The Cup-Length of Stiefel and Projective Stiefel Manifolds

Július Korbaš *, Renate Scheidler ${ }^{\dagger}$, Peter Zvengrowski

Abstract

This paper discusses some generalities about cup-length of manifolds and then gives an explicit formula for the \mathbb{Z}_{2}-cup-length of the Stiefel manifolds $V_{n, r}$, as well as strong lower bounds for the \mathbb{Z}_{2}-cuplength of the projective Stiefel manifolds $X_{n, r}$, for all $1 \leq r \leq n-1$. A simple formula relating the two cases is given.

We also show the consequences for the Lyusternik-Shnirel'man category, as well as a family of interesting number theoretical identities that arise from the $V_{n, r}$ calculations.

MSC 2010. Primary: 57R19; Secondary: 55M30, 11B75, 05A19.

1 Introduction

Let R be a commutative ring with 1 . We recall that the R-cup-length $\operatorname{cup}_{R}(X)$ of a compact path-connected topological space X is the largest of all integers c such that there exist reduced cohomology classes $a_{1}, \ldots, a_{c} \in$ $\widetilde{H}^{*}(X ; R)$ with their cup product

$$
a_{1} \cup \cdots \cup a_{c}=a_{1} \cdots a_{c} \neq 0
$$

In this note, we will concentrate on the two cases $V_{n, r}$ and $X_{n, r}$, respectively the real and real projective Stiefel manifolds (defined in the following sections). A short preliminary Section 2 gives a couple of results associated to the R-cup-length, which is simply written $\operatorname{cup}(X)$ when $R=\mathbb{Z}_{2}$, as will be the case starting from Section 3. In Section 3, an explicit formula is obtained for $\operatorname{cup}\left(V_{n, r}\right)$ for all n, r, and a few examples are given. Some purely number theoretical (and perhaps remarkable) identities arising from this formula are stated and proved.

In Section 4, a similar discussion is carried out to give a lower bound for $\operatorname{cup}\left(X_{n, r}\right)$, which is related by

[^0]a simple formula to $\operatorname{cup}\left(V_{n, r}\right)$. Proofs of all the results are given in Section 5.

The Froloff-Elsholz inequality (cf. [4]) $\operatorname{cat}(X) \geq$ $\operatorname{cup}(X)$ relates $\operatorname{cup}(X)$ to another important homotopy invariant, the Lyusternik-Shnirel'man category cat(X). The latter is defined to be the least integer k such that X can be covered by $k+1$ open subsets each of which is contractible in X, and was introduced in 1934 9. Thus our results have immediate corollaries for $\operatorname{cat}\left(V_{n, r}\right)$ (Section 3) and for $\operatorname{cat}\left(X_{n, r}\right)$ (Section 4). These numbers can be applied, for instance, as the lower bound for the number of critical points that a smooth real-valued function on $V_{n, r}$ or $X_{n, r}$ could have (4) (a topic that arises e.g. in calculus courses for smooth real-valued functions on \mathbb{R}^{n}). For a full treatment of these topics see the excellent monograph [3].

Applications of cup-length to symplectic embedding problems are given in [11], p. 161. Specifically, one has the inequality

$$
1+\operatorname{dim}(M) / 2 \leq \operatorname{cup}(M)+1 \leq \beta(M),
$$

where $\beta(M)$ is the minimal number of smoothly embedded balls needed to cover a closed symplectic manifold (M, ω).
Acknowledgment: The authors wish to thank the referee for very careful reading of several revisions of this paper, as well as suggestions and corrections which led to substantial improvements.

2 Preliminary remarks about R-cup-length

In this section, we first recall some material in Hatcher [6], Chapter 3. In particular, for a closed connected n dimensional manifold M, the notions of R-orientability and fundamental class $[M] \in H_{n}(M ; R)$ are defined there as well as the bilinear pairing

$$
T: H^{k}(M ; R) \otimes H^{n-k}(M ; R) \rightarrow R
$$

given by $T(\alpha \otimes \beta)=(\alpha \cup \beta)[M]$, where $\alpha \in H^{k}(M ; R)$, $\beta \in H^{n-k}(M ; R)$. Poincaré duality for the R-orientable
manifold is then expressed by [6], Proposition 3.38 : The cup-product pairing T is non-singular if R is a field, or if $R=\mathbb{Z}$ and torsion is factored out.

For applications to cup-length it will be convenient to take R to be a field, so we shall henceforth denote it F. It will also be convenient to use the natural isomorphism $H^{n}(M ; F) \approx \operatorname{hom}_{F}\left(H_{n}(M ; F), F\right) \quad([6]$, p. 198) induced by the natural surjection (6, p. 191)

$$
h: H^{n}(C ; G) \rightarrow \operatorname{hom}\left(H_{n}(C ; G)\right),
$$

and define the "top" cohomology class $\xi_{M} \in H^{n}(M ; F)$, dual to $[M]$, by $h\left(\xi_{M}\right)([M])=1$. We next give two corollaries of the above proposition, the first being a variant of Corollary 3.39 in [6 and the second an application to cup-length that will be useful in proving the main theorems of Sections 3, 4 .

Corollary 2.1. Let $0 \neq \alpha \in H^{k}(M ; F)$. Then there exists $\beta \in H^{n-k}(M ; F)$ such that $\alpha \cup \beta=\xi_{M}$.

Proof. Since $H^{k}(M ; F)$ is a vector space over F and $\alpha \neq 0$, there exists a homomorphism $\varphi: H^{k}(M ; F) \rightarrow$ F with $\varphi(\alpha)=1$. Given any such homomorphism φ, the fact that T is non-singular means by definition that $\varphi(x)=T(x \otimes \beta)$ for some $\beta \in H^{n-k}(M ; R)$. Then $(\alpha \cup \beta)[M]=T(\alpha \otimes \beta)=\varphi(\alpha)=1$ implies $\alpha \cup \beta=\xi_{M}$.
Lemma 2.2. If $\alpha \in H^{d}(M ; F)$ is a class of maximal cup-length, then $d=n$. In particular, if $F=\mathbb{Z}_{2}$, then $\alpha=\xi_{M}$.
Proof. If $d<n$, then Corollary 2.1 shows that α cannot have maximal cup-length.

We remark that while Poincaré duality is of course treated in many texts, it is not clear that its simple application to cup-length in Lemma 2.2 is explicitly stated in the literature. It is implicitly assumed in [7], Proof of Theorem 1.1. For a space X that is not a manifold, Lemma 2.2 does not hold, an elementary counterexample being $S^{m} \vee \mathbb{R} P^{n}$ with $m>n$.

3 Cup-length of the Stiefel manifolds

Consider the real Stiefel manifold $V_{n, r}$ of orthonormal r-frames in $\mathbb{R}^{n}, 1 \leq r \leq n-1$. It is well known to be a smooth path-connected manifold, indeed a homogeneous space of dimension $d=d_{n, r}=n r-\binom{r+1}{2}$. Its cohomology and the action of the Steenrod squares are well known and go back to Borel, [2], and SteenrodEpstein, [12]. For our purposes we can summarize the cohomology as the algebra over \mathbb{Z}_{2} with generators $x_{i} \in$ $H^{i}\left(V_{n, r}\right), n-r \leq i \leq n-1$ and the only non-trivial cup-products arising from $x_{i}^{2}=x_{2 i}, 2 i \leq n-1$. After a couple of numerical definitions we give an explicit
formula for the \mathbb{Z}_{2}-cup-length of $V_{n, r}$, which we shall write $\operatorname{cup}\left(V_{n, r}\right)$. First let

$$
\begin{equation*}
n-1=\sum_{j=1}^{\alpha(n-1)} 2^{a_{j}}, \quad a_{1}>a_{2}>\ldots>a_{\alpha(n-1)} \tag{1}
\end{equation*}
$$

be the binary expansion of $n-1$. Here $\alpha(n-1)$ denotes, as usual, the number of 1's in this binary expansion. Next, for $k \geq 2$, define

$$
\begin{equation*}
b_{k}=\max \left\{m: 2^{m} \leq \frac{n-1}{k-1}, k \geq 2\right\}=\left\lfloor\log _{2}\left(\frac{n-1}{k-1}\right)\right\rfloor . \tag{2}
\end{equation*}
$$

Using (11) and (2), we define

$$
\begin{equation*}
\ell(n, r)=n-1+\sum_{j=1}^{\alpha(n-1)} a_{j} \cdot 2^{a_{j}-1}-\sum_{k=2}^{n-r} 2^{b_{k}} . \tag{3}
\end{equation*}
$$

We now give three examples with $n=23$. Here $n-1=2^{4}+2^{2}+2^{1}$, so $a_{1}=4, a_{2}=2, a_{3}=1$, and one readily finds $b_{2}=4, b_{3}=3, b_{4}=b_{5}=b_{6}=2, b_{7}=$ $\ldots=b_{12}=1, b_{13}=0$. The computation is given for Example A, the others being similar.
Example A: $\ell(23,10)=22+4 \cdot 2^{3}+2 \cdot 2^{1}+1 \cdot 2^{0}-$ $2^{4}-2^{3}-3 \cdot 2^{2}-6 \cdot 2^{1}-1=10$.
Example B: $\ell(23,18)=27$.
Example C: $\ell(23,21)=43$.
We next define $\ell^{\prime}(n, r)$, starting with the preliminary definitions
$r_{0}=\left\lceil\frac{n-1}{2}\right\rceil, r_{1}=\left\lceil\frac{3(n-1)}{4}\right\rceil, r_{2}=\left\lceil\frac{7(n-1)}{8}\right\rceil, \ldots$.
Elementary calculations then show that
$r_{0}<r_{1}<r_{2}<\ldots<r_{m}=\left\lceil\frac{\left(2^{m+1}-1\right)(n-1)}{2^{m+1}}\right\rceil=n-1$.
For convenience, we also set $r_{-1}=0$.
As before, let $n \geq 2,1 \leq r \leq n-1$, the integers r_{i} be defined as in (4) above and $r_{q-1}<r \leq r_{q}$ (for a unique q). Then we can define

$$
\begin{equation*}
\ell^{\prime}(n, r)=2^{q} r-\sum_{i=1}^{q} 2^{i-1}\left\lceil\frac{\left(2^{i}-1\right)(n-1)}{2^{i}}\right\rceil . \tag{5}
\end{equation*}
$$

We shall also define
$\ell^{\prime \prime}(n, r)=n-1-(n-1-r) \cdot 2^{q}+\sum_{j=1}^{\alpha(n-1)} \min \left\{a_{j}, q\right\} \cdot 2^{a_{j}-1}$,
a definition which uses slightly less machinery than its predecessors.

Theorem 3.1. One has

$$
\operatorname{cup}\left(V_{n, r}\right)=\ell(n, r)=\ell^{\prime}(n, r)=\ell^{\prime \prime}(n, r) .
$$

Remark 3.2. In the stable range $2 r \leq n$, i.e. $q=0$, one has $\operatorname{cup}\left(V_{n, r}\right)=r$ (see also [10]).

The proof given later in Section 5 for the equality $\operatorname{cup}\left(V_{n, r}\right)=\ell(n, r)$ of Theorem 3.1 starts from $r=$ $n-1$ and uses downward induction in $H^{*}\left(V_{n, r}\right)$. It is possible to prove the equality $\operatorname{cup}\left(V_{n, r}\right)=\ell^{\prime}(n, r)$ starting from $r=1$ and using upward induction in $H^{*}\left(V_{n, r}\right)$, however the equality $\ell(n, r)=\ell^{\prime}(n, r)=$ $\ell^{\prime \prime}(n, r)$ is purely number theoretical and we therefore give a purely number theoretical proof of this in Section 5. To illustrate how disparate the two sums $\ell(n, r), \ell^{\prime}(n, r)$ seem, we go back to Example C above, of $V_{23,21}$. In Theorem 3.1, since the binary expansion $22=2^{4}+2^{2}+2^{1}$ determines the first summation, and $k=2$ in the second summation so we use $b_{2}=\left\lfloor\log _{2}(22 / 1)\right\rfloor=4$, whence

$$
\ell(23,21)=22+4 \cdot 2^{3}+2 \cdot 2^{1}+1 \cdot 2^{0}-2^{4}=43 .
$$

On the other hand, since $20=r_{2}<21=r_{3}$ implies $q=3$, this gives

$$
\begin{aligned}
\ell^{\prime}(23,21) & =8 \cdot 21-\sum_{i=1}^{3} 2^{i-1} \cdot\left\lceil\frac{\left(2^{i}-1\right) \cdot(22)}{2^{i}}\right\rceil \\
& =168-11-34-80=43 .
\end{aligned}
$$

Theorem 3.1 and the Froloff-Elsholz inequality give the following for the Lyusternik-Shnirel'man category.
Corollary 3.3. One has $\operatorname{cat}\left(V_{n, r}\right) \geq \ell(n, r)=\ell^{\prime}(n, r)=$ $\ell^{\prime \prime}(n, r)$.

We observe, that for $n \geq 2 r$, Nishimoto [10] proved that $\operatorname{cat}\left(V_{n, r}\right)=r$.

4 Cup-length of the projective Stiefel manifolds

In this section, we concentrate on the manifold $X_{n, r}$ $(r<n)$, the projective Stiefel manifold, which is obtained from the Stiefel manifold $V_{n, r}$ of orthornormal r-frames in \mathbb{R}^{n} as the quotient space, by identification of any frame $\left(v_{1}, \ldots, v_{r}\right)$ with the frame $\left(-v_{1}, \ldots,-v_{r}\right)$ ([5]).

Let $\xi_{n, r}$ be the real line bundle associated to the obvious double covering $V_{n, r} \rightarrow X_{n, r}$. By [5], for the \mathbb{Z}_{2}-cohomology ring of $X_{n, r}$, we have
$H^{*}\left(X_{n, r}\right)=\mathbb{Z}_{2}[y] /\left(y^{N}\right) \otimes V\left(y_{n-r}, \ldots, y_{N-2}, y_{N}, \ldots, y_{n-1}\right)$, where $y \in H^{1}\left(X_{n, r}\right)$ is the first Stiefel-Whitney class $w_{1}\left(\xi_{n, r}\right), y_{j} \in H^{j}\left(X_{n, r}\right)$,

$$
N=\min \left\{j ; j \geq n-r+1,\binom{n}{j} \equiv 1(\bmod 2)\right\}
$$

and $V\left(y_{n-r}, \ldots, y_{N-2}, y_{N}, \ldots, y_{n-1}\right)$ is the \mathbb{Z}_{2}-vector space, which has the monomials $\prod_{i=n-r}^{n-1} y_{i}{ }^{t_{i}}$, with $i \neq N-1$ and $t_{i} \in\{0,1\}$, as \mathbb{Z}_{2}-basis (N can be easily calculated for any $X_{n, r}$). The dimension of $X_{n, r}$ is also $d_{n, r}$ (defined in Section 3).

Recalling the definition (2) of b_{k}, we now have the following theorem.
Theorem 4.1. One has

$$
\begin{equation*}
\operatorname{cup}\left(X_{n, r}\right) \geq \mathcal{L}(n, r):=\operatorname{cup}\left(V_{n, r}\right)+N-1-2^{b_{N}} . \tag{7}
\end{equation*}
$$

Since $\operatorname{cup}\left(V_{n, r}\right)$ has already been explicitly calculated in Section 3, indeed via (3), (5), or (6), Theorem 4.1 gives an explicit lower bound for $\operatorname{cup}\left(X_{n, r}\right)$.

As an immediate corollary of Theorem 4.1 we have
Corollary 4.2. Let $X_{n, r}(1 \leq r<n)$ be the projective Stiefel manifold. Then

$$
\operatorname{cat}\left(X_{n, r}\right) \geq \operatorname{cup}\left(V_{n, r}\right)+N-1-2^{b_{N}} .
$$

It seems very likely that the stronger result $\operatorname{cup}\left(X_{n, r}\right)$ $=\mathcal{L}(n, r)$ is true, but to date neither a proof nor a counterexample (with the help of a computer program developed by the authors) has been found. It is hoped to address this question in a forthcoming note. The next proposition gives a few partial results where equality holds.

Proposition 4.3. The result $\operatorname{cup}\left(X_{n, r}\right)=\mathcal{L}(n, r)$ is true
(a) in the stable range (so here $\operatorname{cup}\left(X_{n, r}\right)=r+N-2$),
(b) if $n=2^{m}$ (so here $\operatorname{cup}\left(X_{n, r}\right)=\ell(n, r)+N-2=$ $\ell(n, r)+n-2)$,
(c) if $N=2$,
(d) $\operatorname{cup}\left(X_{2^{s}-1,2^{s-1}}\right)=2^{s}-2$.

5 Proofs of the main results

First, we give the proof of $\operatorname{cup}\left(V_{n, r}\right)=\ell(n, r)$ in Theorem 3.1. We prove this in four steps, using the notation $\nu_{2}(q)=p$ for the standard 2 -valuation of q, i.e. q is divisible by 2^{p} but not by 2^{p+1}. The top cohomology class, denoted ξ_{M} (where now $M=V_{n, r}$) in Section 2, will here be denoted simply by X. According to Lemma 2.2 the cup-length is realized by the class X, so one has to look at the relations in $H^{*}\left(V_{n, r}\right)$ to see how they can give a presentation that maximizes the cup-length of X.
(A) $\operatorname{cup}\left(V_{2^{m}, 2^{m}-1}\right)=m \cdot 2^{m-1}$. From Section 3, the top cohomology class of $V_{2^{m}, 2^{m}-1}$ equals $X:=$ $x_{1} \cdot x_{2} \cdots x_{2^{m}-1}$. This product has length $2^{m}-1$ but the cup-length is larger, since some of these classes are decomposable, e.g. (again using Section 3) $x_{2}=x_{1}^{2}, x_{4}=$ $x_{1}^{4}, x_{6}=x_{3}^{2}, x_{8}=x_{1}^{8}, \ldots$. A little careful counting shows that in $\left\{x_{1}, \ldots, x_{2^{m}-1}\right\}$, after this decomposition,
exactly 2^{m-1} have length 1 (i.e. x_{k} with $\nu_{2}(k)=0$), exactly 2^{m-2} have length $2\left(\nu_{2}(k)=1\right)$, etc. Also no further classes are decomposable. Thus the length after decomposition equals
$1 \cdot 2^{m-1}+2 \cdot 2^{m-2}+4 \cdot 2^{m-3}+\ldots+2^{m-1} \cdot 1=m \cdot 2^{m-1}$.
(B) $\operatorname{cup}\left(V_{2^{m}+1,2^{m}}\right)=2^{m}+m \cdot 2^{m-1}$. This is a corollary of (A), since the top class X now has one additional term $x_{2^{m}}=x_{1}^{2^{m}}$.
(C) Recalling (1), one now finds

$$
\operatorname{cup}\left(V_{n, n-1}\right)=n-1+\sum_{j=1}^{\alpha(n-1)} a_{j} \cdot 2^{a_{j}-1}
$$

To verify this, one simply writes

$$
\begin{aligned}
& X=\left(x_{1} \cdot x_{2} \cdots x_{2^{a_{1}}}\right) \cdot\left(x_{2^{a_{1}}+1} \cdots\right.\left.x_{2^{a_{1}}+2^{a_{2}}}\right) \cdot\left(x_{2^{a_{1}}+2^{a_{2}}+1}\right. \\
&\left.\cdots x_{2^{a_{1}}+2^{a_{2}}+2^{a_{3}}}\right) \cdots
\end{aligned}
$$

Since $a_{1}>a_{2}$, one has

$$
\nu_{2}(k)=\nu_{2}\left(k-2^{a_{1}}\right), 2^{a_{1}}+1 \leq k \leq 2^{a_{1}}+2^{a_{2}} .
$$

Thus, from (B), the first bracketed term in the above expression for X has cup-length $2^{a_{1}}+a_{1} \cdot 2^{a_{1}-1}$, the second bracketed term has cup-length $2^{a_{2}}+a_{2} \cdot 2^{a_{2}-1}$, etc. Adding these gives the assertion.
(D) We now complete the proof of Theorem 3.1 by downward induction on r. For $r=n-1$, Theorem 3.1 has no $2^{b_{k}}$ terms, so reduces to (C), giving the start for the induction. Suppose then it holds for $r=n-s, s \geq$ 1 , so we have $n-r=s$ and Theorem 3.1 reads

$$
\operatorname{cup}\left(V_{n, r}\right)=n-1+\sum_{j=1}^{\alpha(n-1)} a_{j} \cdot 2^{a_{j}-1}-\sum_{k=2}^{s} 2^{b_{k}} .
$$

Passing to $n-r=s+1$, the top class X loses x_{s} (length 1) and its cup-length is thereby shortened by the further changes x_{s}^{2} to $x_{2 s}, x_{s}^{4}$ to $x_{2 s}^{2}, \ldots, x_{s}^{2^{t}}$ to $x_{2 s}^{2 t-1}$, where t is the largest integer with $s \cdot 2^{t} \leq n-1$, or equivalently $2^{t} \leq \frac{n-1}{s}$. Then, by the definition (2) of b_{k}, we have $t=\bar{b}_{s+1}$. The net loss in cup-length is thus $1+\left(1+2+4+\ldots+2^{b_{s+1}-1}\right)=2^{b_{s+1}}$, thereby completing the inductive step.

Second, we give the proof of $\ell(n, r)=\ell^{\prime}(n, r)$ in Theorem 3.1. This proof proceeds by induction on r. For $r=1$, the first part of the proof shows that $\ell(n, 1)=\operatorname{cup}\left(V_{n, 1}\right)=\operatorname{cup}\left(S^{n-1}\right)=1$. Since $r_{0} \geq 1$ and $r_{-1}=0$, we see that $q=0$, so $\ell^{\prime}(n, 1)=1=\ell(n, 1)$.

For the inductive step, the induction hypothesis gives

$$
\begin{aligned}
\ell(n, r) & =\ell(n, r-1)+2^{b_{n-r+1}} \\
& =\ell^{\prime}(n, r-1)+2^{b_{n-r+1}} \\
& =\ell^{\prime}(n, r)-2^{q}+2^{b_{n-r+1}}
\end{aligned}
$$

so it suffices to show that $q=b_{n-r+1}$ for $1 \leq r \leq n-1$. Since $r_{q-1}<r \leq r_{q}$, we have

$$
\begin{aligned}
& r \geq r_{q-1}+1 \geq \frac{\left(2^{q}-1\right)(n-1)}{2^{q}}+1=n-\frac{n-1}{2^{q}} \\
& r \leq r_{q}<\frac{\left(2^{q+1}-1\right)(n-1)}{2^{q+1}}+1=n-\frac{n-1}{2^{q+1}}
\end{aligned}
$$

Rearranging terms yields

$$
(n-1) \cdot 2^{-(q+1)}<n-r \leq(n-1) \cdot 2^{-q},
$$

or equivalently

$$
2^{q} \leq \frac{n-1}{n-r}<2^{q+1}
$$

Finally, taking the base 2 logarithms, we obtain

$$
q \leq \log _{2}\left(\frac{n-1}{n-r}\right)<q+1
$$

and hence $q=\left\lfloor\log _{2}\left(\frac{n-1}{n-r}\right)\right\rfloor=b_{n-r+1}$.
Third, we prove that $\ell^{\prime}(n, r)=\ell^{\prime \prime}(n, r)$, thus completing the proof of Theorem 3.1. For simplicity of later notation, we write the binary representation of $n-1$ in an alternative way as
$n-1=\sum_{j=0}^{m} n_{j} 2^{j}, n_{m}=1, n_{j} \in\{0,1\}$ for $0 \leq j \leq m-1$.
This representation is related to (1) as follows:

$$
\begin{aligned}
a_{1} & =m, \\
a_{\alpha(n-1)} & =\min \left\{i \mid 0 \leq i \leq m, n_{i} \neq 0\right\}, \\
n_{j} & = \begin{cases}1 & \text { when } j \in\left\{a_{1}, a_{2}, \ldots, a_{\alpha(n-1)}\right\}, \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Fix $i \in\{1,2, \ldots, m+1\}$. Then

$$
\begin{aligned}
r_{i-1} & =\left\lceil\frac{\left(2^{i}-1\right)(n-1)}{2^{i}}\right\rceil \\
& =\left[n-1-\frac{n-1}{2^{i}}\right\rceil \\
& =n-1-\left\lfloor\frac{n-1}{2^{i}}\right\rfloor .
\end{aligned}
$$

To determine the floor function of $(n-1) / 2^{i}$, write

$$
\frac{n-1}{2^{i}}=\frac{1}{2^{i}} \sum_{j=0}^{i-1} n_{j} 2^{j}+\sum_{j=i}^{m} n_{j} 2^{j-i} .
$$

Now

$$
\frac{1}{2^{i}} \sum_{j=0}^{i-1} n_{j} 2^{j} \leq \frac{1}{2^{i}} \sum_{j=0}^{i-1} 2^{j}=\frac{2^{i}-1}{2^{i}}<1
$$

so

$$
\left\lfloor\frac{n-1}{2^{i}}\right\rfloor=\sum_{j=i}^{m} n_{j} 2^{j-i}
$$

It follows that

$$
\begin{aligned}
r_{i-1} 2^{i-1} & =\left(n-1-\sum_{j=i}^{m} n_{j} 2^{j-i}\right) 2^{i-1} \\
& =(n-1) 2^{i-1}-\sum_{j=i}^{m} n_{j} 2^{j-1}
\end{aligned}
$$

and hence

$$
\begin{aligned}
\ell^{\prime}(n, r) & =r 2^{q}-\sum_{i=1}^{q} r_{i-1} 2^{i-1} \\
& =r 2^{q}-(n-1) \sum_{i=1}^{q} 2^{i-1}+\sum_{i=1}^{q} \sum_{j=i}^{m} n_{j} 2^{j-1}
\end{aligned}
$$

Now

$$
\sum_{i=1}^{q} 2^{i-1}=\sum_{i=0}^{q-1} 2^{i}=2^{q}-1
$$

and

$$
\begin{aligned}
& \sum_{i=1}^{q} \sum_{j=i}^{m} n_{j} 2^{j-1} \\
& =\sum_{j=1}^{m} n_{j} 2^{j-1}+\sum_{j=2}^{m} n_{j} 2^{j-1}+\cdots+\sum_{j=q}^{m} n_{j} 2^{j-1} \\
& =n_{1} 2^{0}+2 n_{2} 2^{1}+\cdots+(q-1) n_{q-1} 2^{q-2}+q \sum_{j=q}^{m} n_{j} 2^{j-1} \\
& =\sum_{j=1}^{q-1} j n_{j} 2^{j-1}+\sum_{j=q}^{m} q n_{j} 2^{j-1} \\
& =\sum_{j=1}^{m} \min \{j, q\} n_{j} 2^{j-1}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \ell^{\prime}(n, r) \\
& =r 2^{q}-(n-1)\left(2^{q}-1\right)+\sum_{j=1}^{m} \min \{j, q\} n_{j} 2^{j-1} \\
& =(n-1)-(n-1-r) 2^{q}+\sum_{j=1}^{\alpha(n-1)} \min \left\{a_{j}, q\right\} 2^{a_{j}-1} \\
& =\ell^{\prime \prime}(n, r)
\end{aligned}
$$

Proof of Theorem 4.1.

For convenience, we write $H^{*}\left(X_{n, r}\right)=A \otimes V$, where all cohomology and tensor products are over $\mathbb{Z}_{2}, V=$ $V\left(y_{n-r}, \ldots, y_{N-2}, y_{N}, \ldots, y_{n-1}\right)$ (as in Section 4), and $A=\mathbb{Z}_{2}[y] /\left(y^{N}\right)$. We shall also write \mathcal{I}_{1} for the ideal in $H^{*}\left(X_{n, r}\right)$ generated by y, and similarly \mathcal{I}_{2} for the
ideal generated by y^{2}. Formulae for the Steenrod squaring operations $\mathrm{Sq}^{i}\left(y_{q}\right)$ will be needed, these are due to Gitler and Handel [5], Antoniano [1], and later again given (with a few misprints in [1] corrected) in [8]. We state them once again here in the slightly more convenient form $\mathrm{Sq}^{i}\left(y_{q}\right)$ (the older versions give $\mathrm{Sq}^{i}\left(y_{q-1}\right)$):

$$
\begin{aligned}
\mathrm{Sq}^{i}\left(y_{q}\right)= & \sum_{k=0}^{i} A_{k} y^{k} y_{q+i-k}+ \\
& \sum_{0 \leq k<j \leq i} B_{k, j} y^{q+1+k+i-N-j} y_{N+j-k-1}+\epsilon y^{q+i}
\end{aligned}
$$

where $\epsilon=\binom{n}{q+1+2^{t-1}-N}\binom{q+1+2^{t-1}-N}{i-1}$ if $t:=\nu_{2}(N) \geq 3$ and $\epsilon=0$ if $t<3$,

$$
A_{k}=A(q, i, k)=\binom{q-k}{q-i}\binom{n}{k}
$$

and

$$
\begin{aligned}
B_{k, j} & =B(q, i, k, j) \\
& =\binom{n}{q+1}\binom{N-1-k}{j-k}\binom{q+1-N}{i-j}\binom{n}{k}
\end{aligned}
$$

Just like the calculations of cup-length for the Stiefel manifolds had to take account of relations arising from cup-squares x_{q}^{2}, the calculations for the cup-length of the projective Stiefel manifolds must take account of the relations arising from y_{q}^{2} (or iterations $y_{q}^{2^{j}}$). These are now much more complicated due to the presence of the first Stiefel-Whitney class y. However, they can be handled using $y_{q}^{2}=S q^{q}\left(y_{q}\right)$. The AGH (Antoniano, Gitler, Handel) formulae become:

$$
\begin{align*}
\mathrm{Sq}^{q}\left(y_{q}\right) & =\sum_{k=0}^{q} A_{k} y^{k} y_{2 q-k}+ \\
& \sum_{0 \leq k<j \leq q} B_{k, j} y^{2 q+1+k-N-j} y_{N+j-k-1}+\epsilon y^{2 q} \tag{8}
\end{align*}
$$

where $\epsilon=\binom{n}{q+1+2^{t-1}-N}\binom{q+1+2^{t-1}-N}{q-1}$ if $t \geq 3$ and $\epsilon=0$ if $t<3$,

$$
\begin{equation*}
A_{k}=A(q, q, k)=\binom{q-k}{q-q}\binom{n}{k}=\binom{n}{k} \tag{9}
\end{equation*}
$$

and

$$
\begin{align*}
B_{k, j} & =B(q, q, k, j) \\
& =\binom{n}{q+1}\binom{N-1-k}{j-k}\binom{q+1-N}{q-j}\binom{n}{k} . \tag{10}
\end{align*}
$$

We shall carefully treat the presence of y by looking at three cases. In all cases, as usual, $n-r \leq q \leq$ $n-1, q \neq N-1$. The first case is when $2 q=N-1$,
the above formula would give $y_{q}^{2} \in \mathcal{I}_{1}$ (since there is no class y_{N-1}). The second case is when $2 q \geq n$, similarly, no class $y_{2 q}$ exists gives $y_{q}^{2} \in \mathcal{I}_{1}$. The third case is when $2 q \leq n-1$. The three cases will be first stated in the following Lemmas 5.1, 5.2, 5.3 and then proved.
Lemma 5.1. The case $2 q=N-1$ cannot occur.
Lemma 5.2. One has

$$
y_{q}^{2} \equiv \begin{cases}y_{2 q}\left(\bmod \mathcal{I}_{1}\right), & 2 q \leq n-1 \tag{11}\\ 0\left(\bmod \mathcal{I}_{1}\right), & 2 q \geq n .\end{cases}
$$

Lemma 5.3. If $2 q \geq n$, then $y_{q}^{2} \in \mathcal{I}_{2}$.
Proof of Lemma 5.1. Recall that

$$
N=\min \left\{j: j \geq n-r+1,\binom{n}{j} \equiv 1(\bmod 2)\right\} .
$$

If $N=n-r+1$, then $N-1 \leq q<2 q$ since $1 \leq n-r \leq q$. So suppose that $N>n-r+1$. Then $N-1 \geq n-r+1$, so $\binom{n}{N-1} \not \equiv 1(\bmod 2)$ by the minimality condition on N. We have

$$
\begin{aligned}
N\binom{n}{N} & =N \frac{n!}{N!(n-N)!}=\frac{n!}{(N-1)!(n-N)!} \\
& =\frac{n!}{(N-1)!} \frac{n-(N-1)}{(n-(N-1))!} \\
& =(n-N+1)\binom{n}{N-1} .
\end{aligned}
$$

Since $\binom{n}{N-1}$ is even, $N\binom{n}{N}$ must be even, and since $\binom{n}{N}$ is odd by the definition of N, this forces N to be even. It follows that $N-1 \neq 2 q$.

Proof of Lemma 5.2. First note that the term $\epsilon y^{2 q}$ in (8) equals $0\left(\bmod \mathcal{I}_{1}\right)$. Second observe that

$$
\begin{align*}
\sum_{k=0}^{q} A_{k} y^{k} y_{2 q-k} & \equiv A_{0} y_{2 q} \tag{12}\\
& \equiv y_{2 q} \equiv \begin{cases}y_{2 q}\left(\bmod \mathcal{I}_{1}\right), & 2 q \leq n-1 \\
0\left(\bmod \mathcal{I}_{1}\right), & 2 q \geq n,\end{cases}
\end{align*}
$$

where we have used (9) to evaluate A_{0} and are also using Lemma 5.1 by implicitly assuming that $y_{2 q}$ exists. Thus the proof of Lemma 5.2 will be completed by showing that in (8)

$$
\sum_{0 \leq k<j \leq q} B_{k, j} y^{2 q+1+k-N-j} y_{N+j-k-1} \equiv 0\left(\bmod \mathcal{I}_{1}\right) .
$$

To prove this claim, first recall that $q \neq N-1$ when $y_{q} \in H^{*}\left(X_{n, r}\right)$. Second, using (10) for $B_{k, j}$ together
with $j-k=2 q+1-N$ for any y^{0} terms in the second sum in (8), we find
$B_{k, j}=\binom{n}{q+1}\binom{N-1-k}{2 q+1-N}\binom{q+1-N}{N-(q+1)-k}\binom{n}{k}$.

Since $q+1 \neq N$ as noted above, either $q+1<N$ or $q+1>N$. In the former case, since also $n-r+$ $1 \leq q+1$, the definition of N implies that the first binomial coefficient in (13) equals 0 . In the latter case the third binomial coefficient equals 0 since $q+1-N>$ 0 whereas $N-(q+1)-k<0$ (recall that for integers $a>0, b<0$, one has $\left.\binom{a}{b}=0\right)$. The claim and thereby also Lemma 5.2 are thus proved.
Proof of Lemma 5.3. Since $2 q \geq n \geq N$, we have $y^{2 q}=$ 0 so the $\epsilon y^{2 q}$ term in (8) vanishes. Next, for

$$
\sum_{k=0}^{q} A_{k} y^{k} y_{2 q-k}
$$

in (8), the first term ($k=0$) vanishes since $2 q \geq n$ and there is no $y_{2 q}$ in the cohomology. Since $2 q-1 \geq$ $n-1$ the $y_{2 q-1}$ in the second term $(k=1)$ also vanishes unless $2 q-1=n-1$, i.e. $n=2 q$. But then $\binom{n}{1}=0$ (all modulo 2) and $A_{1}=0$. This proves that $\sum_{k=0}^{q} A_{k} y^{k} y_{2 q-k} \in \mathcal{I}_{2}$.

Next we claim the terms in $y^{0} y_{2 q}$ in

$$
\sum_{0 \leq k<j \leq q} B_{k, j} y^{2 q+1+k-N-j} y_{N+j-k-1}
$$

vanish. To prove this claim, first recall that $q \neq N-1$ here. Second, using (10) for $B_{k, j}$ together with $j-k=$ $2 q+1-N$ for y^{0} in (8), we find
$B_{k, j}=\binom{n}{q+1}\binom{N-1-k}{2 q+1-N}\binom{q+1-N}{N-(q+1)-k}\binom{n}{k}$.
Since $q+1 \neq N$ as noted above, either $q+1<N$ or $q+1>N$. In the former case, since also $n-r+$ $1 \leq q+1$, the definition of N implies that the first binomial coefficient in (11) equals 0 . In the latter case the third binomial coefficient equals 0 since $q+1-N>$ 0 whereas $N-(q+1)-k<0$ (recall that for integers $a>0, b<0$, one has $\left.\binom{a}{b}=0\right)$. The claim is thus proved.

Now we turn to the $y^{1} y_{2 q-1}$ term in the $B_{k, j}$ summation and show that it also vanishes. Since we now have $2 q+1-N+k-j=1$, then $2 q-N=j-k$ and also $q-j=N-q-k$. Substituting gives

$$
B_{k, j}=\binom{n}{q+1}\binom{N-1-k}{2 q-N}\binom{q+1-N}{N-q-k}\binom{n}{k} .
$$

Next note that the absence of y_{N-1} implies that $q+$ $1 \neq N$, and also (as above, in the y^{0} case) $n-r+$ $1 \leq q+1$. So either $n-r+1 \leq q+1<N$ or $q+1>N$. In the former case the definition of N implies $\binom{n}{q+1}=0$ whence $B_{k, j}=0$. In the latter case we have $\binom{q+1-N}{N-q-k}$ with $q+1-N>0$. We may therefore suppose $N-q-k \geq 0$ since otherwise this binomial coefficient vanishes. But then

$$
0<(q+1-N)+(N-q-k)=1-k
$$

and $k \geq 0$ gives $k=0$ as the only possibility, whence $q+$ $1-N=1, N-q-k=0$, i.e. $q=N$. Then, finally, the second binomial coefficient now equals $\binom{N-1-k}{2 q-N}=$ $\binom{N-1}{N}=0$. Thus $B_{k, j}=0$ and the sum in (8) reduces to $\sum_{k=0}^{q} A_{k} y^{k} y_{2 q-k} \in \mathcal{I}_{2}$.

Completing the proof of Theorem 4.1 is now easy. By Lemma 2.2 any cup-product of maximal cup-length must be in the top dimension $d_{n, r}$ and equal to

$$
\xi=y^{N-1} \cdot y_{n-r} \cdots y_{N-2} \cdot y_{N} \cdots y_{n-1}
$$

This gives an immediate lower bound

$$
\operatorname{cup}\left(X_{n, r}\right) \geq N+r-2
$$

However we can now use the AGH relations (8) to improve this lower bound by decomposing the y_{j}, where possible, and thus obtain a representation with greater cup-length for ξ. Since y^{N-1} is present in the product, it suffices to compute all cup-squares modulo \mathcal{I}_{1}. Lemma 5.2 then implies that the cup-squares are identical (apart from notation) in $H^{*}\left(X_{n, r}\right)$ modulo \mathcal{I}_{1}, and in $H^{*}\left(V_{n, r}\right)$. The difference in the cup-lengths therefore arises entirely from the first Stiefel-Whitney class $y \in H^{1}\left(X_{n, r}\right)$, and from the class $x_{N-1} \in H^{*}\left(V_{n, r}\right)$ which has no counterpart in $H^{*}\left(X_{n, r}\right)$. Recall from (2) that $(N-1) 2^{b_{N}} \leq n-1$ whereas $(N-1) 2^{b_{N}+1}>n-1$. Hence the class x_{N-1} and its square, fourth power,..., contribute $1+2+4+\ldots+2^{b_{N}}$ to the cup-length of $V_{n, r}$. For the cup-length of $X_{n, r}$ there is the additional contribution by y^{N-1} of length $N-1$, and the smaller contribution by $y_{2(N-1)}$ and its square, fourth power, ... , which will have length $1+2+4+\ldots+2^{b_{N}-1}$. Thus $\operatorname{cup}\left(X_{n, r}\right)$ gets an additional contribution of $N-1$ from y but a lesser contribution of $2^{b_{N}}$ due to the absence of y_{N-1}, this is exactly (7) so Theorem 4.1 is proved.

Remark 5.4. This proof actually shows that if $\eta=$ $y^{N-1} \cdot \gamma \in H^{d(n, r)}\left(X_{n, r}\right)$ is a cohomology class in the top dimension, and the AGH relations are applied inside γ, the maximal cup-length attained in this way is $\mathcal{L}(n, r)$.

Proof of Proposition 4.3. (a) Combining Remark 3.1 with Theorem 4.1 gives, in the stable range,

$$
\operatorname{cup}\left(X_{n, r}\right) \geq r+N-1-2^{b_{N}} .
$$

By definition $N \geq n-r+1$, and stability implies $r<\frac{n+1}{2}$. Thus $N>n-\frac{n+1}{2}+1=\frac{n+1}{2}$, from which $\frac{n-1}{N-1}<2$ follows. By definition then $b_{N}=0$, giving $\operatorname{cup}\left(X_{n, r}\right) \geq r+N-2$, and this cup-length is realized by

$$
\xi=y^{N-1} \cdot y_{n-r} \cdots y_{N-2} \cdot y_{N} \cdots y_{n-1}
$$

noting that in the stable range each y_{q} is indecomposable. To see that any use of the AGH formulae cannot increase the cup-length of ξ, first note that due to stability $2 q \geq n$, for all $q \geq n-r$. Thus Lemma 5.3 applies and for each q we have, for some $a_{j} \in \mathbb{Z}_{2}$,

$$
\begin{equation*}
y_{q}^{2}=a_{2} y^{2} y_{2 q-2}+a_{3} y^{3} y_{2 q-3}+\ldots+a_{N-1} y^{N-1} y_{2 q-N+1} . \tag{14}
\end{equation*}
$$

Relations (14) can only be applied by selecting one of the terms in the right hand sum of (14) for which $a_{j} \neq 0$, suppose for example $a_{2}=1$, and rewriting ξ as

$$
\begin{align*}
& \xi=y^{N-3} \cdot y^{2} \cdot y_{2 q-2} \cdot \eta \\
= & y^{N-3}\left[y_{q}^{2}+a_{3} y^{3} y_{2 q-3}+\ldots+a_{N-1} y^{N-1} y_{2 q-N+1}\right] \cdot \eta, \tag{15}
\end{align*}
$$

where η is identical to ξ with $y_{2 q-2}$ and y^{N-1} removed. Clearly $\operatorname{cup}(\eta)=\operatorname{cup}(\xi)-(N-1)-1=\operatorname{cup}(\xi)-N$. Thus, expanding (15) into a sum, the first term has cup-length $N-3+2+\operatorname{cup}(\eta)=\operatorname{cup}(\xi)-1$, while the following terms all contain y^{N} and vanish. A similar calculation for any other term with $a_{j}=1, j>2$ shows a decrease in cup-length even greater than 1.
(b) Here $n=2^{m}=N$, so $\xi\left(X_{n, r}\right)=y^{n-1}$. $y_{n-r} \cdots y_{n-2}$. The AGH formulae simplify to

$$
y_{q}^{2}= \begin{cases}y_{2 q}, & 2 q \leq n-1, \\ 0, & 2 q \geq n .\end{cases}
$$

This is because $A_{k}=\binom{n}{k}, 0 \leq k \leq q$, equals 1 only for $k=0$, while $\binom{n}{q+1}=0, n-r \leq q \leq n-2$, implies $B_{k, j}=0$.

Now $\xi\left(V_{n, r}\right)=x_{n-r} \cdots x_{n-2} \cdot x_{n-1} \quad$ agrees with $\xi\left(X_{n, r}\right)$ apart from the extra x_{n-1} in the former and extra y^{N-1} in the latter, furthermore the above calculation shows that the cup-squares are the same in both (since $n-1=2^{m}-1$ is odd x_{n-1} is indecomposable). It is easy to see that $b_{N}=0$ for $V_{n, r}$. This gives the cup-length of $X_{n, r}$ as equal to $\ell(n, r)+(N-1)-1=$ $\ell(n, r)+N-1-2^{b_{N}}=\mathcal{L}(n, r)$.
(c) With $N=2$ we immediately have $r=n-1$ and $n \equiv 2,3(\bmod 4)$, as well as $\xi=y \cdot y_{2} \cdot y_{3} \cdots y_{n-1}$, say $\xi=y \cdot \gamma$. Now Lemma 5.2 implies $y_{q}^{2}=y_{2 q}+$ $\alpha y y_{2 q-1}, 2 q \leq n-1, \alpha \in\{0,1\}$, while Lemma 5.3 implies $y_{q}^{2}=0,2 q \geq n$, since $\mathcal{I}_{2}=0$ here. Since the relation $y_{q}^{2}=y \cdot \alpha, \alpha \neq 0$, does not occur, any decompositions that lengthen ξ must take place in γ. Then, by Remark 5.4. $\operatorname{cup}\left(X_{n, n-1}\right)=\mathcal{L}(n, n-1)$.
(d) We have $N=2^{s-1}$. So the non-zero product in the top dimension is

$$
\xi=y^{2^{s-1}-1} y_{2^{s-1}} y_{2^{s-1}+1} \cdots y_{2^{s-1}+2^{s-1}-2} .
$$

As a consequence, $\operatorname{cup}\left(X_{2^{s}-1,2^{s-1}}\right)$ is at least $2^{s}-2$. But for each y_{q} in ξ we have $2 q \geq n=2^{s}-1$, so the proof that $\operatorname{cup}(\xi)$ cannot be increased from $2^{s}-2$ can now proceed exactly as in the stable case (a) above.

References

[1] E. Antoniano, La acción del álgebra de Steenrod sobre las variedades de Stiefel proyectivas, Bol. Soc. Mat. Mexicana (2) 22 (1977), 41-47.
[2] A. Borel, La cohomologie mod 2 de certains espaces homogènes, Comment. Math. Helvetici 15 (1953), 165-197.
[3] O. Cornea, G. Lupton, J. Oprea, D. Tanré, Lusternik-Schnirelmann Category, Mathematical Surveys and Monographs, Amer. Math. Soc., Providence R.I. (2003).
[4] S. Froloff, L. Elsholz, Limite inférieure pour le nombre des valeurs critiques d'une fonction, donneé sur une variété, Mat. Sbornik 42 (1935), 637-643.
[5] S. Gitler, D. Handel, The projective Stiefel manifolds - I, Topology 7 (1968), 39-46.
[6] A. Hatcher, Algebraic Topology, Cambridge Univ. Press, Cambridge (2002).
[7] J. Korbaš, The cup-length of the oriented Grassmannians vs. a new bound for zero-cobordant manifolds, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 69-81.
[8] J. Korbaš, P. Zvengrowski, The vector field problem for projective Stiefel manifolds, Bol. Soc. Mat. Mexicana (3) 15 (2009), 219-234.
[9] L. Lyusternik, L. Schnirel'man, Méthodes Topologiques dan le Problèmes Variationnels, Hermann, Paris (1934).
[10] T. Nishimoto, On the Lusternik-Schnirelmann category of Stiefel manifolds, Topology and its Appl. 154 (2007), 1956-1960.
[11] F. Schlenk, Symplectic embedding problems, new and old, Bull. (new series) Amer. Math. Soc. 55 (2) (2018), 139-182.
[12] N. Steenrod, D. Epstein, Cohomology Operations, Ann. Math. Studies 50, Princeton University Press, Princeton (1962).

Július Korbaš

Department of Algebra and Geometry,
Faculty of Mathematics, Physics, and Informatics,
Comenius University, Mlynská dolina,
SK-842 48 Bratislava 4, Slovakia.
E-mail address: korbas@fmph.uniba.sk
Renate Scheidler
Department of Mathematics and Statistics, The University of Calgary, Calgary, Alberta T2N 1N4, Canada.
E-mail address: rscheidl@ucalgary.ca
Peter Zvengrowski
Department of Mathematics and Statistics, The University of Calgary, Calgary, Alberta T2N 1N4, Canada.
E-mail address: zvengrow@gmail.com

[^0]: * This work was supported, in case of the first author, by the Slovak Research and Development Agency under the contract No. APVV-$16-0053$ and by the grant agency VEGA $1 / 0596 / 21$. He was partially affiliated with the Mathematical Institute, Slovak Academy of Sciences, Bratislava.
 \dagger The second author is supported by NSERC of Canada.

