
Turing Categories and Computability1

Robin Cockett

Department of Computer Science
University of Calgary

Alberta, Canada

robin@cpsc.ucalgary.ca

Estonia, March 2010

1
Joint work with Pieter Hofstra



TURING CATEGORIES

Turing categories

Reducibility

Partial combinatory algebras

Recursion categories



TURING CATEGORIES
T is a Turing category if

◮ It is a cartesian restriction category

◮ It has a Turing object, T :

T × A
τA,B // B

X × A

k×1

OO

f

<<xxxxxxxxx

this an object T with for each A and B a Turing morphism,
τA,B , such that for each f there is a total k, called a index for
f , making the diagram above commute.
In the special case when X is the terminal object h : 1 −→ C is
a total element and we say it is a code for f .

Note: none of this structure is canonical!
If the index is uniquely determined then we shall say the Turing
category is extensional ... (very unusual!)



TURING CATEGORIES

Theorem
In a Turing category, with a Turing object T , every object A is a
retract of T .

Proof: Consider

T × 1
τ1,A // A

A× 1

mA×1

OO

π1

<<yyyyyyyyy

Then we have A ⊳
rA
mA

T where rA = 〈1, !〉τ1,A. �

In particular 1 ⊳ T and T × T ⊳ T .



TURING STRUCTURE

Theorem
A cartesian restriction category is a Turing category if and only if
there is an object T , of which every object is a retract, which has

a Turing morphism T × T
τT ,T
−−−−→ T.

Proof: The difficulty is to prove that if every object is a retract
of T then having a Turing morphism • = •1 = τT ,T suffices.
arbitrary objects A and B by assumption we have A ⊳

mA
rA T and

B ⊳
mB
rB T so we may define:

T × A
τA,B
−−−→ B

= T × A
1 × mA−−−−−→ T × T

•
−−→ T

rb−−→ B

Clearly this is a Turing morphism. �



EXAMPLES OF TURING CATEGORIES I

Comp(N) the classical category of partial recursive functions:

Objects: 0,1,2, ... the natural numbers.

Maps: f : n −→ m a partial recursive maps f : N
n −→ Nm.

Turing object: 1(= N) with Turing map “Kleene application”
• : N× N −→ N; (n,m) 7→ φn(m): the nth Turing
machine run on input m. Note N ≡ N× N and
1 = N

0 ⊳ N.

Note this category is definitely partial (for example it has zero
maps).



TURING STRUCTURE
Once one has fixed a Turing map the Turing structure is not
unique.

Here is an alternate way to get a Turing structure:
Define •n+1 for n > 1 by setting • = •1 and defining it inductively
using •n as (• × 1)•n:

T × T × T n •×1 // T × T n •n
// T

X × T × T n

f •
n
×1

55

f

22fffffffffffffffffffffffffffffff

(f •
n
)•×1

OO

This provides f •
n+1

= (f •
n

)• showing •n can be used as τT n,T .



TURING STRUCTURE
But what about ◦ = •0?

T
◦ // T

X

f

>>~~~~~~~
f ◦

OO

Set this to ◦ = T −−→
∆

T × T −−→
•

T . Now we have

T
∆ // T × T

• // T

X × T

(π0f )•×1

OO

π0f

77nnnnnnnnnnnnn

X

(π0f )•

OO

〈1,(π0f )•〉
77nnnnnnnnnnnnn

f

CC



TURING STRUCTURE
Finally for an arbitrary product of objects A1 × ...× An by
assumption we have Ai ⊳

mAi
rAi

T so we may define:

T × A1 × ...× An

τA1×.×An,B
−−−−−−−→ B

= T × A1 × ...× An

1 × mA1
× ... × mAn−−−−−−−−−−−−−→ T × T n •n

−−→ T
rb−−→ B

Clearly this is a Turing morphism.

Thus even given a Turing map there are lots of ways to obtain a
Turing structure! This way, however, suggests the following
example ...



EXAMPLES OF TURING CATEGORIES II

λ− comp the category generated by the λ-calculus (with
β-equality):

Objects: 0, 1, 2, ... the natural numbers

Maps: f : n −→ m is a tuple of m maps from fi : n −→ 1
where such a map is a λ-calculus term in variables
x1, ..., xn (with equality given by β-reduction).

Composition: Substitution.

Turing object: 1 with Turing map • : 2 −→ 1; (x1, x2) 7→ x1x2.

This is a total category ... but who said Turing categories could
not be total!!



EXAMPLES OF TURING CATEGORIES II (cont.)

λ− comp: the Turing structure ...

1× n(= n + 1)
•(n)

// 1

p × n(= p + n)

h×1

OO

f

66llllllllllllllll

•(n)(x0, x1, ..., xn) = x0x1...xn

h(y1, ..yp, x0, .., xn) = λx0x1...xn.f (y1, ..yp, x0, .., xn)

β-reduction ensures the diagram commutes.



EXAMPLES OF TURING CATEGORIES III

pλ− comp the category of β-normal λ-terms. We let Λ be the set
of closed λ-terms in β-normal form:

Objects: 0, 1, 2, ... the natural numbers: n is the set Λn

Maps: f : n −→ m is a tuple of m maps from fi : n −→ 1
where such a map is determined by a λ-calculus term
N in variables x1, ..., xn which is in β-normal form:

Λn −→ Λ : (M1, ...,Mn) 7→

{

N[Mi/xi ] ↓β
↑

where N[Mi/xi ] ↓β is the strong normal form of the
substituted term – which may not always exist.

Composition: As for partial maps.

Turing object: 1 with Turing maps • : 2 −→ 1; (x1, x2) 7→ x1x2.

This is a partial Turing category!



REDUCIBILITY
In any restriction category say that a restriction idempotent e′ : X
−→ X (many-one) reduces to e : Y −→ Y , write e′ ≤m e, if there
is a total map f : X −→ Y so that fe = e′.

Say that e′ 1-reduces to e, e′ ≤1 e if there is a monic f with
fe = e′.

Say that e : X is m-complete in case every e′ m-reduces to e, that
is e′ ≤m e. Similarly e is 1-complete is every e′ 1-reduces to e.

NOTE: this is the standard definition: think of e = e : Y −→ Y as
a predicate.



REDUCIBILITY (cont.)
Recall K = ◦ = ∆• – intuitively those computations which
terminate on their own codes, we always have:

Theorem
In any Turing category K = ◦ is m-complete.

Proof: Suppose e : X then

T
◦ // T

X

(emX )◦

OO

e
// X

OO
mX

OO

and

(emX )◦K = (emX )◦◦

= (emX )◦◦

= emX = e = e

�



REDUCIBILITY (cont.)

What does this mean for total Turing categories?

Can you prove that in a Turing category is total if and only if all
predicates are m-complete?



1-REDUCIBILITY
There is no guarantee that f ◦ is monic but if it was K would be
1-complete.
We will use “padding” to obtain an alternative Turing morphism
which has this property. Modify the Turing morphism

T × T rT×T

//

•′

((
(T × T )× T

π1×1 // T × T
• // T

X × T
f •

′

×1

gg

〈f •,mX 〉mT×T×1

OO

f •×1

77

f

44iiiiiiiiiiiiiiiiiiiiii

define f •
′

= 〈f •,mX 〉mT×T note that

f •
′

rT×Tπ1 = mX

so, in fact, this is a section so certainly f ◦
′

is monic!



1-REDUCIBILITY

Theorem
In any Turing category K ′ = ◦′, as defined above, is 1-complete.

Note: this is stronger than 1-complete as the morphism along
which the reduction is being obtained is a section.

This also illustrates the non-canonical nature of the Turing
morphisms (doing this again gives an infinite family of Turing
morphisms).

Note: special properties of • may not be preserved by moving to
•′. For example if (T , •) is extensional (T , •′) will be extensional
only when the Turing category is trivial!



PARTIAL COMBINATORY ALGEBRAS
In a cartesian restriction category a partial combinatory algebra

is:

◮ an object A

◮ a partial map • : A× A −→ A

◮ two (total) points 1
k
−−→ A and 1

s
−→ A.

satisfying:

A× A× A
(•×1)• // A

A× A

k×1×1

OO

π0

::tttttttttt

A× A× A× A
•3

// A

A× A

•

OO

A× A× A

s×1×1×1

OO

θ′
A

// (A× A)× (A× A)

•×•

OO

and A× A
s × 1 × 1
−−−−−−→ A× A× A

•2

−−→ A is total.



PARTIAL COMBINATORY ALGEBRAS
Equationally we have:

(k• x)• y = x ((s • x)• y)• z = (x • z)• (y • z) x |(s•v)•w = x

These are the usual equations from (total) combinatory algebra
with the added requirement (expressed in the last equations) that
sxy is total.

Theorem
If (T , •) is a Turing object in a cartesian restriction category then
it is a partial combinatory algebra.

Proof: Use the above commuting requirements to define k and
s! �

This begs the question: what is the connection between PCAs and
Turing categories?



PARTIAL COMBINATORY ALGEBRAS
Given any cartesian restriction category there is a cartesian
restriction functor

Γ : X −→ Par : A 7→ points(A) = Total(X)(1,A)

Note: this carries a PCA in X to an “ordinary” PCA in Par, sets
and partial maps.

Let X be any cartesian restriction category and suppose A = (A, •)
is an applicative system (i.e. • : A× A −→ A is a partial operation)
then Γ(A) is an applicative system in Set. An applicative set of

codes for A is a V ⊆ Γ(A) = Total(X)(1,A) which is a
sub-applicative system (i.e closed to the application).

A map A× ...× A
h
−−→ A in X is (A,V)-computable if there is an

index v ∈ V with (v × 1× ...× 1)•n = h. Similarly, the maps An

−→ Am (m > 0) is computable in case each projection An −→ A is
computable. h : An −→ 1 is computable provided h : A −→ A is
computable.



COMBINATORY COMPLETENESS
We shall say that an applicative system is combinatory complete

relative to a set of indices V in case the (A,V)-computable maps
form a cartesian restriction subcategory.

Theorem
An applicative system A, with respect to a set of indices V, is
combinatory complete if and only if V contains indices s and k
making A a partial combinatory algebra.



FROM PCAs TO TURING CATEGORIES
This gives an very important method of generating Turing
categories:

Theorem ( (A,V)-computability)

The (A,V)-computable maps of any combinatory complete
applicative system over any cartesian restriction category form a
Turing category C(A,V) with

CA : C(A,V) −→ X

a faithful cartesian restriction functor.

Given a combinatory algebra in any cartesian restriction category
an obvious set of indices to choose is the set of all points of the
PCA. Conversely one can choose the smallest set generated by a
choice of s and k ...



TURING SUBCATEGORIES
Given any cartesian restriction functor from a Turing category
F : T −→ X we may factorize it as

T
E(F )// T/ ∼=

M(F ) // X

where E (F ) forms the quotient of the category by
f ∼= g ⇔ F (f ) = F (g) and M(F ) is the residual faithful
embedding.

T/ ∼= is a Turing category, thus, M(F ) is a faithful embedding of a
Turing category into X:

T/ ∼=
M(F )
−−−−→ X



TURING SUBCATEGORIES
Any Turing object T ∈ T determines a PCA in X and a set of
indices VF = {F (p)|p ∈ points(T )}.
Thus, F induces a faithful functor:

CF (T ) : C(F (T ),VF ) −→ X

Theorem
There is a factorization of any F with domain a Turing category as

T
F ′

−−→ Split(C(F (T ),VF )) −→ Split(X)

Thus, up to splitting, faithful Turing subcategories of X are
determined by combinatory complete applicative systems in X

relative to a set of indices.



FOREVER UNDECIDED

We shall now examine undecidability results in Turing categories.
To get off the ground one needs a good notion of complement.
Joins provide this ...

THEREFORE we shall work now in Turing categories with (finite)
joins.



UNDECIDABILITY

PROBLEM: there is a join Turing category in which everything is
decidable!

It is the trivial join Turing category which has exactly one map
between any two objects.

Undecidability proofs work by showing that if such and such is
decidable then the Turing category must be trivial.

Lemma
A cartesian join restriction category is trivial in case any of the
following are true:

◮ The terminal object is a zero object;

◮ The identity map of the terminal object is the zero map;

◮ A total element has its restriction the zero map.

Proof: The three conditions are clearly equivalent. If the final
object is a zero then A ∼= A× 1 ∼= A× 0 ∼= 0! �



UNDECIDABILITY
Let T be a Turing category with joins.

A restriction idempotent e is complemented (or recursive) in
case there is a restriction e′ with ee′ = 0 and e ∨ e′ = 1.

Recall that in a join restriction category if e : A has a complement
e′ : A then A is the coproduct of the splittings of e and e′.



UNDECIDABILITY OF K

Theorem
In a join Turing category, T, K has a complement if and only if T

is trivial (i.e. exactly one map between each pair of objects).

Proof: Let K ′ be an idempotent with K ′K = 0. Set v = K ′• be
a code of K ′ (i.e. (v × 1)• = K ′ and v = 1) so that
vK = v∆• = 〈v , v〉•v = vK ′v = vK ′ but then
vK = vKK = vK ′K = 0 = vKK ′ = vK ′K ′ = vK ′ so that if
K ∨ K ′ = 1 then 0 = 0 = (vK ) ∨ (vK ′) = v(K ∨ K ′) = v = 1 But
this collapses the final object and make the whole category trivial.
�

Note that we have shown that K is “creative” (i.e. given e = e
with Ke = 0 there is a point v with vK = 0 = pe). Clearly a
creative idempotent in join cartesian restriction category has a
complement only when the category is trivial.



RECURSION CATEGORIES
A recursion category is a discrete Turing category with joins.
Explicitly this means it is a cartesian restriction category, which
possesses a Turing structure, which also has joins and meets.

The classical category of computable functions is an example of a
recursion category ...

First remarkable fact:

Split recursion categories always have coproducts!



RECURSION CATEGORIES

Theorem
Split recursion categories have coproducts and therefore are
distributive restriction categories.

Proof: The idea of the proof is as follows: if we had a boolean

object so that 1
true
−−−→ Bool

false
←−−−− 1 is a coproduct then by taking

the product with the Turing object we would get a coproduct

1× A
true × 1A−−−−−−−→ Bool× A

false × 1A←−−−−−−− 1× A

and so be able to take coproducts of the Turing object. However,
as every object occurs as a retract of the Turing object it follows
that there are coproducts for all objects. �



RECURSION CATEGORIES

We still need to show that we have a Boolean object in a recursion
category.

First note every total element a : 1 −→ A is also a restriction monic
as clearly !a is an idempotent and so a splits the idempotent
!a ∩ 1A. We need two elements which intersect at zero.
Consider the elements i and z:

1× A

i×1A

��

π1 // A

A× A

•

<<yyyyyyyyy

1× A

z×1A

��

0 // A

A× A

•

<<yyyyyyyyy



RECURSION CATEGORIES
Call the intersection of these subobjects exists P :

P

q

��

p // 1

i
��

1 z
// A

we wish to show that P = 0. Consider

P × 1

q×1

��

p×1 // 1× 1

i×i
�� π1i

��

1× 1

0 //

z×i
// A× A

•

""EE
EE

EE
EE

E

A

then (p × 1)π1i = 0 as π1i is monic p × 1 = 0 but p is a restriction
monic which forces P = 0.



INSEPARABILITY
A pair of restriction idempotents e0, e1 : X are recursively

inseparable in X if they are disjoint and there is no complemented
idempotent e such that e0 ≤ e and e1 ≤ e′.

Theorem (F. Lengyel)

Every non-trivial recursion category has inseparable restriction
idempotents.

Proof: The above assures us that we may find two total points
p0, p1 : 1 −→ T with p0 ∩ 1, p1 ∩ 1 : T −→ T disjoint.
Any pair of such points will do.
Set ki = ∆ • (pi ∩ 1) : T −→ T this predicate is those codes which
when applied to themselves evaluate to pi .
Note k0 and k1 are disjoint as

k0k1 = ∆ • (p0 ∩ 1)∆ • (p1 ∩ 1) = ∆ • (p0 ∩ 1)(p1 ∩ 1) = 0.

Suppose that ki ≤ ui and u0u1 = 0. We now show that assuming
that u0 ∨ u1 = 1T implies category is trivial.



INSEPARABILITY
Consider the map q = u0p1 ∨ u1p0, note that it is total (as
q = u0p1 ∨ u1p0 = u0 ∨ u1 = 1) and it is, given our assumption, a
decider for u0. Define q′ to be a code for q, so that (q′ × 1)• = q.
Observe that

q′k0 = q′∆ • (p0 ∩ 1) = q′∆ • (p0 ∩ 1)q′ = q′(q′ × 1) • (p0 ∩ 1)q′

= q′(u0p1 ∨ u1p0)(p0 ∩ 1)q′ = q′u0p1(p0 ∩ 1) ∨ u1p0(p0 ∩ 1)

= 0 ∨ u1p0q
′ = q′u1p0q

′ = q′u1

and similarly q′k1 = q′u0. This shows q′u1 = q′u1u1 = q′k0u1 = 0
and similarly q′u0 = 0 This is obviously bad and gives the following
calculation to clinch it:

11 = q′ = q′(u0 ∨ u1) = q′u0 ∨ q′u1) = 0.

This suffices to show the category is trivial! �



RECURSION THEOREM
The recursion theorems hold in any Turing category:

Theorem
In any Turing category, for any f : T × T −→ T there is a total
point e : 1 −→ T such that (e × 1)• = (e × 1)f .

Proof: Set h = (∆× 1)(• × 1)f then there is a code, h• with
(h• × 1)• total and setting e = (h• × h•)• makes

A
h•×1

$$JJJJJJJJJJ

e×1

))

e×1

66

A× A× A
•×1 // A× A

f

""EE
EE

EE
EE

E

A× A

h•×1×1
��

h //

∆×1
77ooooooooooo

A

A× A× A
•×1

// A× A

•

44jjjjjjjjjjjjjjjjjjjj

commutative. Note that e is total as (h• × 1)• is total. �



EXTENSIONAL PREDICATES

◮ We say that a restriction idempotent e on a Turing object is
extensional (with respect to a given choice of Turing
structure) in case the following implication holds for every f
and g (using the term logic):

(e(f (x)) • y = g(x) • y ⇒ g(x)|e(f (x)) = e(gx)|e(f (x))).

◮ Say that a restriction idempotent e on a Turing object is
non-trivial in case there are two points, p0 and p1 with
p0e = p0 and p1e = 0.

Think of f and g as an indexes whose behaviors are the same then
the extensionality of e requires that g lies in e in so far as f lies in
e and is defined.



EXTENSIONAL PREDICATES

An example of an extensional predicate is (1× p1) • (1 ∩ p2): here
we are testing whether a code on input p1 will output p2.

Also there is the following important fact:

Lemma
If e is extensional and has a complement e′ then e′ is extensional.



RICE

Theorem (Rice’s theorem)

In a non-trivial recursion category no non-trivial extensional
idempotent is complemented.

Proof: (sketch) Suppose e with complement e′ is extensional (so
both are) and non-trivial (so both are). Thus, there are points p0

and p1 with p0e = p0 and p1e
′ = p1. Using the second recursion

theorem define a point h by (using the term logic):

h • x = p1 • x|e(h) ∨ p0 • x|e′(h)

then

e(h) • x = h • x|e(h) = (p1 • x|e(h) ∨ p0 • x|e′(h))|e(h)

= p1 • x|e(h) = (p1)|e(h) • x

so using extensionality we have:

(p1)|e(h) = e((p1)|e(h)) = e(p1)|e(h) = 0

which implies e(h) = 0 but by symmetry e′(h) = 0 giving h = 0
showing the category must collapse. �



Conclusion ...

The basic ideas of computability can be expressed quite smoothly
in Turing Categories but ...

The BIG Question:

Can Turing categories bring new insights to computability theory?


	Turing categories
	Reducibility
	Partial combinatory algebras
	Recursion categories

