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Seely categories: Canada’s contribution.

Robert Seely introduced “Seely Categories” as the categorical proof theory of linear logic
(1989):

*-autonomous category with products;
(!(_), δ, ε) a comonad;
Natural isomorphisms s2 :!(A × B) −→!(A)⊗!(B) and s1 :!(1) −→ >.

Seely proved that the coKleisli category of such a comonad was Cartesian closed.
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Seely categories: Cambridge contributes.

The Cambridge four (Gavin Beirman, Nick Benton, Valaria de Paiva, Martin Hyland) start
working on the proof theory of MELL (multiplicative exponential linear logic). Gavin
Beirman realizes that in the proof theory of MELL the comonad must be monoidal (1995).

He defined a linear category to be:
Monoidal closed category (with products);
(!(_), δ, ε) a monoidal comonad;
Each !(A) forms a comonoid (!(_), ∆, e):

∆ and e are monoidal;
∆ and e are coalgebra morphisms;
Every algebra morphism is a morphism of comonoids.

Not a simple axiomatization any more!

Points out that, as an interepretation of the proof theory of MELL, Seely’s original
axiomatization is “unsound.” Introduces new Seely categories as linear categories with
products.

Ottawa 2006, Seely Categories Revisited, October 22, 2006 – p. 3/23



Seely categories: Manchester contributes.

Andrea Schalk (c2003) in a nice overview collected and simplified the axiomatization from
the Cambridge gang of four. She removed the necessity for the category to be closed and
focused on the structure of the comonads calling them linear exponential comonads.

Monoidal category;
(!(_), δ, ε) a monoidal comonad;
In the category of coalgebras the induced tensor product is in fact a product.
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Seely categories: the French contribute.

Jean-Yves Girard (1987) Linear Logic ...

Yves Lafont (1988) investigated the free cocommutative comonoid functor and showed it
provided a model of linear logic ...

Paul-Andre Mellies (2005) revisiting “models of linear logic”
Concentrates entirely on the structure of the exponential comonad in monoidal
closed categories; *-autonomous categories hardly rate a mention and additives are
reduced to products;
Focuses on the linear/non-linear model acknowledging influence from Plotkin;
Proves a converse to Kelly’s lemma: an adjunction with left adjoint iso/strict
monoidal is a monoidal adjunction.
Provided another characterization of (new) Seely categories which involved
axiomatizing the Seely isomorphism more carefully.

Below we present a modification of this last idea.

Ottawa 2006, Seely Categories Revisited, October 22, 2006 – p. 5/23



Storage transformation

A storage transformation on a monoidal category X with products and a comonad
(S(_), δ, ε) is a symmetric comonoidal transformation on S : (X,×, 1) −→ (X,⊗,>).

s1 : S(1) −→ > s2 : S(A × B) −→ S(A) ⊗ S(B)

such that
S(A × 1)

π0

��

s2 // S(A) ⊗ S(1)

1⊗s1

��
S(A) S(A) ⊗>

uR
⊗

oo

S(A × B)

S(c×)

��

s2 // S(A) ⊗ S(B)

c⊗

��
S(B × A)

s2

// S(B) ⊗ S(A)

S((A × B) × C)

S(a×)

��

s2 // S(A × B) ⊗ S(C)
s2⊗1

// (S(A) ⊗ S(B)) ⊗ S(C)

a⊗

��
S(A × (B × C))

s2

// S(A) ⊗ S(B × C)
1⊗s2

// S(A) ⊗ (S(B) ⊗ S(C))

such that δ is a comonoidal transformation.
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Storage transformation

To say δ is comonoidal is to say explicitly that the following commutes:

S(A × B)

δ

��

s2

// S(A) ⊗ S(B)

δ⊗δ

��
S2(A × B)

S(σ×

2
)

// S(S(A) × S(B))
s2

// S2(A) ⊗ S2(B)

S(1)

δ

��

s0 // >

S(S(1))
S(σ×

0
)

// S(1)
s0

// >

where σ×
2 = 〈S(π0), S(π1)〉 : S(A × B) −→ S(A) × S(B) and σ×

1 : S(1) −→ 1 is the unique
map.
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Coalgebra modalities

A coalgebra modality is a comonad (S(_), δ, ε) on a monoidal category such that for each A

there is a natural cocommutative comonoid

∆ : S(A) −→ S(A) ⊗ S(A) e : S(A) −→ >

such that

S(A)

∆

��

δ // S2(A)

∆

��
S(A) ⊗ S(A)

δ⊗δ

// S2(A) ⊗ S2(A)
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Coalgebra modalities

Proposition 1. A symmetric monoidal category with products has a coalgebra modality if and only
if it has a storage transformation.
To define a coalgebra modality from a storage transformation:

S(A)
e

−−→ > = S(A)
S(!)

−−−−→ S(1)
s1−−−→ >

S(A)
∆

−−→ S(A) ⊗ S(A) = S(A)
S(∆×)

−−−−−−−→ S(A × A)
s2−−−→ S(A) ⊗ S(A)

To define a storage transformation from a coalgebra modality:

S(1)
s1−−−→ > = S(1)

e
−−→ >

S(A × B)
s2−−−→ S(A) ⊗ S(B)

= S(A × B)
∆

−−→ S(A × B) ⊗ S(A × B)
S(π0) ⊗ S(π1)

−−−−−−−−−−−−−−→ S(A) ⊗ S(B).
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(Modern) linear categories

We amalgamate Bierman and Schalk’s ideas and use coalgebra modalities ...

A (modern) linear category is a monoidal category with a coalgebra modality such that ∆

and e are monoidal and coalgebra morphisms.

Note we are able to drop one of Bierman’s conditions (coalgebra morphisms are morphisms
of comonoids) as it is a consequence of the requirement of being a coalgebra modality.

A (modern) linear category is, thus, a model of the proof theory of MELL which is not
necessarily monoidal closed.
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Mellies theorem

Theorem 2. (Mellies) A symmetric monoidal category with products and a coalgebra modality
(S(_), δ, ε) is a (modern) linear category if and only if it has a storage transformation which is an
isomorphism (i.e. has a Seely isomorphism).
The surprising aspect is that having a storage transformation which is an isomorphism
forces the monad to be monoidal. Here is the monoidal structure:

>
m>−−−−→ S(>)

= >
s−1

1−−−−→ S(1)
δ

−−→ S2(1)
S(s1)

−−−−−−→ S(>)

S(A) ⊗ S(B)
m⊗

−−−−→ S(A × B)

= S(A) ⊗ S(B)
s2−−−→ S(A × B)

δ
−−→ S2(A × B)

S(s2)
−−−−−−→ S(S(A) ⊗ S(B))

S(ε ⊗ ε)
−−−−−−−−→ S(A ⊗ B)

This is what I shall call a (modern) Seely category ... a monoidal category with products and
a coalgebra modality whose storage transformation is an isomorphism.

So Seely’s original idea was nearly right!!
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CoKleisli categories of Seely categories

What does the coKleisli category of a Seely
category look like?

CoKleisli category of Seely categories have been the main source of applications:
(Stable) domain theory;
Game theoretic models of computation;
Constructing reflexive objects (models of the λ-calculus);
Cocommutative cofree coalgebras (Foch spaces).
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Strong system of maps

Let X be any category with products then one can associate with X the simple fibration

X[X]

∂

��
X

the simple fiber over A is X[A] (the simple slice) and is the coKleisli category for the
comonad A × _.
Explicitly X[A]:

Objects: X ∈ X

Maps: f : X −→ Y is a map f : A × X −→ Y in X

Identities: X −→ X correspond to π1 : A × X −→ X

Composition:

A × X
f

−−→ Y A × Y
g

−−→ Z

A × X −−−−−−→
∆ × 1

A × A × X −−−−−−→
1 × f

A × Y −−→
g

Z

Ottawa 2006, Seely Categories Revisited, October 22, 2006 – p. 13/23



Strong system of maps

A strong system of maps is a subfibration with some additional properties:

L[X]

!!C
CC

CC
CC

C
// X[X]

∂
}}zz

zz
zz

zz

X

where we call the maps of L[A] systematic over A.

Explicitly the systematic maps must satisfy:
Each L[A] contains identities, projections and pairings of systematic maps;
Each L[A] is closed to composition and if g ∈ L[A] is a retraction in X[A] then
gf ∈ L[A] then f ∈ L[A].
If f ∈ L[B] and a : A −→ B then (a × 1)f ∈ L[A].
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Strong system of maps: examples

1. Consider the category of Abelian groups (resp. vector spaces) with arbitrary set
maps: this is a left additive category that is f(g + h) = fg + fh and f0 = 0 (but not
the other distributive law). Amongst these arrows are those which are additive – that
is Abelian group homomorphisms (resp. linear maps). These form a strong system of
maps.

Note that this category is the coKleisli category with respect to the comonad induced
on Abelian groups (resp. vector spaces) by the free functor from sets.

2. (Girard) Coherent spaces with stable maps with the systematic maps being the linear
maps (preserving union).

3. (Ehrhard) Hypercoherent spaces and hypercoherent stable maps with the systematic
maps being the linear maps (preserving union).

4. (Blute, Cockett, Seely) Differential categories: the linear maps in any cartesian
differential category form a stong system of maps – this was the original motivation
for this work.
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Classification

A strong system of maps is classified in case in each X[A] given any A there is a universal

map A
ϕ

−−→ S(A) which makes f systematic:

X

ϕ

��

f
// Y

S(X)

f]

==

in X this means:

A × X

1×ϕ

��

f
// Y

A × S(X)

f]

;;
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Persistent classification

The systematic maps are persistent over classification in case whenever f is systematic in
X[A × X] then

A × X × W

1×ϕ×1

��

f
// Y

A × S(X) × W

f]

99

f] is systematic in X[A × S(X)]

A pre-storage category is a Cartesian category with a strong system of maps which are
persistently classified.
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Classification

Proposition 3. If L is a strong system of maps for X then:
1. If L is classified then S forms a strong monad which in addition satisfies:

S(A)

δ

��

S(∆×)
// S(A × A)

δ

��
S2(A)

S(〈1,ε〉)
// S(A × S(A))

S(θ)
// S2(A × A)

2. If L is persistent over classification then S forms a commutative monad (i.e. is monoidal on
the product):

S(A × S(B))
S(θ)

// S2(A × B)

µ

&&MMMMMMMMMM

S(A) × S(B)

θ′

77oooooooooooo

θ
''OOOOOOOOOOOO

S(A × B)

S(S(A) × B)
S(θ′)

// S2(A × B)

µ

88qqqqqqqqqq
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Representation

In a category X with a strong system of maps a map f : X × Y −→ Z is bisystematic in
X[A] in case it is systematic in X[A][X] and cXf is systematic in X[A][Y ]. That is it is
systematic in each argument.
We say that bisystematic maps are represented in case in each X[A] there is a universal
bisystematic map ϕ⊗ : X × Y −→ X ⊗ Y so that for any bisystematic map f there is a
unique systematic map f ]⊗ rendering commutative:

X × Y

ϕ⊗

��

f
// Z

X ⊗ Y

f]⊗

<<

in X this means

A × X × Y

1×ϕ⊗

��

f
// Z

A × X ⊗ Y

f]⊗

::
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Persistent representation and storage

The systematic maps are persistent over the representation of bisystematic maps in case
whenever f is systematic in X[A × X × Y ] (i.e. is systematic in the W argument)

A × X × Y × W

ϕ

��

f
// Z

A × X ⊗ Y × W

f]⊗

88

then f]⊗ is systematic in X[A × X ⊗ Y ]:

A storage category is a Cartesian category X with a strong system of maps which is
retentively both classified and represented.
Theorem 4. In any storage category X the systematic maps form a Seely category for which X is the
coKleisli category.

Ottawa 2006, Seely Categories Revisited, October 22, 2006 – p. 20/23



Strong abstract coKleisli categories

Can we describe a pre-storage category in terms of its functorial properies?

A strong abstract coKleisli category is a Cartesian category together with:
A strong functor S;
A natural transformaton ϕ : 1X −→ S such that ϕS(_) is strong;

An unnatural transformation such that εS(_) is a strong natural transformation.

Such that:
ϕε = 1;
S(ϕ)ε = 1;
εε = S(ε)ε

π0 and π1 are ε-natural.

Following Carsten Furhman who introduced abstract Kleisli categories to facilitate
arguments about Kleisli categories.
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Strong abstract coKleisli categories

Proposition 5. In any strong abstract coKleisli category X the maps f in X[A] such that

A × S(X)

1×ε

��

θ // S(A × X)
S(f)

// S(Y )

ε

��
A × X

f

// Y

form a strong system of maps. Furthermore this system is classified if and only if ϕ (itself) is strong,
and the systematic maps are persistent over this classification if and only if (S, ϕ, εS(_)) is a
commutative monad.

This gives an alternative characterization of prestorage categories .... There is also a complete

equational description of a comonad which gives rise to a pre-storage category (backward
engineer all this!) ...
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CoKleisli categories of Seely categories

SO what does the coKleisli category of a Seely category look like?

MORALLY it is a storage category!

... but it is a more little technical!

In fact, as far as I can see, at the moment, it only need be a pre-storage category ...
HOWEVER there are various conditions which ensure that a pre-storage category is a
storage category! This is now work in progress ... A reasonable statement of affairs, however,
seems to be:

Conjecture: The coKleisli category of any exact Seely category which is monoidal closed is a
storage category.
A Seely category is exact if the following is a coequalizer:

S2(A)
S(ε)

−−−−→
−−−−→

ε
S(A)

ε
−−→ A
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