
Elements of Category Theory

Robin Cockett

Department of Computer Science
University of Calgary

Alberta, Canada

robin@cpsc.ucalgary.ca

Estonia, Feb. 2010

Functors and natural transformations

Adjoints and Monads

Limits and colimits

Pullbacks

FUNCTORS
A functor is a map of categories F : X −→ Y which consists of a
map F0 of the objects and a map F1 of the maps (we shall drop
these subscripts) such that

◮ ∂0(F (f)) = F (∂0(f)) and ∂1(F (f)) = F (∂1(f)):

X
f
−−→ Y

F (X) −−−−→
F (f)

F (Y)

◮ F (1A) = 1F (A), identity maps are preserved.

◮ F (fg) = F (f)F (g), composition is preserved.

Every category has an identity functor.
Composition of functors is associative. Thus:

Lemma
Categories and functors form a category Cat.

EXAMPLES OF Set FUNCTORS

◮ The product (with A) functor

× A : Set −→ Set;

X

f

��
Y

7→

X × A

f ×1

��

(x , a)
_

��
Y × A (f (x), a)

◮ The exponential functor:

A⇒ : Set −→ Set;

X

f

��
Y

7→

A⇒ X

A⇒f

��

h_

��
A⇒ Y hf

EXAMPLES OF Set FUNCTORS

◮ List on A (data L(A) = Nil | Cons A L(A))

L : Set −→ Set;

X

f
��

Y

7→

L(X)

L(f)
��

[x1, x2, ...]_

��
L(Y) [f (x1), f (x2), ...]

◮ Trees on A (data T(A) = Lf A | Node T(A) T(A)):

T : Set −→ Set;

X

f
��

Y

7→

T(X)

T(f)
��

Node(Lf x1)(Lf x2)_

��
T(Y) Node(Lf f (x1))(Lf f (x2))

EXAMPLES OF Set FUNCTORS

◮ The covariant powerset functor:

P : Set −→ Set;

X

f
��

Y

7→

P(X)

P(f)
��

X ′ ⊆ X_

��
P(Y) f (X ′) ⊆ Y

◮ The contravariant powerset functor:

P : Setop −→ Set;

X

Y

f

OO

7→

P(X)

P(f)

��

X ′ ⊆ X_

��
P(Y) f −1(X ′) ⊆ Y

Note: covariant functors are functors, contravariant functors are
functors BUT starting at the dual category.

NATURAL TRANSFORMATIONS
Given two functors F ,G : X −→ Y a (natural) transformation
α : F ⇒ G is a family of maps in Y αX : F (X) −→ G (X), indexed
by the objects X ∈ X such that for every map f : X −→ X ′ in X

the following diagram commutes:

F (X)
F (f) //

αX

��

F (X ′)

αX ′

��
G (X)

G(f)
// G (X ′)

This means that Cat(X, Y) can be given the structure of a
category. In fact, Cat is a Cat-enriched category (a.k.a. a
2-category).

Lemma
Cat(X, Y) is a category with objects functors and maps natural
transformations.

NATURAL TRANSFORMATION EXAMPLE I
Consider the category:

TWO = E
∂0 //

∂0

// N

A functor G : TWO −→ Set is precisely a directed graph!!

A natural transformation between two functors:

α : G1 −→ G2 : TWO −→ Set

is precisely a morphism of the directed graphs.

αNG1(∂i)(f) = G2(∂i)(αE (f)).

NATURAL TRANSFORMATION EXAMPLE II
Consider the category N

op:

0 1
∂

oo 2
∂

oo
∂

oo

A functor F : N
op −→ Set is a forest. The children of a node

x ∈ F (n) in the forest is given by {x ′ ∈ F (n + 1)|∂(x ′) = x}.

A natural transformation between two functors

γ : F1 −→ F2 : N
op −→ Set

is precisely a morphism of forests:

γn(F1(∂)(x)) = F2(∂)(γn+1(x)).

NATURAL TRANSFORMATION ...

If functors define structure ...

Then natural transformation define the (natural) homomorphisms
of that structure ...

UNIVERSAL PROPERTY
Let G : Y −→ X be a functor and X ∈ X, then an object U ∈ Y

together with a map η : X −→ G (U) is a universal pair for the
functor G (at the object X) if for any f : X −→ G (Y) there is a
unique f ♯ : U −→ Y such that

X
ηX //

f !!C
CC

CC
CC

CC
G (U)

G(f ♯)
��

G (Y)

commutes.

UNIVERSAL PROPERTY – EXAMPLE I
let Graph be the category of directed graphs and Cat the category
of categories, let the functor

U : Cat −→ Graph

be the “underlying functor” which forgets the composition
structure of a category.

The map which takes a directed graph and embeds it into the
graph underlying the path category as the singleton paths (paths
of length one)

η : G −→ U(Path(G)); [n1
a
−−→ n2] 7→ (n1, [a], n2)

has the universal property for this “underlying” functor U.

UNIVERSAL PROPERTY – EXAMPLE cont.
Consider a map of directed graphs into the graph underlying a
category, h : G −→ U(C), we can extend it uniquely to a functor
from the path category to the category by defining

h♯ : Path(G) −→ C; (A, [a1, .., an],B) 7→ h(a1)..h(an) : h(A) −→ h(B)

This is uniquely determined by h as where the “generating” arrows
go determines where the composite arrows go.

UNIVERSAL PROPERTY – EXAMPLE ...
For those more mathematically inclined:

Consider the category of Group then there is an obvious underlying
functor U : Group −→ Set.

The pair (F(X), η) where η : X −→ U(F(X)) is a universal pair for
this underlying functor

X
ηX//

f ##H
HH

HH
HH

HH
H U(F(X))

U(f ♯)
��

U(Y)

The diagram expresses the property of being a “free” group (or
more generally “free” algebra).

ADJOINT
Suppose G : Y −→ X has for each X ∈ X a universal pair
(F (X), ηX) so that

X
ηX //

f ##G
GG

GG
GG

GG
G G (F (X))

G(f ♯)
��

G (Y)

then G is said to be a right adjoint.

If h : X −→ X ′ ∈ X then define F (h) := (hηX ′)♯

then F is a functor ...
F is left adjoint to G .

η : 1X −→ FG is a natural transformation ...

ADJOINT Furthermore, ǫY := (1G(Y))
♯ : GF −→ 1Y is a natural

transformation

G (Y)
ηG(Y)//

MMMMMMMMMM

MMMMMMMMMM
G (F (G (X)))

U((1G(Y))
♯)

��
G (Y)

ADJOINT
This gives the following data (and adjunction):

(η, ǫ) : F ⊣ G : X −→ Y

◮ F : X −→ Y and G : Y −→ X functors

◮ η : 1X −→ FG and ǫ : GF −→ 1Y natural transformations

◮ Triangle equalities:

G (Y)

MMMMMMMMMM

MMMMMMMMMM

ηG(Y)// G (F (G (Y)))

ǫY

��
G (Y)

F (X)
F (ηX)//

MMMMMMMMMM

MMMMMMMMMM
F (G (F (X)))

ǫF (X)

��
F (X)

This data is purely algebraic and is precisely to ask F be left
adjoint to G !

ADJOINT
Another important characterization:

X
f = g♭

−−−−−→ G (Y)

F (X) −−−−−→
g = f ♯

Y

And another important example: cartesian closed categories:

A× X
f
−−→ Y

X −−−−−−→
curry(f)

A⇒ Y

Semantics of the typed λ-calculus.

ADJOINT
Here is the couniversal property for A⇒ B :

A× Y
f

((QQQQQQQQQQQQQQQ

1×curry(f)
��

A× A⇒ B
eval

// B

curry(f) = y 7→ λa.f (a, x)

MONADS (briefly)
Given an adjunction

(η, ǫ) : F ⊣ G : X −→ Y

consider T := FG we have two transformations:

ηX : X −→ T (X) = G (F (X))

µX : T (T (X)) −→ T (X) = G (F (G (F (X))))
G(ǫF (X))
−−−−−−→ G (F (X))

and one can check these satisfy:

T (X)

KKKKKKKKK

KKKKKKKKK

ηT (X)// T (T (X))

µ

��

T (X)
T (ηX)oo

sssssssss

sssssssss

T (X)

T (T (T (X)))

T (µ)
��

µ // T (T (X))

µ

��
T (T (X))

µ
// T (X)

Such a (T , η, µ) is called a monad.

ADJUNCTIONS AND MONADS
Any adjunction

(η, ǫ) : F ⊣ G : X −→ Y

generates an monad on X and a comonad on Y.

Furthermore, every monad arises through an adjunction ...

Given a monad T = (T , η, µ) on a category X we may construct
two categories with underlying right adjoints to X which generate
T:
the Kleisli category XT

and the Eilenberg-Moore category X
T

so that any U : Y −→ X a right adjoint which also generates T sits
canonically between these categories:

XT
//

U A
AA

AA
AA

A Y

U

��

//
X

T

U~~}}
}}

}}
}}

X

MONADS AND EFFECTS
Computational effects (exceptions, state, continuations,
non-determinism ...) can be generated by using the composition of
Kleisli categories.
Here is the definition of XT (e.g. think list monad):

Objects:
X ∈ X

Maps:

X
f
−−→ T (Y) ∈ X

X
f
−−→ Y ∈ XT

Identities:
X

ηX−−→ T (X) ∈ X

X
1X−−→ X ∈ XT

Composition:

X
f
−−→ T (Y)

T (f)
−−−−→ T 2(Z)

µ
−−→ T (Z) ∈ X

X
f
−−→ Y

g
−−→ Z ∈ XT

MONADS AND EFFECTS
Incomplete history of monads:

◮ Named by Mac Lane (Categories for Working Mathematician)

◮ Known first as “standard construction” (Eilenberg, Moore)
also “triple” (Barr)

◮ Kleisli discovered the “Kleisli category”

◮ Ernie Manes introduced the form of a monad used in Haskell

◮ Moggi developed computer Science examples (rediscovered
Manes form for monad) and calculi for monads (probably
motivated by the partial map classifier – a very well behaved
monad),

◮ Wadler made the connection to list comprehension and uses in
programming,

◮ ... do syntax.

MATHEMATICS CAME FIRST ON THIS ONE ...

FUNCTORIAL CALCULUS

The functorial calculus has turned out to be a useful practical and
theoretical tool in programming language semantics and
implementation ...

Everyone should know it!!

Although very important this is not the focus of these talks!

INITIAL AND FINAL OBJECTS
An initial object in a category X is an object which has exactly
one map to every object (including itself) in the category.

Denote the initial object by 0 and the unique map as ?A : 0 −→ A.

Dual to an initial object is a final object: a final object in a
category X is an object to which every object has exactly one map.

Denote the final object by the numeral 1 and the unique map by
!A : A −→ 1.

What are these in Set, Mat(R), and Cat?

INITIAL AND FINAL OBJECTS

◮ In Set the initial object is the empty set and the final object is
any one element set.

◮ In Mat(R) the initial object and the final object is the
0-dimensional object.

◮ In Cat the initial object is the empty category and the final
category is any category with one object and one arrow.

INITIAL AND FINAL OBJECTS
A simple observation is:

Lemma
If K and K ′ are initial in C then there is a unique isomorphism
α : K −→ K ′.

Proof: As K is initial there is exactly one map α : K −→ K ′.
Conversely, as K ′ is initial there is a unique map α′ : K ′ −→ K .
This map is the inverse of α as αα′ : K −→ K is the unique
endo-map on K namely the identity and similarly we obtain
α′α = 1′K . �

Thus initial objects (and by duality final objects) are unique up to
unique isomorphism.

PRODUCTS AND COPRODUCTS
Let A and B be objects in a category then a product of A and B
is an object, A× B , equipped with two maps π0 : A× B −→ A and
π1 : A× B −→ B such that given any object W with two maps
f : W −→ A and g : W −→ B there is a unique map 〈f , g〉 : W
−→ A× B , such that 〈f , g〉π0 = f and 〈f , g〉π1 = g . That is:

A

W

f

44hhhhhhhhhhhhhhhhhhhhhhhh

g

**VVVVVVVVVVVVVVVVVVVVVVVV
〈f ,g〉 // A× B

π0

<<xxxxxxxxx

π1

""F
FF

FF
FF

FF

B

The maps π0 and π1 are called projections.

Coproducts are dual.

PRODUCTS AND COPRODUCTS

◮ In Set the product is the cartesian product and the coproduct
is the disjoint union.

◮ In Mat(R) the product of n and m and the coproduct is
n + m.

◮ In Cat the product puts the categories in parallel the
coproduct puts them side-by-side.

Are projections epic? In Set consider A× 0 −−→
π0

A.

PRODUCTS AS ADJOINTS
Given any category there is always a “diagonal” functor:

∆ : X −→ X× X;

X

f

��
Y

7→

X × X

f ×f

��

(x , y)
_

��
Y × Y (f (x), f (y)

having products amounts to requiring that this functor is a left
adjoint (namely (Y ,Z) 7→ X × Z)!

X

〈f ,g〉 ##F
FF

FF
FF

FF
∆ // X × X

f ×g

��
Y × Z

Here ∆ = 〈1X , 1X 〉 is the diagonal map in the category ...

PRODUCTS AND COPRODUCTS
It follows × is a functor f × g is define as 〈π0f , π1g〉:

A
f // A′

A× B

π0

99sssssssssss

π1

%%KKKKKKKKKK
f ×g // A′ × B ′

π0

;;wwwwwwwww

π1

##G
GG

GG
GG

GG

A′
g

// B ′

Any binary product has a symmetry map:

A

A× B

π0

33hhhhhhhhhhhhhhhhhhhhhhhh

π1
++VVVVVVVVVVVVVVVVVVVVVVVV

cAB // B × A

π1

<<xxxxxxxxx

π0

""F
FF

FF
FF

FF

B

Note that cABcBA = 1A×B and so it is an isomorphism.

LIMITS AND COLIMITS
A diagramin X is a functor D : G −→ X from a small category G.
A D–cone over this diagram consists of an object A, called the
apex of the cone together with for each node N of G a map
αN : A −→ D(N) such that for each arrow of G, a : N1 −→ N2, we
have αN1

G (a) = αN2
.

A morphism of cones (α, h, β) : α −→ β is given by a map in C,
h : A −→ B between the apexes of the cones such that αN = hβN

for all the nodes of the diagram.

Lemma
The cones over D : G −→ C form a category, ConeD(C), with
objects the cones and maps the morphisms of cones.

LIMITS AND COLIMITS
A limit of a diagram is a final object in ConeD(C). The apex of
this cone is written Lim(D) with projections πN : Lim(D) −→ G (N).

A //

αN1

��)
))

))
))

))
))

))
))

))
))

))
))

))
))

))
))

αN2

 @
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

αN3

��0
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

00
00

Lim(D)

πN1

}}{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

{{
{{

πN2

		��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

πN3

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

D(N1)
D(a) // D(N2)

D(N3)

D(b)

::uuuuuuuuu

ADJOINTS and LIMITS
Because a limit is given by a couniversal property

RIGHT ADJOINTS PRESERVE LIMITS

Dually

LEFT ADJOINTS PRESERVE COLIMITS

EQUALIZERS An equalizer diagram is a parallel pair of arrows:

A
f
−−→−−→
g

B

a cone for the above equalizer diagram is determined by a map to
q : Q −→ A. Such a map is said to equalize f and g as qf = qg . A
limit (E , e) is called the equalizer (even though it is not unique)
and satisfies the property

Q

k ��

q

''OOOOOOOOOOOOOO

E e
// A

f //

g
// B

that there is a unique k such that ke = q.

Lemma

Suppose (E , e) is the equalizer of A
f
−−→−−→
g

B then e is monic.

COMPLETENESS AND COCOMPLETENESS
Final objects G = 0, products G = 1 + 1.

A category is complete when it has limits for all small diagrams.
Dually it is cocomplete if it has colimits for all small diagrams.

There is an important theorem:

Theorem
A category is complete if and only if it has all products and
equalizers.

PULLBACKS
Another important limit is the pullback (especially to these talks).
A pullback diagram is a binary fan of arrows:

A

f
��

B g
// C

a cone is given by a Q together with maps qA : Q −→ A and
qB : Q −→ B such that qAf = qBg . A limit (E , eA, eB) is called
the pullback: Q

k

��

qA

''OOOOOOOOOOOOOOO

qB

��/
//

//
//

//
//

//
/

E eA

//

eB

��

A

f

��
B g

// C

and has a unique comparison map k from any cone such that
keA = qA and keB = qB .

PULLBACKS Products and equalizers imply pullbacks:

P
g ′

//

f ′

��

A

f

��
B g

// C

is a pullback if and only if

P
〈f ′, g ′〉
−−−−−→ A× B

π1g
−−−−→−−−−→
π0f

C

is an equalizer.

In Set the pullback is a subset of the product:

{(a, b)|f (a) = g(b)} ⊆ A× B

PULLBACKS

Lemma
In any category the pullback of a monic along any map is a monic.

Proof: Suppose g is monic and k1eA = k2eA then

k1eBg = k1eAf = k2eAf = k2eBg

so as g is monic k1eB = k2eB .

Q

k1eA=k2eA

''PPPPPPPPPPPPPPP

k1eB=k2eb

��0
00

00
00

00
00

00
0

E eA

//

eB

��

A

f

��
B //

g
// C

However, this makes k1 and k2 comparison maps from the outer
square to the pullback. �

PULLBACKS

Lemma
In any category f : A −→ B is monic iff the followings is a pullback:

A A

f

��
A

f
// B .

Proof: If xf = yf there is a unique comparison map

X
x

''OOOOOOOOOOOOOOO

y

��/
//

//
//

//
//

//
/

��
A A

f

��
A

f
// B .

which shows x = y . Conversely if f is monic then whenever we
form the outer square x = y , so this gives a comparison map,
whose uniqueness is forced by the fact that f is monic. �

PULLBACKS
As right adjoints preserve pullbacks

RIGHT ADJOINTS PRESERVE MONICS

and dually ..

PULLBACKS

Lemma
In the following (commuting) diagram:

A
f //

a

��

B
g //

b
��

C

c

��
A′

f ′
// B ′

g ′

// C ′

(i) if the two inner squares are pullbacks the outer square is a
pullback;

(ii) if the rightmost square and outer square is a pullback the
leftmost square is a pullback.

PULLBACKS
Products and pullbacks imply equalizers:

Lemma
The following square is a pullback

E

e′

��

e // X

〈f ,g〉
��

Y
∆
// Y × Y

if and only if

E
e
−−→ X

f
−−→−−→
g

Y

is the equalizer.

PULLBACKS
Pullbacks and a final object imply products:

Lemma
The following square is a pullback

A× B

π1

��

π0 // A

!
��

B
!

// 1

if and only if
A

π0←−− A× B
π1−−→ B

is a product.

And so one has all finite limits when one has pullbacks and a final
object ...

	Functors and natural transformations
	Adjoints and Monads
	Limits and colimits
	Pullbacks

