1, c
′
2) = Encrypt(pk, m′)

Output: (C1, C2) such that
Decrypt(sk, (C1, C2)) = m + m′

1. Compute c′′
1 ← c1c

′
1, c′′

2 ← c2c
′
2

2. Pick r
$←− {0, · · · , Bf − 1}

3. Return (c′′
1g

r, c′′
2h

r)

Algorithm 7. EvalScal
Input: λ, pk, α,

(c1, c2) = Encrypt(pk, m)
Output: (C1, C2) such that

Decrypt(sk, (C1, C2)) = αm
1. Compute c′

1 ← cα
1 , c′

2 ← cα
2

2. Pick r
$←− {0, · · · , Bf − 1}

3. Return (c′
1g

r, c′
2h

r)

2.2 Security

It is easy to see that if one can solve the discrete logarithm problem in G, then
one can recover the secret key sk and totally break the scheme of [5]. Castagnos
and Laguillaumie show that the DL problem in G is at least as hard as the DL
problem in G/F .

Theorem 1 ([5, Theorem 2]). Let G be a DDH group with an easy DL subgroup.
Then the DL problem in G/F reduces to the DL problem in G.

The DDH problem in our context reads as follows.

Definition 2 (Decisional Diffie Hellman Problem). Let G be a DDH group of
order n with an easy DL subgroup F and g a generator of G. Let x, y, z be integers
such that x, y, z

$←− Z/nZ. The Decisional Diffie Hellman Problem consists of
deciding whether gxy = gz, given (g, gx, gy, gz) and access to the Solve algorithm.

Theorem 2 ([5, Theorem 4]). The scheme described in Algorithms 1–7 is
semantically secure under chosen plaintext attacks (ind-cpa) if and only if the
DDH problem is hard in G.

The following problems were introduced by Bresson et al. in [3] and Paillier
in [11] respectively, and were then adapted by Castagnos and Laguillaumie in [5].
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Definition 3 (Lift Diffie-Hellman Problem). Let G be a DDH group of order

n with an easy DL subgroup F and g a generator of G. Let x, y
$←− Z/nZ and let

π : G → G/F be the canonical surjection. The Lift Diffie-Hellman (LDH) prob-
lem consists of computing gxy, given (g, gx, gy, π(gxy)) and access to the Solve
algorithm.

Definition 4 (Partial Discrete Logarithm Problem). Let G be a DDH
group of order n with an easy DL subgroup F and g a generator of G. Let
x

$←− Z/nZ. The Partial Discrete Logarithm (PDL) problem consists of computing
x (mod |F|), given g and gx and access to the Solve algorithm.

Theorem 3 ([5, Theorem 3]). The scheme described in Algorithms 1–7 is one-
way under chosen plaintext attacks (ow-cpa) if and only if the LDH problem
(equivalently, the PDL problem) is hard.

Castagnos and Laguillaumie show that the LDH and PDL problems are equiv-
alent [5, Theorem 1]. They also show that knowledge of the order n of G makes
it possible to solve the PDL problem efficiently [5, Lemma 1].

For security reasons, it is desirable to work in a cyclic subgroup of C(OΔf
)

that is as large as possible. To that end, Hamdy and Möller [7] recommend to
choose a fundamental ΔK for which the 2-Sylow subgroup of the class group
C(OΔK

), and hence the even part of the class number h(ΔK) = |C(OΔK
)|, is

minimal. The construction in [5] achieves this, since for ΔK = −pq, the even
part of the class number is exactly 2 if p, q are primes with (p/q) = (q/p) = −1,
and that value is as small as possible for non-prime discriminants. In addition,
Castagnos and Laguillaumie also require μ > 80 in order to ensure that the
probability of the conductor p dividing the odd part of h(ΔK) is extremely low
according to the Cohen-Lenstra heuristics. A large cyclic subgroup of C(OΔK

) of
order s, where s is a large factor of h(ΔK), thus produces a large cyclic subgroup
G of C(OΔf

) of order ps, and s is the security parameter for the scheme. The
Cohen-Lenstra heuristics in fact predict that the odd part of C(OΔK

) is itself
cyclic with very high probability. Under these assumptions, finding the order |G|
is believed to be intractable.

2.3 A Variant of the Basic System

Castagnos and Laguillaumie proposed a variant that aims to reduce the size of
the first component c1 of a ciphertext (c1, c2) [5, Section 4.2]. They suggested
constructing the generator g of G in C(OΔK

) so that h ∈ C(OΔK
) and hence

c1 ∈ C(OΔK
). The ciphertext c2 can then be generated by lifting h to C(OΔp

)
using the ψ map. Thus, we have the following changes for this variant. Note
that the semantic security of this variant now relies on the intractability of a
different, less standard modification of the DDH problem.
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Modification to Algorithm 1
7. Set g ← [r2] in C(OΔK )

Algorithm 8. Encrypt
Input: λ, pk, message m
Output: Ciphertext (c1, c2)

1. Pick r
$←− {0, · · · , Bf − 1}

2. Compute c1 ← gr

3. Compute c2 ← fmψ(hr)
4. Return (c1, c2)

Algorithm 9. Decrypt
Input: λ, pk, sk, c1, c2
Output: Message m
1. Compute m ← c2/ψ(cx

1)
2. m ← Solve(B, f, g, f,m)
3. Return m

2.4 Expanding the Message Space

The condition q > 4p implies |ΔK | > 4p2 and hence p2 <
√

Δp/2, which ensures
that Red(f) = (p2, p) is a reduced ideal in OΔf

[9, Theorem 5.6]. This restriction
allows for a polynomial time Solve algorithm, but it also introduces a fixed
upper bound on the size of the message space for a given security level. To see
this more clearly, consider a factorization based linearly homomorphic scheme
such as the Paillier cryptosystem. Its hardness is based on the factorization of the
RSA modulus and thus, the size of the message space is the size of the modulus
which is the security parameter. In the CL schemes described above, the message
space has size p, so the bound q > 4p forces ΔK > 4p2. For example, based on
[1, Table 4], a security level of 128 bits corresponds to factoring a modulus of bit
size 3072 and computing discrete logarithms in a class group corresponding to a
1828-bit discriminant ΔK . In the Paillier scheme, a security level of 3072 bits thus
corresponds to messages of bit length of 3072. Yet, in the Castanos-Laguilliomie
scheme, messages whose length is equal to the corresponding security level of
1828 bits necessitate using a discriminant of size at least 2 · 1828 + 2 = 3658
bits, far larger than what is required at the same security level. Thus, the CL
variants discussed so far lose their advantage over factoring based schemes.

To solve this problem, Castagnos and Laguillaumie proposed a variant of their
scheme that drops the requirement q > 4p and has no restriction on the size of q
in Gen (Algorithm 1). In this case, however, the ideal (p2, p) of OΔp

and its powers
may no longer be reduced. In order to still guarantee a polynomial time Solve
algorithm, one solution is to lift the ideal (p2, p) to the order OΔp2

of discriminant
Δp2 = p4ΔK where the lifted ideal is reduced since p2 <

√|Δp2 |/2 if |ΔK | > 4.
The class f = [(p2, p)] ∈ C(OΔp

) lifts to the ideal class fl ∈ c(OΔp2
) whose

unique reduced representative is again [(p2, p)], where the lift is now effected by
the map ψ : C(OΔp

) → C(OΔp2
).

Castagnos and Laguillaumie show that fl belongs to the cyclic subgroup of
C(Δp2) generated by [(p2, p)] where fl = ψ(f) is the lift of f under the lifting
map ψ that maps elements in OΔp

to elements in OΔp2
[5, Section 4.1]. So we

precompute the discrete logarithm z of fl with respect to [(p2, p)] in Gen using a
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technique analogous to that used in Solve, but computing inside C(Δp2). Our
computations show that z = 1 almost always. We have the following Gen and
Solve algorithms for this variant.

Algorithm 10. Gen
Input: λ, μ with λ ≥ μ + 2.
Output: B, f, z, g, f, G, F
1. Pick random integers p and q such that p is a μ-bit prime, q is a (2λ−μ)-bit

prime, pq ≡ 3 (mod 4) and (p/q) = (q/p) = −1 if q �= 1
2. Set ΔK ← −pq
3. Set f ← p
4. Set Δf ← f2ΔK

5. Set f ← [(f2, f)] in C(OΔf )

6. Parse Red(ψ(f)) as (f2, z̃f)
7. z ← z̃−1 (mod f)
8. Choose a small prime r such that gcd(r, f) = 1 and (ΔK/r) = 1. Set r to

be a prime ideal of OΔK lying above r

9. Pick k
$←− (Z/fZ)� and set g ← [ψ(r2)] · fk in C(OΔf )

10. Set B ← f ·
⌈

log(|ΔK |) ·
√

|ΔK |
4π

⌉

11. Return (B, f, z, g, f, G, F)

Algorithm 11. Solve
Input: z, f, f,m
Output: m such that m = fm

1. Compute m′ ← ψ(m)
2. Parse Red(m′) as (f2, ỹf)
3. Return zỹ−1 (mod f)

In this version, p can be chosen independently of the security level, subject
to the restriction that it is large enough so p does not divide q with very high
probability (e.g. at least 80 bits). We note that this idea can also be applied to
the variant presented in Subsect. 2.3.

3 Extensions

The original probabilistic encryption scheme in [5] and its modifications pre-
sented in Sect. 2 all use a prime conductor p. Castagnos and Laguillaumie also
suggested the use of a composite conductor f , which could potentially improve
the efficiency of their schemes, and to allow the message space to be increased
arbitrarily without increasing the security level (governed by the size of the
fundamental discriminant ΔK). Specifically, they proposed f =

∏N
i=1 pi or
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f = pt where N, t ∈ Z≥1 and pi, p are primes. In this section, we describe
modified versions of the algorithms presented Sect. 2 for the more general con-
ductor f =

∏N
i=1 pt

i that includes the two proposed forms as the special cases
t = 1, N > 1 and t > 1, N = 1 and the original scheme as the case N = t = 1.
To ensure that the kernel of the surjection ϕ̄f : C(OΔf

) → C(OΔK
) is f , we

put ΔK = −p1p2 · · · pNq. It is easy to deduce that the ideal (f2, f) is reduced
in OΔf

when q > 4(p1p2 · · · pN )2t−1. If this is not the case, we need to pro-
ceed as in Subsect. 2.4 and lift the class f of (f2, f) to C(OΔf2 ) via the map
ψ : C(OΔf

) → C(OΔf2 ). In order to focus entirely on the differences arising
in all our algorithms when replacing a prime conductor f = p by a composite
conductor f =

∏N
i=1 pt

i, we assume that no such lifting is necessary. The Gen algo-
rithm for this extension is as follows. The KeyGen algorithm remains unchanged.
We present modified versions of Encrypt, Decrypt and Solve separately for the
cases t = 1 and t > 1.

Algorithm 12. Gen
Input: λ, μ
Output: B, f, g, f, G, F
1. Pick random primes p1, p2, · · · , pN , q such that p1p2 · · · pN is a μ-bit inte-

ger, q is a (2λ − μ)-bit prime, p1p2 · · · pNq ≡ 3 (mod 4) and (pi/pj) = 1
and (pi/q) = (q/pi) = −1 for 1 ≤ i, j ≤ N

2. Set ΔK ← −p1p2 · · · pNq

3. Pick t
$←− Z>0 and set f ← (p1p2 · · · pN )t

4. Set Δf ← f2ΔK

5. Set f ← [(f2, f)] in C(OΔf )
6. Choose a small prime r such that gcd(r, f) = 1 and (ΔK/r) = 1.

Set r a prime ideal lying above r

7. Pick k
$←− (Z/fZ)� and set g ← [ψ(r2)] · fk in C(OΔf )

8. Set B ← |M| ·
⌈

log(|ΔK |) ·
√

|ΔK |
4π

⌉

9. Return (B, f, g, f, G, F)

3.1 Case t > 1

Note that since ker(ϕ̄f ) contains subgroups of order pt
i for all i, one could also

encrypt mi (mod pt
i). The resulting decryption simply needs to solve the simul-

taneous congruences m ≡ mi (mod pt
i) via Chinese remaindering. This yields

the following modifications.

Modification to Algorithm 12
5. Set fi ← [(p2t

i , pt
i)] in C(OΔf ) ∀i ∈ {1, · · · , N}
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Algorithm 13. Encrypt
Input: λ, pk, m
Output: Ciphertext (c1, c2)

1. Pick r
$←− {0, · · · , Bf − 1}

2. Compute mi ← m (mod pi)
3. Compute c1 ← gr

4. Compute ĉi ← f
mi
i hr

5. Return c1, ĉ1, · · · , ĉn

Algorithm 14. Decrypt
Input: λ, pk, sk, c1, ĉ1, · · · , ĉn

Output: Message m
1. Compute mi ← ĉi/cx

1

2. Compute mi ← Solve(pt
i, fi,mi)

3. Solve m ≡ mi (mod pi)
4. Return m

Algorithm 15. Solve
Input: f, f,m
Output: m such that fm = m

1. for i = 1 to N do
2. Compute fi ← ff/pt

i

3. Compute mi ← mf/pt
i

4. Set x0 ← 0

5. Compute γ ← f
pt−1
i

i

6. for k ← 0 to t − 1 do
7. Compute m′

k ← (f
−xk
i mi)

pi
t−1−k

8. Compute dk ← Solve(pi, γ,m′
k)

9. Set xk+1 ← xk + pkdk

10. end for
11. Set mi ← xt

12. end for
13. Solve m ≡ mi (mod pt

i) ∀i ∈ {1, · · · , N} using CRT
14. Return m

3.2 t = 1

If t = 1, we have f = p1p2 · · · pN . If we assume q > 4f as before, i.e., λ ≥ μ+2 in
Gen, then the reduced representative of the ideal class f ∈ C(OΔf

) is (f2, f) and
f generates a cyclic group of order f in C(OΔf

). Thus, our Encrypt, Decrypt
and Solve algorithms remain unchanged from their original versions. However,
since the Solve algorithm is essentially an inversion modulo f (a prime in the
CL schemes) and f is now composite, we can perform computations modulo
the individual prime factors of f and retrieve the message modulo f using the
Chinese Remainder Theorem (CRT). This can be done in three ways:

1. The first CRT modification is straightforward: we simply compute inversions
modulo each prime divisor of f and use CRT to retrieve the message modulo f .
The modified Solve algorithm is as follows:
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Algorithm 16. Solve
Input: f, f,m
Output: m such that m = fm

1. Parse Red(m) as (f2, x̃f)
2. Compute mi ← x̃−1 (mod pi)
3. Solve m ≡ mi (mod pi)
4. Return m

2. The second CRT modification utilizes the idea that F contains order pi sub-
groups for each i that are generated by the elements fi = f(f/pi) represented
by the ideals (p2i , pi). Thus, one can compute mi ≡ m (mod pi) and encrypt
m =

∏n
i=1 f

mi
i . Clearly, m is of form (f2, x̃f) i.e., m ∈ 〈f〉 and we have the

following modifications.

Modification to Algorithm 12
5. Set fi ← [(p2

i , pi)] in C(OΔf )

Algorithm 17. Encrypt
Input: λ, pk, m
Output: Ciphertext (c1, c2)

1. Pick r
$←− {0, · · · , Bf − 1}

2. Compute mi ← m (mod pi)
3. Compute c1 ← gr

4. Compute c2 ← fm1
1 fm2

2 · · · fmN
N hr

5. Return c1, c2

Algorithm 18. Solve
Input: f, f,m
Output: m such that m = fm

1. Parse Red(m) as (f2, x̃f)
2. mi ← (x̃f/pi)

−1 (mod pi)
3. Solve m ≡ mi (mod pi)
4. Return m

3. The third CRT variant also uses the fact that fi = [(p2i , pi)] is cyclic of order
pi and generates N ciphertexts mi = fmi

i where mi ≡ m (mod pi). The
modification to the Gen algorithm is identical to that of the previous variant,
and the modified Encrypt and Decrypt algorithms take the following form:

Algorithm 19. Encrypt
Input: λ, pk, m
Output: Ciphertext (c1, c̃1, . . . , c̃n)

1. Pick r
$←− {0, · · · , Bf − 1}

2. Compute mi ← m (mod pi)
3. Compute c1 ← gr

4. Compute ĉi ← f
mi
i hr

5. Return c1, ĉ1, · · · , ĉn

Algorithm 20. Decrypt
Input: λ, pk, sk, c1, ĉ1, · · · , ĉn

Output: Message m
1. Compute mi ← ĉi/cx

1

2. Compute mi ← Solve(pi, fi,mi)
3. Solve m ≡ mi (mod pi)
4. Return m
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3.3 Security Considerations for the Extensions

It is easy to verify that the extensions presented in Sect. 3 preserve the linearly
homomorphic properties. Moreover, the security considerations for the original
CL scheme remain unchanged throughout these extensions, with the appropri-
ate conditions on the Legendre symbols (pi/pj), (pi/q) and (q/pi) as stated in
Algorithm 12. As described in Subsect. 2.2, the fundamental discriminants ΔK

should be chosen such that 2-Sylow subgroup of the class group C(OΔK
) is as

small as possible.
If N is the number of prime factors of ΔK , then the 2-rank of C(OΔK

)
is N − 1, and 2N−1 divides h(ΔK). We wish to ensure that this is in fact the
highest power of 2 dividing h(ΔK). For discriminants of the form ΔK = −pq as in
Algorithm 1, we have N = 2, so h(ΔK) is even. The conditions (p/q) = (q/p) =
−1 guarantee that h(ΔK)/2 is odd. Similarly, when ΔK = −p1p2 · · · pNq, we
see that 2N−1 divides h(ΔK). If (pi/pj) = 1 and (pi/pN ) = (pN/pi) = −1 for
1 ≤ i, j < N , then no higher power of 2 divides h(ΔK) (see, for example, [2]).

4 Parameter Choices

As described in [5], the main concern with selecting parameters is that it should
be computationally infeasible to compute h(ΔK), the class number of the max-
imal order OΔK

, as knowledge of the class number in this setting enables the
computation of discrete logarithms in C(OΔf

). Biasse et al. in [1] gave estimates
of discriminant sizes to provide various levels of security using the best-known
index calculus algorithms of subexponential complexity. In Table 1, we give these
sizes for the 128-, 192-, and 256-bit security levels, along with the corresponding
RSA modulus sizes required for Paillier [11] and Bresson et al. [3]. Note that
generic group algorithms do not play a role here, as their complexity is worse
than the index calculus algorithms.

Table 1. Parameter sizes (in bits)

Security level RSA modulus ΔK Δf (for n-bit messages)

16 80 256 32768

128 3072 1828 1860 1988 2340 67364

192 7680 3598 3630 3758 4110 69134

256 15360 5972 6004 6132 6484 71508

We also list, in Table 1, the sizes of the non-fundamental discriminants Δf

required to provide the given security level for various message sizes. As men-
tioned earlier, Paillier and Bresson et al. can encrypt messages of up to the same
size as the RSA modulus used, which is determined by the desired security level.
The variants of the Castagnos and Laguillaumie cryptosystem have their security
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level fixed primarily by the size of the fundamental discriminant ΔK , and can
work with different message sizes by varying the conductor. We see that smaller
message spaces should be quite favorable for the Castagnos and Laguillaumie
system and its variations, as even the non-maximal discriminans are quite small
compared to the RSA moduli required Paillier and Bresson et al. at the same
security levels. We also see that larger message spaces can be used at a fixed
security level, but note that the extensions involving prime power conductors are
necessary, since all primes dividing the conductor must also divide ΔK . Even
with this extension, the CL cryptosystems would not be very efficient on such
large messages, as the discriminants required are very large.

The two other considerations for security parameter choices are the sizes
of primes dividing the conductor f and the upper bound for selecting random
exponents in the protocol. We now discuss these two considerations.

4.1 Restrictions on Prime Factors of f

Castagnos and Laguillaumie insisted on using a conductor (a prime p) of size at
least 80 bits to ensure gcd(p, h(ΔK)) = 1 with high probability implying that
the odd part of the class number is completely unknown. This is important as
the odd part of h(ΔK) is the security parameter and knowing the size of the
odd part, s, leads to a total break of the scheme as shown in Subsect. 2.2. If a
divisor of s is known, then computing s itself may be easier. Extrapolating this
idea to our extension in which the conductor is a product of prime powers would
then imply that the prime divisors of the conductor be at least 80 bits. This
restriction is detrimental to the performance of both the original and extended
versions of the cryptosystem.

However, we believe that this is an unnecessary restriction when one consid-
ers how a known factor of h(ΔK) could be exploited in practice. The best known
algorithms to compute the class number are subexponential index-calculus algo-
rithms and generic group algorithms. There is no known way to speed up the
index calculus algorithms given a divisor of the class number, as the complexity
depends on the discriminant as opposed to the class number. Thus, the discrim-
inant sizes recommended by Biasse et al. in [1] offer enough protection against
index calculus algorithms even if a divisor of the class number is known.

When considering generic algorithms, on the other hand, a known divisor of
the class number does improve the running time, as one can target the unknown
part directly. We consider the worst case that the entire conductor f divides the
odd part of the class number (note that f itself is odd). Let 2k1 be the even and
s = f · s′ be the odd factors of h(ΔK) where k1 ∈ Z≥0 and s′ is the unknown
part of the odd part s. Since h(ΔK) < 1

π log(|ΔK |)√ΔK (see, for example, [6,
§5.10]), we have,

s′ <
1

2k1 · f · π
log(|ΔK |)

√
|ΔK |. (1)

Generic group algorithms can be used to compute s′ in time O(
√

s′). Ignoring
constants and lower-order terms, in order to provide b bits of security, we require
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that
√

s′ > 2b. Combining this with (1) yields the following upper bound on
log2 f :

log2 f ≤ log2(log(|ΔK |)) +
1
2

log2(|ΔK |) − k1 − 2 − 2b. (2)

For example, following the recommendations in [1], Castagnos and Laguillaumie
chose a discriminant of size 1828 bits at the 128-bit security level to prevent
index calculus attacks in C(OΔK

). Substituting these values in Eq. 2 results in

log2 f ≤ 667 − k1,

meaning that we can tolerate known divisors of the conductor of size over 600
bits before the generic attacks would work in fewer than 2b operations. Note
that using conductors with prime divisors larger than this bound is also highly
unlikely to be an issue, because, as discussed in [5], the probability that primes
of this size divide the class number is negligible—indeed, in [5], using primes
larger than 280 was deemed to be sufficient. Thus, we conclude that based on the
current state of knowledge of possible attacks on the cryptosystem, prime divisors
of any size in the conductor are unlikely to result in any loss of security. This is
because the discriminant sizes required to avoid index calculus attacks result in
class numbers that are sufficiently large to prevent the generic algorithms, which
could exploit a known factor of the class number, from working in fewer than 2b

operations.

4.2 Selection of Random Exponents

The bound B on exponents in Algorithm 1, taken directly from [5], is designed to
ensure that the resulting group elements are selected from the entire class group
uniformly at random, a necessary condition for the security proofs to hold. In [5],
the formula for B has a factor of 280 in order to ensure statistical distance of
2−80 from the uniform distribution; in our exposition above, we instead use the
size of the message space f, thus allowing the resulting statistical distance 1/f
to vary with the size of the message space. In the following section, in which we
benchmark the practical performance of their version as well as our extensions,
we will consider this version of the cryptosystem.

However, it is also known that one can obtain similar security proofs using
much shorter exponents if one is willing to use slightly non-standard versions of
the intractability assumptions, a critical performance optimization. There is no
known way to take advantage of knowledge that discrete logarithms are small
in the index calculus algorithms, so these have no bearing on the exponent
bounds. The only concern is with generic algorithms of square root complexity,
which imply that all exponents should be chosen with at least 2b bits for a b-bit
security level. Koshiba and Kurosawa [10] proved that security proofs relying on
Diffie-Hellman problems also hold assuming that such short exponent versions
of the discrete logarithm problem are intractable. Thus, it is at least plausible
that the security proofs of [5] also hold under similarly modified intractability
assumptions. We will also consider short exponent versions of our cryptosystems,
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as is typically done in practice, in the benchmarks presented in the next section,
using exponents of 2b bits.

5 Numerical Results

In this section we present numerical results from benchmarking our extended
version of the cryptosystem of Castagnos and Laguillaumie [5]. Our first set of
experiments were designed to determine which variation and parameter selection
yields the fastest encryption and decryption times for different combinations of
security level and message size. The second set of experiments compares the best
versions against the Paillier [11] and Bresson et al. [3] cryptosystems.

Our experiments were carried out on a standard desktop with 4 Intel Core
i5-2400 CPUs, each CPU with 4 cores, running at 3.10 GHz, and 8 GB RAM,
running Fedora 28. Our programs are written in C/C++ (using gcc version 8.1.1)
with GMP (version 6.1.2) and NTL (version 11.3.2) support for arbitrary pre-
cision arithmetic. We used Maxwell Sayles’s optimized binary quadratic forms
library [12] for ideal arithmetic. Generic single ideal exponentiations were com-
puted using the 8-NAF method while double exponentiations were computed
using the interleaving method with window size 8. However, the exponentiations
of f = [(f2, f)] were performed by simply computing the inverse of the exponent
modulo the order of the ideal class of f and setting fx as [(f2, x−1f)].

5.1 Comparison of Variations of the Castagnos and Laguillaumie
Cryptosystem

The objective of these experiments was to find the fastest CL variation among
different choices of the conductor at each security level. Since the message space
can be chosen independently of the security parameter, we considered message
space sizes of 16, 80 and 256 bits, as well as the same message size of the Pailler
[11] cryptosystem at the same security level. We considered 80 bits as Castagnos
and Laguillaumie promote 80 bits of message space for practical applications in
their paper, and the remaining message sizes were selected to illustrate perfor-
mance with smaller and larger message sizes at fixed security levels. As one can
select short exponents in the CL and BCP schemes, we performed each experi-
ment twice for these cryptosystems, once with full domain exponents and next
with shorter exponents.

We used conductors of the general form f = (p1 · · · pN )t, and varied N and t
to find the optimal (N, t) pair for each security level, message space size, and
variant. We performed some preliminary experiments to find the maximum val-
ues of N and t that one should consider during these experiments. Our obser-
vations showed that the bounds N = 9 and t′ ≤ t < t′ + 5 were sufficient to
find the optimal (N, t) pairs for a message space at a given security level. Here,
t′ = �|M|/ΔK� is the minimum t value required to achieve the message space
size at a security level. The choice of N = 9 and five more values of t were merely
to see the effect of increasing N and t values on the performance. We generated
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10 different parameters (f,ΔK) for each of the 45 combinations of N and t. As
N and t increase, it is difficult to maintain exact conductor sizes as desired and
so we made sure that the conductor has at least the required minimum number
of bits, but at most 3 bits more.

We considered all four variations of the cryptosystem of Castagnos and
Laguillaumie described in Sect. 2 as well as the modifications to the original con-
ductor choice in Sect. 3. We denote the four schemes as Basic, Variant, BasicPlus
and VariantPlus, where “Variant” denotes the version described in Subsect. 2.3
with smaller ciphertexts, and the latter two are the Basic and Variant with the
expansion technique from Subsect. 2.4 applied. We also used all the CRT-based
encryption and decryption variations described in Sect. 3.

In summary, for every combination of security level, message size, conductor
decomposition (N and t), and specific cryptosystem variant, we computed the
average encryption and decryption times in milliseconds taken over the same set
of 1000 messages. Table 2 contains a summary of these experiments. For each
security level and message size pair, we list the average encryption and decryption
times for the fastest variant along with the corresponding N and t values. We
record this for both full domain exponents and short exponents. The variants
are specified using the short-hand notation B, V, BP, and VP, for Basic, Variant,
BasicPlus, and VariantPlus, respectively. ED denotes encryption and decryption,
2ED denotes decryption with CRT2 and its corresponding encryption and 3ED
denotes encryption with CRT3 and its corresponding encryption.

Table 2. Summary of best performances by CL schemes (in ms)

Security Message Short exponents Full exponents

N t Scheme Enc. Dec. N t Scheme Enc. Dec.

128 16 1 1 B-ED 14 9 1 1 B-ED 58 28

80 1 1 B-ED 15 9 1 1 B-ED 63 33

256 1 1 B-ED 18 11 1 1 V-ED 96 50

3072 1 1 B-ED 156 98 6 2 VP-ED 964 794

192 16 1 1 B-ED 47 27 1 1 B-ED 223 115

80 1 1 B-ED 47 27 1 1 B-ED 249 128

256 1 1 B-ED 54 31 1 1 B-ED 320 166

2 1 V-ED 328 160

7680 1 1 B-ED 871 508 6 3 VP-ED 7276 6702

256 16 1 1 B-ED 116 65 1 1 B-ED 672 342

80 1 1 B-ED 118 66 1 1 B-ED 728 370

256 1 1 B-ED 126 70 2 1 B-2ED 865 440

2 1 V-2ED 955 432

15360 5 1 B-ED 4449 2436 6 3 VP-ED 35790 34551



Improved Efficiency of a Linearly Homomorphic Cryptosystem 365

We see that conductors with multiple prime divisors (N > 1) only improve
performance for sufficiently large messages and large exponents. Using prime
powers (t > 1) does not generally improve performance, but is necessary to
handle messages that are larger than the fundamental discriminant. In that case,
the smallest required value of t was optimal. Among the cryptosystem variations,
the basic version was optimal when using short exponents and/or small messages,
while the small ciphertext variation and some of the CRT modifications came
out on top when using full exponents and larger security levels and messages.

5.2 Comparison to Paillier and Bresson et al.

We next compare the best versions of the Castagnos and Laguillaumie cryp-
tosystem to the Paillier [11] and Bresson et al. [3] schemes. Paillier mentioned
two encryption schemes in his paper [11] and presented CRT improvements for
both decryption routines. We implemented the schemes along with their CRT
improvements and observed that Scheme 1 with CRT gives the best encryp-
tion and decryption results with small message sizes and the best decryption
result with large message sizes. Scheme 3 with CRT gives the best encryption
results with large message sizes. Since the BCP scheme is also based on the
DDH problem, we have two versions of the BCP scheme as well, one with full
domain exponents and the other with short exponents. Note that contrary to
BCP, Paillier encryption performs operations with the message as an exponent.
Thus, for a fixed security level, we expect that Pailler encryption times should
vary slightly with different message sizes, whereas the other operations should
remain relatively constant.

We compare below these results with those of the best results from the
Castagnos and Laguillaumie variants in Tables 3, 4 and 5. For the Castagnos
and Laguillaumie timings, we list the best observed encryption and decryption
times amongst all the variants we implemented. Note that for the largest mes-
sage spaces, no single variant results in both optimal encryption and decryption;
in practice, we recommend the version with faster decryption, as the difference
in encryption times relative to the optimal version is much smaller than the
corresponding difference between decryption times.

At the 128-bit security level, Paillier was the fastest when using full exponents
and BCP was the fastest for short exponents, for all message sizes considered.
BCP was fastest for short exponents at the 192-bit level, while the Castagnos and
Laguillaumie variants were superior when using full exponents for 16- and 80-bit
messages; the results were mixed for larger messages. At the 256-bit security
level, Castagnos and Laguillaumie variants are fastest for the three smallest
message sizes when using full and short exponents. Among the Castagnos and
Laguillaumie cryptosystem variations under consideration here, the basic version
from [5] proved to be the best for small messages and exponents, but other
variations and conductor decompositions were advantageous once the messages
and exponents were sufficiently large.
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Table 3. Summary of best performance (in ms)—128-bit security

Message System Short exponents Full exponents

Encryption Decryption Encryption Decryption

16 Pai 37 12

BCP 7 3 147 73

CL 14 9 58 28

80 Pai 38 12

BCP 7 3 147 73

CL 14 9 63 33

256 Pai 40 12

BCP 7 3 147 73

CL 18 11 96 50

3072 Pai 74 12

BCP 7 3 145 72

CL 156 98 964 794

Table 4. Summary of best performance (in ms)—192-bit security

Message System Short exponents Full exponents

Encryption Decryption Encryption Decryption

16 Pai 376 128

BCP 38 18 1508 754

CL 47 27 223 115

80 Pai 381 129

BCP 38 18 1508 754

CL 47 27 249 128

256 Pai 393 129

BCP 38 18 1508 754

CL 54 31 320 166

328 160

7680 Pai 745 254

755 129

BCP 38 18 1487 743

CL 871 508 7276 6702
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Table 5. Summary of best performance (in ms)—256-bit security

Message System Short exponents Full exponents

Encryption Decryption Encryption Decryption

16 Pai 2069 753

BCP 146 77 8306 4154

CL 116 65 672 342

80 Pai 2079 752

BCP 146 77 8298 4152

CL 116 65 728 370

256 Pai 2104 751

BCP 146 77 8295 4151

CL 126 70 865 440

955 432

15360 Pai 4072 1475

4125 751

BCP 141 74 8170 4087

CL 4449 2436 35790 34551

6 Further Work

Our results show that, as expected, the Castagnos and Laguillaumie cryptosys-
tem has some performance advantages as compared to Paillier and BCP for small
messages and at high security levels. The variations described in this paper pro-
vide improvements when large exponents and message sizes are used.

One further optimization that could be considered to improve the extended
versions is to take advantage of the fact that sufficiently small prime divisors of
the conductor can be handled without multiprecision. This was not done in our
experiments and could potentially make these versions more competitive.

We remark that the short exponent versions of the cryptosystems, as
expected, are quite efficient. It would be of interest to revise and complete
the security proofs in this context, where the intractability assumptions are all
replaced by their short exponent analogues.
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