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The Cup-Length of Stiefel and Projective

Stiefel Manifolds

Július Korbaš ∗, Renate Scheidler †, Peter Zvengrowski

Abstract

This paper discusses some generalities about cup-length of mani-
folds and then gives an explicit formula for the Z2-cup-length of the
Stiefel manifolds Vn,r, as well as strong lower bounds for the Z2-cup-
length of the projective Stiefel manifolds Xn,r, for all 1 ≤ r ≤ n−1.
A simple formula relating the two cases is given.

We also show the consequences for the Lyusternik-Shnirel’man
category, as well as a family of interesting number theoretical iden-
tities that arise from the Vn,r calculations.

MSC 2010. Primary: 57R19; Secondary: 55M30, 11B75,
05A19.

1 Introduction

Let R be a commutative ring with 1. We recall that
theR-cup-length cupR(X) of a compact path-connected
topological space X is the largest of all integers c such
that there exist reduced cohomology classes a1, . . . , ac ∈
H̃∗(X;R) with their cup product

a1 ∪ · · · ∪ ac = a1 · · · ac 6= 0.

In this note, we will concentrate on the two cases
Vn,r and Xn,r, respectively the real and real projective
Stiefel manifolds (defined in the following sections). A
short preliminary Section 2 gives a couple of results as-
sociated to the R-cup-length, which is simply written
cup(X) when R = Z2, as will be the case starting from
Section 3. In Section 3, an explicit formula is obtained
for cup(Vn,r) for all n, r, and a few examples are given.
Some purely number theoretical (and perhaps remark-
able) identities arising from this formula are stated and
proved.

In Section 4, a similar discussion is carried out to
give a lower bound for cup(Xn,r), which is related by
∗ This work was supported, in case of the first author, by the Slovak
Research and Development Agency under the contract No. APVV-
16-0053 and by the grant agency VEGA 1/0596/21. He was par-
tially affiliated with the Mathematical Institute, Slovak Academy
of Sciences, Bratislava.
† The second author is supported by NSERC of Canada.

a simple formula to cup(Vn,r). Proofs of all the results
are given in Section 5.

The Froloff-Elsholz inequality (cf. [4]) cat(X) ≥
cup(X) relates cup(X) to another important homotopy
invariant, the Lyusternik-Shnirel’man category cat(X).
The latter is defined to be the least integer k such that
X can be covered by k+1 open subsets each of which is
contractible in X, and was introduced in 1934 [9]. Thus
our results have immediate corollaries for cat(Vn,r)
(Section 3) and for cat(Xn,r) (Section 4). These num-
bers can be applied, for instance, as the lower bound for
the number of critical points that a smooth real-valued
function on Vn,r or Xn,r could have ([4]) (a topic that
arises e.g. in calculus courses for smooth real-valued
functions on Rn). For a full treatment of these topics
see the excellent monograph [3].

Applications of cup-length to symplectic embedding
problems are given in [11], p. 161. Specifically, one has
the inequality

1 + dim(M)/2 ≤ cup(M) + 1 ≤ β(M),

where β(M) is the minimal number of smoothly embed-
ded balls needed to cover a closed symplectic manifold
(M,ω).
Acknowledgment: The authors wish to thank the
referee for very careful reading of several revisions of
this paper, as well as suggestions and corrections which
led to substantial improvements.

2 Preliminary remarks about R-cup-length

In this section, we first recall some material in Hatcher
[6], Chapter 3. In particular, for a closed connected n-
dimensional manifold M , the notions of R-orientability
and fundamental class [M ] ∈ Hn(M ;R) are defined
there as well as the bilinear pairing

T : Hk(M ;R)⊗Hn−k(M ;R)→ R

given by T (α⊗β) = (α∪β)[M ], where α ∈ Hk(M ;R),
β ∈ Hn−k(M ;R). Poincaré duality for the R-orientable
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manifold is then expressed by [6], Proposition 3.38 :
The cup-product pairing T is non-singular if R is a
field, or if R = Z and torsion is factored out.

For applications to cup-length it will be convenient
to take R to be a field, so we shall henceforth denote it
F . It will also be convenient to use the natural isomor-
phism Hn(M ;F ) ≈ homF (Hn(M ;F ), F ) ([6], p. 198)
induced by the natural surjection ([6], p. 191)

h : Hn(C;G) � hom(Hn(C;G)),

and define the “top” cohomology class ξM ∈ Hn(M ;F ),
dual to [M ], by h(ξM )([M ]) = 1. We next give two
corollaries of the above proposition, the first being a
variant of Corollary 3.39 in [6] and the second an appli-
cation to cup-length that will be useful in proving the
main theorems of Sections 3, 4.
Corollary 2.1. Let 0 6= α ∈ Hk(M ;F ). Then there
exists β ∈ Hn−k(M ;F ) such that α ∪ β = ξM .

Proof. Since Hk(M ;F ) is a vector space over F and
α 6= 0, there exists a homomorphism ϕ : Hk(M ;F )→
F with ϕ(α) = 1. Given any such homomorphism
ϕ, the fact that T is non-singular means by definition
that ϕ(x) = T (x ⊗ β) for some β ∈ Hn−k(M ;R).
Then (α ∪ β)[M ] = T (α ⊗ β) = ϕ(α) = 1 implies
α ∪ β = ξM .
Lemma 2.2. If α ∈ Hd(M ;F ) is a class of maximal
cup-length, then d = n. In particular, if F = Z2, then
α = ξM .

Proof. If d < n, then Corollary 2.1 shows that α cannot
have maximal cup-length.

We remark that while Poincaré duality is of course
treated in many texts, it is not clear that its simple ap-
plication to cup-length in Lemma 2.2 is explicitly stated
in the literature. It is implicitly assumed in [7], Proof
of Theorem 1.1. For a space X that is not a manifold,
Lemma 2.2 does not hold, an elementary counterexam-
ple being Sm ∨ RP n with m > n.

3 Cup-length of the Stiefel manifolds

Consider the real Stiefel manifold Vn,r of orthonormal
r-frames in Rn, 1 ≤ r ≤ n − 1. It is well known to
be a smooth path-connected manifold, indeed a homo-

geneous space of dimension d = dn,r = nr −
(
r + 1

2

)
.

Its cohomology and the action of the Steenrod squares
are well known and go back to Borel, [2], and Steenrod-
Epstein, [12]. For our purposes we can summarize the
cohomology as the algebra over Z2 with generators xi ∈
H i(Vn,r), n − r ≤ i ≤ n − 1 and the only non-trivial
cup-products arising from x2

i = x2i, 2i ≤ n − 1. Af-
ter a couple of numerical definitions we give an explicit

formula for the Z2-cup-length of Vn,r, which we shall
write cup(Vn,r). First let

n− 1 =
α(n−1)∑
j=1

2aj , a1 > a2 > . . . > aα(n−1) (1)

be the binary expansion of n−1. Here α(n−1) denotes,
as usual, the number of 1’s in this binary expansion.
Next, for k ≥ 2, define

bk = max{m : 2m ≤ n− 1
k − 1 , k ≥ 2} =

⌊
log2(n− 1

k − 1)
⌋
.

(2)
Using (1) and (2), we define

`(n, r) = n− 1 +
α(n−1)∑
j=1

aj · 2aj−1 −
n−r∑
k=2

2bk . (3)

We now give three examples with n = 23. Here
n − 1 = 24 + 22 + 21, so a1 = 4, a2 = 2, a3 = 1, and
one readily finds b2 = 4, b3 = 3, b4 = b5 = b6 = 2, b7 =
. . . = b12 = 1, b13 = 0. The computation is given for
Example A, the others being similar.
Example A: `(23, 10) = 22 + 4 · 23 + 2 · 21 + 1 · 20 −
24 − 23 − 3 · 22 − 6 · 21 − 1 = 10.
Example B: `(23, 18) = 27.
Example C: `(23, 21) = 43.

We next define `′(n, r), starting with the prelimi-
nary definitions

m = blog2(n− 1)c, and

r0 =
⌈
n− 1

2

⌉
, r1 =

⌈
3(n− 1)

4

⌉
, r2 =

⌈
7(n− 1)

8

⌉
, . . . .

(4)
Elementary calculations then show that

r0 < r1 < r2 < . . . < rm =
⌈

(2m+1 − 1)(n− 1)
2m+1

⌉
= n−1.

For convenience, we also set r−1 = 0.
As before, let n ≥ 2, 1 ≤ r ≤ n − 1, the integers

ri be defined as in (4) above and rq−1 < r ≤ rq (for a
unique q). Then we can define

`′(n, r) = 2qr −
q∑
i=1

2i−1
⌈

(2i − 1)(n− 1)
2i

⌉
. (5)

We shall also define

`′′(n, r) = n−1−(n−1−r)·2q+
α(n−1)∑
j=1

min{aj , q}·2aj−1 ,

(6)
a definition which uses slightly less machinery than its
predecessors.
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Theorem 3.1. One has

cup(Vn,r) = `(n, r) = `′(n, r) = `′′(n, r).

Remark 3.2. In the stable range 2r ≤ n, i.e. q = 0,
one has cup(Vn,r) = r (see also [10]).

The proof given later in Section 5 for the equality
cup(Vn,r) = `(n, r) of Theorem 3.1 starts from r =
n − 1 and uses downward induction in H∗(Vn,r). It
is possible to prove the equality cup(Vn,r) = `′(n, r)
starting from r = 1 and using upward induction in
H∗(Vn,r), however the equality `(n, r) = `′(n, r) =
`′′(n, r) is purely number theoretical and we there-
fore give a purely number theoretical proof of this in
Section 5. To illustrate how disparate the two sums
`(n, r), `′(n, r) seem, we go back to Example C above,
of V23,21. In Theorem 3.1, since the binary expan-
sion 22 = 24 + 22 + 21 determines the first summa-
tion, and k = 2 in the second summation so we use
b2 = blog2(22/1)c = 4, whence

`(23, 21) = 22 + 4 · 23 + 2 · 21 + 1 · 20 − 24 = 43.

On the other hand, since 20 = r2 < 21 = r3 implies
q = 3, this gives

`′(23, 21) = 8 · 21−
3∑
i=1

2i−1 ·
⌈

(2i − 1) · (22)
2i

⌉
= 168− 11− 34− 80 = 43.

Theorem 3.1 and the Froloff-Elsholz inequality give
the following for the Lyusternik-Shnirel’man category.
Corollary 3.3. One has cat(Vn,r) ≥ `(n, r) = `′(n, r) =
`′′(n, r).

We observe, that for n ≥ 2r, Nishimoto [10] proved
that cat(Vn,r) = r.

4 Cup-length of the projective Stiefel manifolds

In this section, we concentrate on the manifold Xn,r

(r < n), the projective Stiefel manifold, which is ob-
tained from the Stiefel manifold Vn,r of orthornormal
r-frames in Rn as the quotient space, by identification
of any frame (v1, . . . , vr) with the frame (−v1, . . . ,−vr)
([5]).

Let ξn,r be the real line bundle associated to the
obvious double covering Vn,r → Xn,r. By [5], for the
Z2-cohomology ring of Xn,r, we have

H∗(Xn,r) = Z2[y]/(yN )⊗V (yn−r, ..., yN−2, yN , ..., yn−1),

where y ∈ H1(Xn,r) is the first Stiefel-Whitney class
w1(ξn,r), yj ∈ Hj(Xn,r),

N = min{j; j ≥ n− r + 1,
(
n

j

)
≡ 1(mod 2)}

and V (yn−r, ..., yN−2, yN , ..., yn−1) is the Z2-vector space,
which has the monomials ∏n−1

i=n−r yi
ti , with i 6= N − 1

and ti ∈ {0, 1}, as Z2-basis (N can be easily calculated
for any Xn,r). The dimension of Xn,r is also dn,r (de-
fined in Section 3).

Recalling the definition (2) of bk, we now have the
following theorem.
Theorem 4.1. One has

cup(Xn,r) ≥ L(n, r) := cup(Vn,r) +N − 1− 2bN . (7)

Since cup(Vn,r) has already been explicitly calcu-
lated in Section 3, indeed via (3), (5), or (6), Theorem
4.1 gives an explicit lower bound for cup(Xn,r).

As an immediate corollary of Theorem 4.1 we have
Corollary 4.2. Let Xn,r (1 ≤ r < n) be the projective
Stiefel manifold. Then

cat(Xn,r) ≥ cup(Vn,r) +N − 1− 2bN .

It seems very likely that the stronger result cup(Xn,r)
= L(n, r) is true, but to date neither a proof nor a coun-
terexample (with the help of a computer program de-
veloped by the authors) has been found. It is hoped to
address this question in a forthcoming note. The next
proposition gives a few partial results where equality
holds.
Proposition 4.3. The result cup(Xn,r) = L(n, r) is
true
(a) in the stable range (so here cup(Xn,r) = r+N−2),
(b) if n = 2m (so here cup(Xn,r) = `(n, r) +N − 2 =

`(n, r) + n− 2),
(c) if N = 2,
(d) cup(X2s−1,2s−1) = 2s − 2.

5 Proofs of the main results

First, we give the proof of cup(Vn,r) = `(n, r) in Theo-
rem 3.1. We prove this in four steps, using the notation
ν2(q) = p for the standard 2-valuation of q, i.e. q is di-
visible by 2p but not by 2p+1. The top cohomology
class, denoted ξM (where now M = Vn,r) in Section 2,
will here be denoted simply byX. According to Lemma
2.2, the cup-length is realized by the class X, so one has
to look at the relations in H∗(Vn,r) to see how they can
give a presentation that maximizes the cup-length of
X.

(A) cup(V2m,2m−1) = m · 2m−1. From Section
3, the top cohomology class of V2m,2m−1 equals X :=
x1 ·x2 · · · x2m−1. This product has length 2m−1 but the
cup-length is larger, since some of these classes are de-
composable, e.g. (again using Section 3) x2 = x2

1, x4 =
x4

1, x6 = x2
3, x8 = x8

1, . . .. A little careful counting
shows that in {x1, ..., x2m−1}, after this decomposition,
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exactly 2m−1 have length 1 (i.e. xk with ν2(k) = 0 ),
exactly 2m−2 have length 2 (ν2(k) = 1), etc. Also no
further classes are decomposable. Thus the length after
decomposition equals

1 ·2m−1 +2 ·2m−2 +4 ·2m−3 + . . . +2m−1 ·1 = m ·2m−1 .

(B) cup(V2m+1,2m) = 2m + m · 2m−1. This is a
corollary of (A), since the top class X now has one
additional term x2m = x2m

1 .
(C) Recalling (1), one now finds

cup(Vn,n−1) = n− 1 +
α(n−1)∑
j=1

aj · 2aj−1.

To verify this, one simply writes

X = (x1 ·x2 · · · x2a1 ) ·(x2a1 +1 · · · x2a1 +2a2 ) ·(x2a1 +2a2 +1

· · · x2a1 +2a2 +2a3 ) · · · .

Since a1 > a2, one has

ν2(k) = ν2(k − 2a1), 2a1 + 1 ≤ k ≤ 2a1 + 2a2 .

Thus, from (B), the first bracketed term in the above
expression for X has cup-length 2a1 + a1 · 2a1−1, the
second bracketed term has cup-length 2a2 + a2 · 2a2−1,
etc. Adding these gives the assertion.

(D) We now complete the proof of Theorem 3.1 by
downward induction on r. For r = n− 1, Theorem 3.1
has no 2bk terms, so reduces to (C), giving the start for
the induction. Suppose then it holds for r = n−s, s ≥
1, so we have n− r = s and Theorem 3.1 reads

cup(Vn,r) = n− 1 +
α(n−1)∑
j=1

aj · 2aj−1 −
s∑

k=2
2bk .

Passing to n − r = s + 1, the top class X loses xs
(length 1) and its cup-length is thereby shortened by
the further changes x2

s to x2s, x4
s to x2

2s, . . . , x2t

s to
x2t−1

2s , where t is the largest integer with s · 2t ≤ n− 1,
or equivalently 2t ≤ n−1

s . Then, by the definition (2)
of bk, we have t = bs+1. The net loss in cup-length is
thus 1 + (1 + 2 + 4 + . . . + 2bs+1−1) = 2bs+1 , thereby
completing the inductive step.

Second, we give the proof of `(n, r) = `′(n, r) in
Theorem 3.1. This proof proceeds by induction on
r. For r = 1, the first part of the proof shows that
`(n, 1) = cup(Vn,1) = cup(Sn−1) = 1. Since r0 ≥ 1 and
r−1 = 0, we see that q = 0, so `′(n, 1) = 1 = `(n, 1).

For the inductive step, the induction hypothesis gives

`(n, r) = `(n, r − 1) + 2bn−r+1

= `′(n, r − 1) + 2bn−r+1

= `′(n, r)− 2q + 2bn−r+1 ,

so it suffices to show that q = bn−r+1 for 1 ≤ r ≤ n−1.
Since rq−1 < r ≤ rq, we have

r ≥ rq−1 + 1 ≥ (2q − 1)(n− 1)
2q + 1 = n− n− 1

2q ,

r ≤ rq <
(2q+1 − 1)(n− 1)

2q+1 + 1 = n− n− 1
2q+1 .

Rearranging terms yields

(n− 1) · 2−(q+1) < n− r ≤ (n− 1) · 2−q,

or equivalently

2q ≤ n− 1
n− r

< 2q+1 .

Finally, taking the base 2 logarithms, we obtain

q ≤ log2(n− 1
n− r

) < q + 1 ,

and hence q =
⌊
log2(n−1

n−r )
⌋

= bn−r+1.

Third, we prove that `′(n, r) = `′′(n, r), thus com-
pleting the proof of Theorem 3.1. For simplicity of later
notation, we write the binary representation of n−1 in
an alternative way as

n−1 =
m∑
j=0

nj2j , nm = 1, nj ∈ {0, 1} for 0 ≤ j ≤ m−1.

This representation is related to (1) as follows:

a1 = m,

aα(n−1) = min{i | 0 ≤ i ≤ m, ni 6= 0},

nj =
{

1 when j ∈ {a1, a2, . . . , aα(n−1)},
0 otherwise.

Fix i ∈ {1, 2, . . . ,m+ 1}. Then

ri−1 =
⌈

(2i − 1)(n− 1)
2i

⌉

=
⌈
n− 1− n− 1

2i
⌉

= n− 1−
⌊
n− 1

2i
⌋
.

To determine the floor function of (n− 1)/2i, write

n− 1
2i = 1

2i
i−1∑
j=0

nj2j +
m∑
j=i

nj2j−i.

Now

1
2i

i−1∑
j=0

nj2j ≤
1
2i

i−1∑
j=0

2j = 2i − 1
2i < 1 ,



5 Proofs of the main results 31

so ⌊
n− 1

2i
⌋

=
m∑
j=i

nj2j−i .

It follows that

ri−12i−1 = (n− 1−
m∑
j=i

nj2j−i)2i−1

= (n− 1)2i−1 −
m∑
j=i

nj2j−1,

and hence

`′(n, r) = r2q −
q∑
i=1

ri−12i−1

= r2q − (n− 1)
q∑
i=1

2i−1 +
q∑
i=1

m∑
j=i

nj2j−1.

Now
q∑
i=1

2i−1 =
q−1∑
i=0

2i = 2q − 1

and
q∑
i=1

m∑
j=i

nj2j−1

=
m∑
j=1

nj2j−1 +
m∑
j=2

nj2j−1 + · · ·+
m∑
j=q

nj2j−1

= n120 + 2n221 + · · ·+ (q − 1)nq−12q−2 + q
m∑
j=q

nj2j−1

=
q−1∑
j=1

jnj2j−1 +
m∑
j=q

qnj2j−1

=
m∑
j=1

min{j, q}nj2j−1.

Thus,

`′(n, r)

= r2q − (n− 1)(2q − 1) +
m∑
j=1

min{j, q}nj2j−1

= (n− 1)− (n− 1− r)2q +
α(n−1)∑
j=1

min{aj , q}2aj−1

= `′′(n, r).

Proof of Theorem 4.1.
For convenience, we write H∗(Xn,r) = A ⊗ V , where
all cohomology and tensor products are over Z2, V =
V (yn−r, . . . , yN−2, yN , . . . , yn−1) (as in Section 4), and
A = Z2[y]/(yN ). We shall also write I1 for the ideal
in H∗(Xn,r) generated by y, and similarly I2 for the

ideal generated by y2. Formulae for the Steenrod squar-
ing operations Sqi(yq) will be needed, these are due to
Gitler and Handel [5], Antoniano [1], and later again
given (with a few misprints in [1] corrected) in [8]. We
state them once again here in the slightly more conve-
nient form Sqi(yq) (the older versions give Sqi(yq−1)):

Sqi(yq) =
i∑

k=0
Aky

kyq+i−k+∑
0≤k<j≤i

Bk,jy
q+1+k+i−N−jyN+j−k−1 + εyq+i,

where ε =
( n
q+1+2t−1−N

)(q+1+2t−1−N
i−1

)
if t := ν2(N) ≥ 3

and ε = 0 if t < 3,

Ak = A(q, i, k) =
(
q − k
q − i

)(
n

k

)

and

Bk,j = B(q, i, k, j)

=
(

n

q + 1

)(
N − 1− k
j − k

)(
q + 1−N
i− j

)(
n

k

)
.

Just like the calculations of cup-length for the Stiefel
manifolds had to take account of relations arising from
cup-squares x2

q , the calculations for the cup-length
of the projective Stiefel manifolds must take account of
the relations arising from y2

q (or iterations y2j

q ). These
are now much more complicated due to the presence of
the first Stiefel-Whitney class y. However, they can be
handled using y2

q = Sqq(yq). The AGH (Antoniano,
Gitler, Handel) formulae become:

Sqq(yq) =
q∑

k=0
Aky

ky2q−k+∑
0≤k<j≤q

Bk,jy
2q+1+k−N−jyN+j−k−1 + εy2q, (8)

where ε =
(

n

q + 1 + 2t−1 −N

)(
q + 1 + 2t−1 −N

q − 1

)
if

t ≥ 3 and ε = 0 if t < 3,

Ak = A(q, q, k) =
(
q − k
q − q

)(
n

k

)
=
(
n

k

)
(9)

and

Bk,j = B(q, q, k, j)

=
(

n

q + 1

)(
N − 1− k
j − k

)(
q + 1−N
q − j

)(
n

k

)
. (10)

We shall carefully treat the presence of y by looking
at three cases. In all cases, as usual, n − r ≤ q ≤
n− 1, q 6= N − 1. The first case is when 2q = N − 1,
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the above formula would give y2
q ∈ I1 (since there is no

class yN−1). The second case is when 2q ≥ n, similarly,
no class y2q exists gives y2

q ∈ I1. The third case is when
2q ≤ n − 1. The three cases will be first stated in the
following Lemmas 5.1, 5.2, 5.3 and then proved.
Lemma 5.1. The case 2q = N − 1 cannot occur.
Lemma 5.2. One has

y2
q ≡

{
y2q (mod I1), 2q ≤ n− 1
0 (mod I1), 2q ≥ n .

(11)

Lemma 5.3. If 2q ≥ n, then y2
q ∈ I2.

Proof of Lemma 5.1. Recall that

N = min{j : j ≥ n− r + 1,
(
n

j

)
≡ 1 (mod 2)}.

IfN = n−r+1, thenN−1 ≤ q < 2q since 1 ≤ n−r ≤ q.
So suppose that N > n−r+1. Then N−1 ≥ n−r+1,
so
( n
N−1

)
6≡ 1 (mod 2) by the minimality condition on

N . We have

N

(
n

N

)
= N

n!
N !(n−N)! = n!

(N − 1)!(n−N)!

= n!
(N − 1)!

n− (N − 1)
(n− (N − 1))!

= (n−N + 1)
(

n

N − 1

)
.

Since
( n
N−1

)
is even, N

(n
N

)
must be even, and since

(n
N

)
is odd by the definition of N , this forces N to be even.
It follows that N − 1 6= 2q.

Proof of Lemma 5.2. First note that the term εy2q in
(8) equals 0 (mod I1). Second observe that
q∑

k=0
Aky

ky2q−k ≡ A0y2q (12)

≡ y2q ≡
{
y2q (mod I1), 2q ≤ n− 1
0 (mod I1), 2q ≥ n ,

where we have used (9) to evaluate A0 and are also
using Lemma 5.1 by implicitly assuming that y2q ex-
ists. Thus the proof of Lemma 5.2 will be completed
by showing that in (8)∑

0≤k<j≤q
Bk,jy

2q+1+k−N−jyN+j−k−1 ≡ 0 (mod I1) .

To prove this claim, first recall that q 6= N − 1 when
yq ∈ H∗(Xn,r). Second, using (10) for Bk,j together

with j−k = 2q+ 1−N for any y0 terms in the second
sum in (8), we find

Bk,j =
(

n

q + 1

)(
N − 1− k
2q + 1−N

)(
q + 1−N

N − (q + 1)− k

)(
n

k

)
.

(13)

Since q + 1 6= N as noted above, either q + 1 < N or
q + 1 > N . In the former case, since also n − r +
1 ≤ q + 1, the definition of N implies that the first
binomial coefficient in (13) equals 0. In the latter case
the third binomial coefficient equals 0 since q+1−N >
0 whereas N − (q+ 1)− k < 0 (recall that for integers

a > 0, b < 0, one has
(
a

b

)
= 0 ). The claim and

thereby also Lemma 5.2 are thus proved.
Proof of Lemma 5.3. Since 2q ≥ n ≥ N , we have y2q =
0 so the εy2q term in (8) vanishes. Next, for

q∑
k=0

Aky
ky2q−k

in (8), the first term (k = 0) vanishes since 2q ≥ n
and there is no y2q in the cohomology. Since 2q − 1 ≥
n − 1 the y2q−1 in the second term (k = 1) also van-
ishes unless 2q − 1 = n − 1, i.e. n = 2q. But then(
n

1

)
= 0 (all modulo 2) and A1 = 0. This proves that∑q

k=0 Aky
ky2q−k ∈ I2.

Next we claim the terms in y0y2q in∑
0≤k<j≤q

Bk,jy
2q+1+k−N−jyN+j−k−1

vanish. To prove this claim, first recall that q 6= N − 1
here. Second, using (10) for Bk,j together with j−k =
2q + 1−N for y0 in (8), we find

Bk,j =
(

n

q + 1

)(
N − 1− k
2q + 1−N

)(
q + 1−N

N − (q + 1)− k

)(
n

k

)
.

Since q + 1 6= N as noted above, either q + 1 < N or
q + 1 > N . In the former case, since also n − r +
1 ≤ q + 1, the definition of N implies that the first
binomial coefficient in (11) equals 0. In the latter case
the third binomial coefficient equals 0 since q+1−N >
0 whereas N − (q+ 1)− k < 0 (recall that for integers

a > 0, b < 0, one has
(
a

b

)
= 0 ). The claim is thus

proved.
Now we turn to the y1y2q−1 term in the Bk,j sum-

mation and show that it also vanishes. Since we now
have 2q+ 1−N + k− j = 1, then 2q−N = j− k and
also q − j = N − q − k. Substituting gives

Bk,j =
(

n

q + 1

)(
N − 1− k

2q −N

)(
q + 1−N
N − q − k

)(
n

k

)
.
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Next note that the absence of yN−1 implies that q +
1 6= N , and also (as above, in the y0 case) n − r +
1 ≤ q + 1. So either n − r + 1 ≤ q + 1 < N or
q + 1 > N . In the former case the definition of N

implies
(

n

q + 1

)
= 0 whence Bk,j = 0. In the latter

case we have
(
q + 1−N
N − q − k

)
with q + 1−N > 0. We

may therefore suppose N − q − k ≥ 0 since otherwise
this binomial coefficient vanishes. But then

0 < (q + 1−N) + (N − q − k) = 1− k

and k ≥ 0 gives k = 0 as the only possibility, whence q+
1−N = 1, N − q−k = 0, i.e. q = N . Then, finally, the

second binomial coefficient now equals
(
N − 1− k

2q −N

)
=(

N − 1
N

)
= 0. Thus Bk,j = 0 and the sum in (8)

reduces to ∑q
k=0 Aky

ky2q−k ∈ I2.

Completing the proof of Theorem 4.1 is now easy.
By Lemma 2.2 any cup-product of maximal cup-length
must be in the top dimension dn,r and equal to

ξ = yN−1 · yn−r · · · yN−2 · yN · · · yn−1 .

This gives an immediate lower bound

cup(Xn,r) ≥ N + r − 2.

However we can now use the AGH relations (8) to im-
prove this lower bound by decomposing the yj , where
possible, and thus obtain a representation with greater
cup-length for ξ. Since yN−1 is present in the prod-
uct, it suffices to compute all cup-squares modulo I1.
Lemma 5.2 then implies that the cup-squares are identi-
cal (apart from notation) in H∗(Xn,r) modulo I1, and
in H∗(Vn,r). The difference in the cup-lengths there-
fore arises entirely from the first Stiefel-Whitney class
y ∈ H1(Xn,r), and from the class xN−1 ∈ H∗(Vn,r)
which has no counterpart in H∗(Xn,r). Recall from (2)
that (N−1)2bN ≤ n−1 whereas (N−1)2bN +1 > n−1.
Hence the class xN−1 and its square, fourth power,...,
contribute 1 + 2 + 4 + . . . + 2bN to the cup-length of
Vn,r. For the cup-length of Xn,r there is the additional
contribution by yN−1 of length N − 1, and the smaller
contribution by y2(N−1) and its square, fourth power,
... , which will have length 1+2+4+ . . .+2bN−1. Thus
cup(Xn,r) gets an additional contribution of N−1 from
y but a lesser contribution of 2bN due to the absence of
yN−1, this is exactly (7) so Theorem 4.1 is proved.
Remark 5.4. This proof actually shows that if η =
yN−1 ·γ ∈ Hd(n,r)(Xn,r) is a cohomology class in the top
dimension, and the AGH relations are applied inside γ,
the maximal cup-length attained in this way is L(n, r).

Proof of Proposition 4.3. (a) Combining Remark 3.1
with Theorem 4.1 gives, in the stable range,

cup(Xn,r) ≥ r +N − 1− 2bN .

By definition N ≥ n − r + 1, and stability implies
r <

n+ 1
2 . Thus N > n− n+ 1

2 + 1 = n+ 1
2 , from

which n− 1
N − 1 < 2 follows. By definition then bN = 0,

giving cup(Xn,r) ≥ r + N − 2, and this cup-length is
realized by

ξ = yN−1 · yn−r · · · yN−2 · yN · · · yn−1,

noting that in the stable range each yq is indecompos-
able. To see that any use of the AGH formulae cannot
increase the cup-length of ξ, first note that due to sta-
bility 2q ≥ n, for all q ≥ n − r. Thus Lemma 5.3
applies and for each q we have, for some aj ∈ Z2,

y2
q = a2y

2y2q−2 + a3y
3y2q−3 + . . .+ aN−1y

N−1y2q−N+1.
(14)

Relations (14) can only be applied by selecting one
of the terms in the right hand sum of (14) for which
aj 6= 0, suppose for example a2 = 1, and rewriting ξ as

ξ = yN−3 · y2 · y2q−2 · η
= yN−3[y2

q +a3y
3y2q−3 + . . .+aN−1y

N−1y2q−N+1] · η,
(15)

where η is identical to ξ with y2q−2 and yN−1 removed.
Clearly cup(η) = cup(ξ) −(N − 1) − 1 = cup(ξ) − N .
Thus, expanding (15) into a sum, the first term has
cup-length N − 3 + 2 + cup(η) = cup(ξ)− 1, while the
following terms all contain yN and vanish. A similar
calculation for any other term with aj = 1, j > 2 shows
a decrease in cup-length even greater than 1.

(b) Here n = 2m = N , so ξ(Xn,r) = yn−1 ·
yn−r · · · yn−2. The AGH formulae simplify to

y2
q =

{
y2q, 2q ≤ n− 1,
0, 2q ≥ n .

This is because Ak =
(
n

k

)
, 0 ≤ k ≤ q, equals 1 only

for k = 0, while
(

n

q + 1

)
= 0, n − r ≤ q ≤ n − 2,

implies Bk,j = 0.
Now ξ(Vn,r) = xn−r · · · xn−2 · xn−1 agrees with

ξ(Xn,r) apart from the extra xn−1 in the former and
extra yN−1 in the latter, furthermore the above calcu-
lation shows that the cup-squares are the same in both
(since n− 1 = 2m − 1 is odd xn−1 is indecomposable).
It is easy to see that bN = 0 for Vn,r. This gives the
cup-length of Xn,r as equal to `(n, r) + (N − 1) − 1 =
`(n, r) +N − 1− 2bN = L(n, r).
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(c) With N = 2 we immediately have r = n− 1 and
n ≡ 2, 3 (mod 4), as well as ξ = y · y2 · y3 · · · yn−1,
say ξ = y · γ. Now Lemma 5.2 implies y2

q = y2q +
αyy2q−1, 2q ≤ n − 1, α ∈ {0, 1}, while Lemma 5.3
implies y2

q = 0, 2q ≥ n, since I2 = 0 here. Since
the relation y2

q = y · α, α 6= 0, does not occur, any
decompositions that lengthen ξ must take place in γ.
Then, by Remark 5.4, cup(Xn,n−1) = L(n, n− 1).

(d) We have N = 2s−1. So the non-zero product in
the top dimension is

ξ = y2s−1−1y2s−1y2s−1+1 · · · y2s−1+2s−1−2.

As a consequence, cup(X2s−1,2s−1) is at least 2s−2. But
for each yq in ξ we have 2q ≥ n = 2s− 1, so the proof
that cup(ξ) cannot be increased from 2s − 2 can now
proceed exactly as in the stable case (a) above.
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