
Cartesian differential categories

J.R.B. Cockett

Department of Computer Science
University of Calgary

Alberta, Canada

robin@cpsc.ucalgary.ca

(work with Robert Seely and Rick Blute)

Ottawa, April/May 2009

Contents:

Getting going

Left-additive categories

Cartesian Differential Categories

Term Logic

Faà di Bruno

Getting going ...

I Differential categories = Seely category + differential operator

I Simple categorical axiomatization

I Easy to recognize (in retrospect)!

I Abstract framework for differentiation: lots of models

I Inspired by Ehrhard’s work: Köthe spaces, finiteness spaces
and (with Regnier) the differential λ-calculus.

I Many consequences ...

I Useful part of first year calculus ...

Getting going ...

Why is this not enough?

I Classical differential calculus is in the coKleisli category of a
differential category ..

WHAT DO THESE coKLEISLI CATEGORIES LOOK LIKE?

I Differential calculus rapidly moves onto manifolds ..

HOW DO YOU GET MANIFOLDS FROM COKLEISLI
CATEGORIES?

What about Orbifolds?

I Integration is as central as differentiation

WHAT IS INTEGRATION ABSTRACTLY?

Getting going ...

WHAT DO THESE coKLEISLI CATEGORIES LOOK LIKE?

... just write down the equations ...

HOW HARD CAN THAT BE?

Getting going ...

Well three years later we still had not got it right!

WHY?

A. We were idiotic?

B. Too much academic baggage ...

C. Too much calculus for the masses ...

D. Analysts stress solving problems ...

E. The structure of the area has been trampled on with:
I Preconceptions: what does dx mean?
I Manipulations without algebraic basis ..
I Didactic short-cuts to “help” students.

F. The axioms are quite tricky!

Getting going ...

The good news:

We have got the basic axiomatization right!

FINALLY!

Getting going ...

The bad news:

How do we know?

THE BEAST HAS MANY HEADS!..

Left-additive categories

A category X is a left-additive category in case:

I Each hom-set is a commutative monoid (0,+)

I f (g + h) = (fg) + (fh) and f 0 = 0.

A
f

−−→ B
g

−−→−−→
h

C

A map h is said to be additive if it also preserves the additive
structure on the right (f + g)h = (fh) + (gh) and 0h = 0.

A
f

−−→−−→
g

B
h

−−→ C

NOTE: additive maps will be the exception ...

Left-additive categories

Lemma
In any left additive category:

(i) 0 maps are additive;

(ii) additive maps are closed under addition;

(iii) additive maps are closed under composition;

(iv) identity maps are additive;

(v) if g is a retraction which is additive and the composite gh is
additive then h is additive;

(vi) if f is an isomorphism which is additive then f −1 is additive.

Additve maps form a subcategory ...

Left-additive categories

Example

(i) The category whose objects are commutative monoids CMon
but whose maps need not preserve the additive structure.

(ii) Real vector spaces with smooth maps.

(iii) The coKleisli category for any comonad on an additive
category. (Note: the functor need not be left-additive)

Left-additive categories

A Cartesian left-additive category is a left-additive category
with products such that:

I the maps π0, π1, and ∆ are additive;

I whenever f and g are additive then f × g (pairing preserves
additivity).

Lemma
The following are equivalent:

(i) A Cartesian left-additive category;

(ii) A left-additive category for which X+ has biproducts and the
the inclusion I : X+ −→ X creates products;

(iii) A Cartesian category X in which each object is equipped with
a chosen commutative monoid structure (+A : A × A
−→ A, 0A : 1 −→ A) such that
+A×B = 〈(π0 × π0)+A, (π1 × π1)+B〉 and 0A×B = 〈0A, 0B〉.

Left-additive categories

Lemma
In a Cartesian left-additive category:

(i) f is additive if and only if

(π0 +π1)f = π0f +π1f : A×A −→ B and 0f = 0 : 1 −→ B ;

(ii) g : A × X −→ B is additive in its second argument if and only
if

1×(π0+π1)g = (1×π0)g+(1×π1)g : A×X×X −→ B and (1×0)g = 0 : A×1 −→ B .

“Multi-additive maps” are maps which are aditive in each
argument.

All our earlier example are Cartesian left-additive categories!

Left-additive categories

A functor between Cartesian left-additive categories is Cartesian
left-additive in case

I F (f + g) = F (f) + F (g) and F (0) = 0;

I F preserves products strictly F (A × B) = F (A) × F (B).

Lemma
A Cartesian left-additive functor, F : X −→ Y, preserves additive
maps.and multi-additive maps.

We shall call the category of all cartesian left-additive categories
and cartesian left-additive functors CLAdd.

Cartesian Differential Categories

An operator D× on the maps of a Cartesian left-additive category

X
f

−−→ Y
X × X −−−−→

D×[f]
Y

is a Cartesian differential operator in case it satisfies:

[CD.1] D×[f + g] = D×[f] + D×[g] and D×[0] = 0;

[CD.2] 〈(h + k), v〉D×[f] = 〈h, v〉D×[f] + 〈k , v〉D×[f];

[CD.3] D×[1] = π0, D×[π0] = π0π0, and D×[π1] = π0π1;

[CD.4] D×[〈f , g〉] = 〈D×[f],D×[g]〉 (and D×[〈〉] = 〈〉);

[CD.5] D×[fg] = 〈D×[f], π1f 〉D×[g].

[CD.6] 〈〈f , 0〉, 〈h, g〉〉D×[D×[f]] = 〈f , h〉D×[f];

[CD.7] 〈〈0, f 〉, 〈g , h〉〉D×[D×[f]] = 〈〈0, g〉, 〈f , h〉〉D×[D×[f]]

A Cartesian left-additive category with a differential operator is a
Cartesian differential category.

Cartesian Differential Categories

What was so hard about that?

ANSWER: the last two rules!!

They are independent ...
They involve higher differentials ...
... where do they come from in differential categories?

Cartesian Differential Categories

[CD.1] D×[f + g] = D×[f] + D×[g] and D×[0] = 0;
(operator preserves additive structure)

[CD.2] 〈(h + k), v〉D×[f] = 〈h, v〉D×[f] + 〈k , v〉D×[f]
(always additive in first argument);

[CD.3] D×[1] = π0, D×[π0] = π0π0, and D×[π1] = π0π1

(coherence maps are linear -differential constant);

[CD.4] D×[〈f , g〉] = 〈D×[f],D×[g]〉 (and D×[〈〉] = 〈〉)
(opertor preserves pairing);

[CD.5] D×[fg] = 〈D×[f], π1f 〉D×[g] (chain rule);

[CD.6] 〈〈f , 0〉, 〈h, g〉〉D×[D×[f]] = 〈f , h〉D×[f]
(differentials are linear in first argument);

[CD.7] 〈〈0, f 〉, 〈g , h〉〉D×[D×[f]] = 〈〈0, g〉, 〈f , h〉〉D×[D×[f]]
(partial differentials commute);

Cartesian Differential Categories

Real vector spaces with smooth maps are the “standard” example
of a Cartesian differential category.






x1
...
xn




 7→






f1(x1, .., xn)
...

fm(x1, .., xn)
















x1
...
xn




 ,






u1
...
un









 7→







df1(x̃)
dx1

(x1) · u1 + ... + df1(x̃)
dxn

(xn) · un

...
dfm(x̃)

dx1
(x1) · u1 + ... + dfm(x̃)

dxn
(xn) · un







D

Cartesian Differential Categories

Every simple slice X[A] of a cartesian differential category, X, is a
cartesian differential category.

Free Cartesian differential categories on certain graphs ...

Cofree Cartesian differential categories from Faà di Bruno ...

Cartesian Differential Categories

The coKleisli category of a (symmetric) differential category is a
cartesian differential category.

The extra “symmetric” requirement is:

=

1 ⊗ d⊗; d⊗ = c ; 1 ⊗ d⊗; d⊗

Cartesian Differential Categories

This extra symmetric property is always true in a storage
differential category (has a bialgebra modality and codereliction).

∇ ∇

∇ ∇

η η

η η
C
C

C
C

C
C

C
C

�
�
�
�
�

�
�
�
�
�

=

1 ⊗ d⊗; d⊗ = c ; 1 ⊗ d⊗; d⊗

Cartesian Differential Categories
A map in a Cartesian differential category is said to be linear in
case D×[f] = π0f .

Lemma

(i) Linear maps are additive: 0,1, π0,π1 are linear map, and if f
and g are linear then f + g is linear;

(ii) Linear maps compose, include the identity maps and if f and
g are then f + g is linear;

(iii) 〈1, 0〉D×[f] is linear (uses [CD.6]);

(iv) If a and b are linear then the following inference holds:

A

a

��

f
// B

b
��

A′

f ′
// B ′

⇒ A × A

a×a

��

D×[f]
// B

b

��

A′ × A′

D×[f ′]
// B ′

(v) If f is an isomorphism and linear then f −1 is linear.

Cartesian Differential Categories

STRUCTURAL QUESTION:

When do the linear maps form a differential category?

When is the category the coKleisli category of the linear maps?

Still not completely resolved ...

Term logic

Cartesian differential categories have a term logic ... which makes
them much easier (possible) to work in.

Aim to make the term logic “look” like the standard notation for
differential calculus ...

Term logic

First the basic structural judgements:

Γ, x : T ` x : T
Proj

Γ ` t ′ : T ′

Γ, x : T ` t ′ : T ′ Weak

Γ ` t ′ : T ′

Γ, () : 1 ` t ′ : T ′ Unit
Γ, x : T1, y : T2 ` t ′ : T ′

Γ, (x , y) : T1 × T2 ` t ′ : T ′ Pair

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` (t1, t2) : T1 × T2
Tuple

Γ ` () : 1
UnitTuple

Term logic

Γ ` t1 : T Γ ` t2 : T
Γ ` t1 + t2 : T

Add
Γ ` 0 : T

Zero

{Γ ` ti : Ti}i=1,..,n f ∈ Ω(T1, ...,Tn;T)

Γ ` f (t1, ..., tn) : T
Fun

Γ, x : S ` t : T Γ ` s : S Γ ` u : S

Γ ` ∂t
∂x

(s) · u : T
Diff

Γ ` t1 : T Γ, x : T ` t2 : T ′

Γ ` t2[t1/x] : T ′ Cut

Note the differential term is a “binding”/”quantification” ...
No infinitesimals

Term logic

[Dt.1]
∂(t1 + t2)

∂p
(s) · u =

∂t1
∂p

(s) · u +
∂t2
∂p

(s) · u and

∂0

∂p
(s) · u = 0;

[Dt.2]
∂t

∂p
(s) · (u1 + u2) =

∂t

∂p
(s) · u1 +

∂t

∂p
(s) · u2 and

∂t

∂p
(s) · 0 = 0;

[Dt.3]
∂x

∂x
(s) · u = u,

∂t

∂(p, p′)
(s, s ′) · (u, 0) =

∂t[s ′/p′]

∂p
(s) · u and

∂t

∂(p, p′)
(s, s ′) · (0, u′) =

∂t[s/p]

∂p′
(s ′) · u′;

[Dt.4]
∂(t1, t2)

∂p
(s) · u =

(
∂t1
∂p

(s) · u,
∂t1
∂p

(s) · u

)

;

Term logic

[Dt.5]
∂t[t ′/p′]

∂p
(s) · u =

∂t

∂p′
(t ′[s/p]) ·

(
∂t ′

∂p
(s) · u

)

(The chain rule: no variable of p occur in t);

[Dt.5]
∂ ∂t

∂p
(s) · p′

∂p′
(r) · u =

∂t

∂p
(s) · u.

[Dt.5]
∂ ∂t

∂p1
(s1) · u1

∂p2
(s2) · u2 =

∂ ∂t
∂p2

(s2) · u2

∂p1
(s1) · u1

(Independence of partial derivatives: s1, u1, s2, u2 do not
contain variables from p1 or p2)

The term logic is standard calculus!

Faà di Bruno

Francesco Faà di Bruno (1825-1888) was an Italian of noble birth,
a soldier, a mathematician, and a priest. In 1988 he was beatified
by Pope John Paul II for his charitable work teaching young
women mathematics. As a mathematician he studied with Cauchy
in Paris. He was a tall man with a solitary disposition who spoke
seldom and, when teaching class, not always successfully. Perhaps
his most significant mathematical contribution concerned the
combinatorics of the higher-order chain rules. These results where
the cornerstone of “combinatorial analysis”: a subject which never
really took off.

Our interest is in the higher-order chain rule ...

Faà di Bruno

Higher-order derivatives are defined recursively:

d(1)t

dx
(p) · u =

dt

dx
(p) · u

d(n)t

dx
(p) · u1 · ... · un =

dd(n−1)t
dx

(x) · u1 · ... · un−1

dx
(p) · un

QUESTION:
What do the higher-order chain rule look like?

d(n)g(f (x))

dx
(p) · u1 · ... · un =????

The answer involves some combinatorics ...

Faà di Bruno

The second-order chain rule:

d(2)f (g(x))

dx
(p) · u1 · u2

=
ddf (g(y))

dy
(x) · u1

dx
(p) · u2

=
ddf (z)

dz
(g(x)) ·

(
dg(y)

dy
(x) · u1

)

dx
(p) · u2

=
d(2)f (z)

dz
(g(p)) ·

(
dg(y)

dy
(p) · u1

)

·

(
dg(x)

dx
(p) · u2

)

+
df (x)

dx
(g(p)) ·

(

d(2)g(x)

dx
(p) · u1 · u2

)

As n increases the expressions become much more complex!

Faà di Bruno

A symmetric tree of depth n ≥ 0 and in variables x1, ..., xm is:

I The only symmetric tree of height 0 has width 1 and is a
variable y ;

I A symmetric tree of height n ≥ 1 in the variables x1, ..., xm,
that is of width m, is an expression •r (t1, ..., tr) where each ti
is a symmetric tree of height n − 1 in the variables Xi , where
⊔r

i=1 Xi = X .

Note that the inductive step involves splitting the variables into r
disjoint non-empty subsets. The combinatorics of this is described
by Stirling numbers, of the second kind.
The operations at the nodes are viewed as being symmetric, or
commutative:

•r (t1, ..., tr) = •r (tσ(1), ..., tσ(r))

Faà di Bruno

Here are two representations of the same symmetric tree:

x1 x2 x3 x4 x5 x6 x7

•

4444

 • •

4444

 •

4444

• •

BBBBB
���� •

•

NNNNNNN
|||||

ffffffffffffffff

x7 x6 x2 x1 x4 x5 x3

•

4444

 •

7777
���� •

4444

 •

• • •

9999
|||||

•

TTTTTTTTTT

hhhhhhhhhhhhh

Faà di Bruno

A classification of the first few symmetric trees by height and
width:

width width width
1 2 3

hgt
1 x1

•

x1 x2

•

<<<<
����

x1 x2 x3

•

====
����

hgt
2 x1

•
•

x1 x2

•

7777
����

•

x1 x2

• •

•

<<<<<
�����

x1 x2 x3

• •

====

•

BBBBB
|||||

x1 x2 x3

•
���� •

•

BBBBB
|||||

x1 x2 x3

• • •

•

DDDDD
zzzzz

x1 x2 x3

•

====
����

•

Faà di Bruno

The differential of a symmetric tree τ of height n and width r
produces a bag of m trees of height n and width r + 1, where m is
the number of nodes of τ . The new trees of the differential are
produced by picking a node and adding a “limb” to the new
variable. The limb consists of a series of unary nodes applied to the
new variable: the unary nodes retain the uniform height of the tree.

x1 x2

• •
•

nnnnn

� ∂x3
//

x1 x2 x3 x1 x3 x2

• • • • •

•

FFFFFF
•

FFFFFF
xxxxxx

x1 x2 x3

• •

•

BBBBB
|||||

All symmetric trees of a given height and width can be obtained by
differentiating the unique tree of width one of the same height, ιh.

Faà di Bruno

The Faà di Bruno (bundle) category, Faà(X).

Objects: pairs of objects of the original category (A,X)
(diagonal case (A,A));

Maps: f : (A,X) −→ (B ,Y) are infinite sequences of
symmetric forms

f = (f∗, f1, f2, ...) : (A,X) −→ (B ,X)

Where f∗ : X −→ Y is a map in X and, for r > 1,

fr : A × ... × A
︸ ︷︷ ︸

r

×X −→ B

is additive in each of the first r arguments and
symmetric in these arguments.

Identities: (1, π0, ...) : (A,X) −→ (A,X)

Composition: Faà di Bruno convolution ...

Faà di Bruno
Faà di Bruno convolution ... when τ is the following tree

x1 x2 x4 x3

•

AAAA
}}}} •

•

FFFFFF
xxxxxx

then

(f , g)?τ(x) = (((x1, x2, x4, z)f3, (x3, z)f1, f∗(x))g2 : A × ... × A
︸ ︷︷ ︸

4

×X −→ C .

x1 x2 x4 x3 x

76540123f3

;;;;
���� 76540123f1 76540123f∗

76540123g2

;;;;
����

Notice that (f , g) ? τ(x) is additive in each argument except the
last when f and g have this property.

Faà di Bruno

Faà di Bruno convolution:

(fg)n =
∑

τ∈T n
2

(f , g) ? τ

where T n
2 is all symmetric trees of height 2 and width n. This

gives an associative composition with unit.

Observations:

I Faà : CLAdd −→ CLAdd is a functor;

I ε : Faà(X) −→ X; (f∗, f1, f2, ...) 7→ f∗ is a fibration and a
natural transformation in CLAdd;

I A differential Cartesian category has a section to this fibration:
f 7→ (f , f (1), f (2), ...)

Faà di Bruno

In fact we are currently filling in the details of:

Theorem
Faà : CLAdd −→ CLAdd gives a comonad on CLAdd which (when
restricted to diagonal objects) has coalgebras which are exactly
cartesian differential categories.

More proof of the pudding ...

END

	Getting going
	Left-additive categories
	Cartesian Differential Categories
	Term Logic
	Faà di Bruno

