Elements of Category Theory

Robin Cockett

Department of Computer Science University of Calgary Alberta, Canada

robin@cpsc.ucalgary.ca

Estonia, Feb. 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Functors and natural transformations

Adjoints and Monads

Limits and colimits

Pullbacks

FUNCTORS

A **functor** is a map of categories $F : \mathbb{X} \to \mathbb{Y}$ which consists of a map F_0 of the objects and a map F_1 of the maps (we shall drop these subscripts) such that

► $\partial_0(F(f)) = F(\partial_0(f))$ and $\partial_1(F(f)) = F(\partial_1(f))$:

$$\frac{X \xrightarrow{f} Y}{F(X) \xrightarrow{F(f)} F(Y)}$$

• $F(1_A) = 1_{F(A)}$, identity maps are preserved.

• F(fg) = F(f)F(g), composition is preserved.

Every category has an identity functor. Composition of functors is associative. Thus:

Lemma

Categories and functors form a category Cat.

EXAMPLES OF Set FUNCTORS

► The product (with *A*) functor

$$_ \times A : \mathsf{Set} \longrightarrow \mathsf{Set}; \begin{array}{ccc} X & X \times A & (x,a) \\ f \downarrow & \mapsto & \downarrow f \times 1 & \downarrow \\ Y & Y \times A & (f(x),a) \end{array}$$

The exponential functor:

$$A \Rightarrow _: \mathsf{Set} \longrightarrow \mathsf{Set}; \quad f \bigvee_{Y} \qquad A \Rightarrow X \qquad h \\ \downarrow_{A \Rightarrow f} \qquad \downarrow_{A \Rightarrow f} \qquad \downarrow_{A \Rightarrow f} \qquad \downarrow_{f} \\ Y \qquad A \Rightarrow Y \qquad hf$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

EXAMPLES OF Set FUNCTORS

List on A (data L(A) = Nil | Cons A L(A))

$$L: Set \longrightarrow Set; \begin{array}{ccc} X & L(X) & [x_1, x_2, ...] \\ f & \mapsto & \downarrow^{L(f)} & & \downarrow \\ Y & L(Y) & [f(x_1), f(x_2), ...] \end{array}$$

Trees on A (data T(A) = Lf A | Node T(A) T(A)):

$$\begin{array}{cccc} X & \mathsf{T}(X) & \operatorname{Node}(\operatorname{Lf} x_1)(\operatorname{Lf} x_2) \\ \mathsf{T} : \mathsf{Set} \to \mathsf{Set}; & f & & & & & \\ & f & & & & & \\ & Y & \mathsf{T}(Y) & & \operatorname{Node}(\operatorname{Lf} f(x_1))(\operatorname{Lf} f(x_2)) \end{array}$$

EXAMPLES OF Set FUNCTORS

The covariant powerset functor:

$$\mathcal{P}: \mathsf{Set} \longrightarrow \mathsf{Set}; \begin{array}{ccc} X & \mathcal{P}(X) & X' \subseteq X \\ f & \mapsto & \downarrow \mathcal{P}(f) & & \downarrow \\ Y & \mathcal{P}(Y) & f(X') \subseteq Y \end{array}$$

The contravariant powerset functor:

$$\mathcal{P}: \mathsf{Set}^{\mathrm{op}} \to \mathsf{Set}; \begin{array}{ccc} X & \mathcal{P}(X) & X' \subseteq X \\ f & \mapsto & & \downarrow \mathcal{P}(f) & & \downarrow \\ Y & \mathcal{P}(Y) & f^{-1}(X') \subseteq Y \end{array}$$

Note: *covariant* functors are functors, *contravariant* functors are functors BUT starting at the dual category.

NATURAL TRANSFORMATIONS

Given two functors $F, G : \mathbb{X} \to \mathbb{Y}$ a **(natural) transformation** $\alpha : F \Rightarrow G$ is a family of maps in $\mathbb{Y} \ \alpha_X : F(X) \to G(X)$, indexed by the objects $X \in \mathbb{X}$ such that for every map $f : X \to X'$ in \mathbb{X} the following diagram commutes:

This means that Cat(X, Y) can be given the structure of a category. In fact, Cat is a Cat-enriched category (a.k.a. a **2-category**).

Lemma

 $Cat(\mathbb{X}, \mathbb{Y})$ is a category with objects functors and maps natural transformations.

NATURAL TRANSFORMATION EXAMPLE I Consider the category:

$$\mathsf{TWO} = E \xrightarrow[\partial_0]{\partial_0} N$$

A functor $G : TWO \rightarrow Set$ is precisely a directed graph!! A natural transformation between two functors:

$$\alpha: \mathcal{G}_1 \longrightarrow \mathcal{G}_2: \mathsf{TWO} \longrightarrow \mathsf{Set}$$

is precisely a morphism of the directed graphs.

$$\alpha_N G_1(\partial_i)(f) = G_2(\partial_i)(\alpha_E(f)).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

NATURAL TRANSFORMATION EXAMPLE II Consider the category \mathbb{N}^{op} :

$$0 \underbrace{\leftarrow}_{\partial} 1 \underbrace{\leftarrow}_{\partial} 2 \underbrace{\leftarrow}_{\partial} \cdots$$

A functor $F : \mathbb{N}^{\text{op}} \longrightarrow$ Set is a forest. The children of a node $x \in F(n)$ in the forest is given by $\{x' \in F(n+1) | \partial(x') = x\}$.

A natural transformation between two functors

$$\gamma: \mathcal{F}_1 \longrightarrow \mathcal{F}_2: \mathbb{N}^{\mathrm{op}} \longrightarrow \mathsf{Set}$$

is precisely a morphism of forests:

$$\gamma_n(F_1(\partial)(x)) = F_2(\partial)(\gamma_{n+1}(x)).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

NATURAL TRANSFORMATION ...

If functors define structure ...

Then natural transformation define the (natural) homomorphisms of that structure ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

UNIVERSAL PROPERTY

Let $G : \mathbb{Y} \to \mathbb{X}$ be a functor and $X \in \mathbb{X}$, then an object $U \in \mathbb{Y}$ together with a map $\eta : X \to G(U)$ is a **universal pair** for the functor G (at the object X) if for any $f : X \to G(Y)$ there is a unique $f^{\sharp} : U \to Y$ such that

< D > < 同 > < E > < E > < E > < 0 < 0</p>

commutes.

UNIVERSAL PROPERTY – EXAMPLE I let Graph be the category of directed graphs and Cat the category of categories, let the functor

 $U: \mathsf{Cat} \to \mathsf{Graph}$

be the "underlying functor" which forgets the composition structure of a category.

The map which takes a directed graph and embeds it into the graph underlying the path category as the singleton paths (paths of length one)

$$\eta: G \longrightarrow U(\mathsf{Path}(G)); [n_1 \stackrel{a}{\longrightarrow} n_2] \mapsto (n_1, [a], n_2)$$

has the universal property for this "underlying" functor U.

UNIVERSAL PROPERTY – EXAMPLE cont.

Consider a map of directed graphs into the graph underlying a category, $h: G \to U(\mathbb{C})$, we can extend it uniquely to a functor from the path category to the category by defining

$$h^{\sharp}: \mathsf{Path}(G) o \mathbb{C}; (A, [a_1, .., a_n], B) \mapsto h(a_1) .. h(a_n): h(A) o h(B)$$

This is uniquely determined by h as where the "generating" arrows go determines where the composite arrows go.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

UNIVERSAL PROPERTY – EXAMPLE ... For those more mathematically inclined:

Consider the category of Group then there is an obvious underlying functor U : Group \rightarrow Set.

The pair $(\mathcal{F}(X), \eta)$ where $\eta : X \longrightarrow U(\mathcal{F}(X))$ is a universal pair for this underlying functor

The diagram expresses the property of being a "free" group (or more generally "free" algebra).

< D > < 同 > < E > < E > < E > < 0 < 0</p>

ADJOINT Suppose $G : \mathbb{Y} \longrightarrow \mathbb{X}$ has for each $X \in \mathbb{X}$ a universal pair $(F(X), \eta_X)$ so that

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

then G is said to be a right adjoint.

If $h: X \to X' \in \mathbb{X}$ then define $F(h) := (h\eta_{X'})^{\sharp}$ then F is a functor ... F is **left adjoint** to G.

 $\eta: \mathbf{1}_{\mathbb{X}} \longrightarrow \mathit{FG}$ is a natural transformation ...

ADJOINT Furthermore, $\epsilon_Y := (1_{G(Y)})^{\sharp} : GF \to 1_{\mathbb{Y}}$ is a natural transformation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ADJOINT This gives the following data (and **adjunction**):

$$(\eta, \epsilon) : F \dashv G : \mathbb{X} \longrightarrow \mathbb{Y}$$

- $F : \mathbb{X} \longrightarrow \mathbb{Y}$ and $G : \mathbb{Y} \longrightarrow \mathbb{X}$ functors
- ▶ $\eta : 1_X \longrightarrow FG$ and $\epsilon : GF \longrightarrow 1_Y$ natural transformations
- Triangle equalities:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

This data is purely algebraic and is precisely to ask F be left adjoint to G!

ADJOINT Another important characterization:

$$\frac{X \xrightarrow{f = g^{\flat}} G(Y)}{\overline{F(X) \xrightarrow{g = f^{\sharp}} Y}}$$

And another important example: cartesian closed categories:

$$\frac{A \times X \xrightarrow{f} Y}{X \xrightarrow{}_{\operatorname{curry}(f)} A \Rightarrow Y}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Semantics of the typed λ -calculus.

ADJOINT Here is the couniversal property for $A \Rightarrow B$:

$$\operatorname{curry}(f) = y \mapsto \lambda a.f(a, x)$$

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

MONADS (briefly) Given an adjunction

$$(\eta, \epsilon) : F \dashv G : \mathbb{X} \longrightarrow \mathbb{Y}$$

consider T := FG we have two transformations:

$$\eta_X: X \longrightarrow T(X) = G(F(X))$$

 $\mu_X: T(T(X)) \to T(X) = G(F(G(F(X)))) \xrightarrow{G(\epsilon_{F(X)})} G(F(X))$

and one can check these satisfy:

Such a (T, η, μ) is called a **monad**.

ADJUNCTIONS AND MONADS Any adjunction

$$(\eta, \epsilon) : F \dashv G : \mathbb{X} \longrightarrow \mathbb{Y}$$

generates an monad on $\mathbb X$ and a comonad on $\mathbb Y.$

Furthermore, every monad arises through an adjunction ...

Given a monad $\mathbb{T} = (T, \eta, \mu)$ on a category \mathbb{X} we may construct two categories with underlying right adjoints to \mathbb{X} which generate \mathbb{T} :

the Kleisli category $\mathbb{X}_{\mathbb{T}}$

and the **Eilenberg-Moore** category $\mathbb{X}^{\mathbb{T}}$

so that any $U: \mathbb{Y} \longrightarrow \mathbb{X}$ a right adjoint which also generates \mathbb{T} sits canonically between these categories:

MONADS AND EFFECTS

Computational effects (exceptions, state, continuations,

non-determinism ...) can be generated by using the composition of Kleisli categories.

Here is the definition of X_T (e.g. think list monad):

Objects:

 $X \in \mathbb{X}$

Maps:

$$\frac{X \xrightarrow{f} T(Y) \in \mathbb{X}}{X \xrightarrow{f} Y \in \mathbb{X}_{\mathbb{T}}}$$

Identities:

$$egin{array}{ccc} X & \stackrel{\eta_X}{\longrightarrow} & \mathcal{T}(X) \in \mathbb{X} \ \hline X & \stackrel{1_X}{\longrightarrow} & X \in \mathbb{X}_{\mathbb{T}} \end{array}$$

Composition:

$$\frac{X \xrightarrow{f} T(Y) \xrightarrow{T(f)} T^2(Z) \xrightarrow{\mu} T(Z) \in \mathbb{X}}{X \xrightarrow{f} Y \xrightarrow{g} Z \in \mathbb{X}_{\mathbb{T}}}$$

MONADS AND EFFECTS

Incomplete history of monads:

- Named by Mac Lane (Categories for Working Mathematician)
- Known first as "standard construction" (Eilenberg, Moore) also "triple" (Barr)
- Kleisli discovered the "Kleisli category"
- Ernie Manes introduced the form of a monad used in Haskell
- Moggi developed computer Science examples (rediscovered Manes form for monad) and calculi for monads (probably motivated by the partial map classifier – a very well behaved monad),
- Wadler made the connection to list comprehension and uses in programming,
- ... do syntax.

MATHEMATICS CAME FIRST ON THIS ONE ...

FUNCTORIAL CALCULUS

The functorial calculus has turned out to be a useful practical and theoretical tool in programming language semantics and implementation ...

Everyone should know it!!

Although very important this is not the focus of these talks!

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

INITIAL AND FINAL OBJECTS

An **initial object** in a category X is an object which has exactly one map to every object (including itself) in the category.

Denote the initial object by 0 and the unique map as $?_A : 0 \rightarrow A$.

Dual to an initial object is a **final object**: a final object in a category X is an object to which every object has exactly one map.

Denote the final object by the numeral 1 and the unique map by $!_A : A \rightarrow 1$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

What are these in Set, Mat(R), and Cat?

INITIAL AND FINAL OBJECTS

- In Set the initial object is the empty set and the final object is any one element set.
- In Mat(R) the initial object and the final object is the 0-dimensional object.
- In Cat the initial object is the empty category and the final category is any category with one object and one arrow.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

INITIAL AND FINAL OBJECTS A simple observation is:

Lemma

If K and K' are initial in \mathbb{C} then there is a unique isomorphism $\alpha: K \longrightarrow K'$.

PROOF: As K is initial there is exactly one map $\alpha: K \to K'$. Conversely, as K' is initial there is a unique map $\alpha': K' \to K$. This map is the inverse of α as $\alpha \alpha': K \to K$ is the unique endo-map on K namely the identity and similarly we obtain $\alpha' \alpha = 1'_K$.

Thus initial objects (and by duality final objects) are unique up to unique isomorphism.

PRODUCTS AND COPRODUCTS

Let A and B be objects in a category then a **product** of A and B is an object, $A \times B$, equipped with two maps $\pi_0 : A \times B \longrightarrow A$ and $\pi_1 : A \times B \longrightarrow B$ such that given any object W with two maps $f : W \longrightarrow A$ and $g : W \longrightarrow B$ there is a unique map $\langle f, g \rangle : W$ $\longrightarrow A \times B$, such that $\langle f, g \rangle \pi_0 = f$ and $\langle f, g \rangle \pi_1 = g$. That is:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

The maps π_0 and π_1 are called **projections**.

Coproducts are dual.

PRODUCTS AND COPRODUCTS

In Set the product is the cartesian product and the coproduct is the disjoint union.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- In Mat(R) the product of n and m and the coproduct is n + m.
- In Cat the product puts the categories in parallel the coproduct puts them side-by-side.

Are projections epic? In Set consider $A \times 0 \xrightarrow[\pi_0]{\pi_0} A$.

PRODUCTS AS ADJOINTS

Given any category there is always a "diagonal" functor:

$$\Delta: \mathbb{X} \longrightarrow \mathbb{X} \times \mathbb{X}; \begin{array}{ccc} X & X \times X & (x,y) \\ f & \downarrow & & \downarrow f \times f & & \downarrow \\ Y & Y \times Y & & (f(x),f(y) \end{array}$$

having products amounts to requiring that this functor is a left adjoint (namely $(Y, Z) \mapsto X \times Z)!$

Here $\Delta = \langle 1_X, 1_X \rangle$ is the diagonal map in the category ...

PRODUCTS AND COPRODUCTS It follows $_ \times _$ is a functor $f \times g$ is define as $\langle \pi_0 f, \pi_1 g \rangle$:

Any binary product has a symmetry map:

Note that $c_{AB}c_{BA} = 1_{A \times B}$ and so it is an isomorphism.

LIMITS AND COLIMITS

A **diagram**in \mathbb{X} is a functor $D : \mathbb{G} \to \mathbb{X}$ from a small category \mathbb{G} . A *D*-**cone** over this diagram consists of an object *A*, called the **apex** of the cone together with for each node *N* of \mathbb{G} a map $\alpha_N : A \to D(N)$ such that for each arrow of \mathbb{G} , $a : N_1 \to N_2$, we have $\alpha_{N_1}G(a) = \alpha_{N_2}$.

A morphism of cones $(\alpha, h, \beta) : \alpha \longrightarrow \beta$ is given by a map in \mathbb{C} , $h : A \longrightarrow B$ between the apexes of the cones such that $\alpha_N = h\beta_N$ for all the nodes of the diagram.

Lemma

The cones over $D : \mathbb{G} \to \mathbb{C}$ form a category, $\text{Cone}_D(\mathbb{C})$, with objects the cones and maps the morphisms of cones.

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

ADJOINTS and LIMITS Because a limit is given by a couniversal property

RIGHT ADJOINTS PRESERVE LIMITS

Dually

LEFT ADJOINTS PRESERVE COLIMITS

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

EQUALIZERS An equalizer diagram is a parallel pair of arrows:

$$A \xrightarrow{f} B$$

a cone for the above equalizer diagram is determined by a map to $q: Q \rightarrow A$. Such a map is said to equalize f and g as qf = qg. A limit (E, e) is called **the equalizer** (even though it is not unique) and satisfies the property

that there is a unique k such that ke = q.

Lemma

Suppose (E, e) is the equalizer of $A \xrightarrow{f} B$ then e is monic.

COMPLETENESS AND COCOMPLETENESS Final objects $\mathbb{G} = 0$, products $\mathbb{G} = 1 + 1$.

A category is **complete** when it has limits for all small diagrams. Dually it is **cocomplete** if it has colimits for all small diagrams.

There is an important theorem:

Theorem

A category is complete if and only if it has all products and equalizers.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

PULLBACKS

Another important limit is the pullback (especially to these talks). A **pullback diagram** is a binary fan of arrows:

$$B \xrightarrow{g} C$$

a cone is given by a Q together with maps $q_A : Q \rightarrow A$ and $q_B : Q \rightarrow B$ such that $q_A f = q_B g$. A limit (E, e_A, e_B) is called **the pullback**: $Q \searrow$

and has a unique comparison map k from any cone such that $ke_A = q_A$ and $ke_B = q_B$.

PULLBACKS Products and equalizers imply pullbacks:

is a pullback if and only if

$$P \xrightarrow{\langle f', g' \rangle} A \times B \xrightarrow{\pi_1 g} C$$

is an equalizer.

In Set the pullback is a subset of the product:

$$\{(a,b)|f(a)=g(b)\}\subseteq A imes B$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

PULLBACKS

Lemma

In any category the pullback of a monic along any map is a monic. PROOF: Suppose g is monic and $k_1e_A = k_2e_A$ then

$$k_1e_Bg=k_1e_Af=k_2e_Af=k_2e_Bg$$

so as g is monic $k_1e_B = k_2e_B$.

However, this makes k_1 and k_2 comparison maps from the outer square to the pullback.

ヘロン 人間 とくほと 人ほとう

PULLBACKS

Lemma

In any category $f : A \rightarrow B$ is monic iff the followings is a pullback:

PROOF: If xf = yf there is a unique comparison map

which shows x = y. Conversely if f is monic then whenever we form the outer square x = y, so this gives a comparison map, whose uniqueness is forced by the fact that f is monic.

PULLBACKS As right adjoints preserve pullbacks

RIGHT ADJOINTS PRESERVE MONICS

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

and dually ..

PULLBACKS

Lemma

In the following (commuting) diagram:

- *(i) if the two inner squares are pullbacks the outer square is a pullback;*
- *(ii)* if the rightmost square and outer square is a pullback the leftmost square is a pullback.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

PULLBACKS Products and pullbacks imply equalizers:

Lemma

The following square is a pullback

if and only if

$$E \stackrel{e}{\longrightarrow} X \stackrel{f}{\xrightarrow{g}} Y$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

is the equalizer.

PULLBACKS Pullbacks and a final object imply products:

Lemma

The following square is a pullback

if and only if

$$A \xleftarrow{\pi_0} A \times B \xrightarrow{\pi_1} B$$

is a product.

And so one has all finite limits when one has pullbacks and a final object ...

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆