FOCUS on education-an interactive computer system for the development and analysis of repertory grids

Mildred L. G. Shaw and Laurie F. Thomas
Centre for the Study of Human Learning, Brunel University, Uxbridge, Middlesex, U.K.

(Received 1 June 1977 and in revised form 30 September 1977)

Abstract

Most teachers and tutors would agree that they achieve their best results when they "start from where the learner is". However, the techniques offered by psychology to help the teacher such as attitude scales, personality tests and questionnaires are less than satisfactory. The Kelly repertory grid is a new tool recently being used more extensively in education to raise the learner's awareness of the learning process, but many users have found the analysis of the grid difficult and unhelpful, and the structure too rigid.

This paper describes two BASIC computer programs to elicit and analyse grids easily and clearly. FOCUS uses a two-way cluster analytic method to re-order the constructs and the elements to highlight similarities and differences in the grid, and displays the focused results together with tree diagrams of the similarities in elements and constructs. PEGASUS is an interactive program which conversationally elicits a grid, processes and offers real-time feedback commentary on the results.

Introduction

One of the basic problems of education is that everyone has a different view of what it is and how it may be achieved. However, most would agree that education includes learning to think, to become sensitive and aware, to be competent, appreciate the world around us, and to live fully.

An important part of education is instruction, which involves following the tradition and convention of doing things in the most successful way. One example of this is the literacy and numeracy which we see as useful accumulated experience of the human race. Instruction is the passing on of a coherent body of knowledge and skills, and to be effective in education must align the teacher's prospective purposes with the learner's retrospective values. In other words, the learner must at least partially suspend his own values and judgment in order to take on those of the teacher with respect to the particular subject area.

Much of what is done in schools, colleges, polytechnics and universities comes into this category, and is in most cases done well and with integrity. Dearden (1967) has noted that we must be on our guard not to think of instruction as being browbeating and hectoring by an offensive teacher. In societies where scientific and technical understanding is not very advanced it is necessary to pass on the knowledge and values of the culture via the teacher, but in our society where knowledge is ever changing, we need to develop flexibility, awareness of the meaning of learning, and the ability of each person
to organize his or her own education and learning in terms of both "content" and "method".
"Content" is currently a controversial area which is especially concerning the Schools Council (1975) but is outside the scope of the present paper. "Method" involves seeing overall patterns and having the ability and expertise to see the relevance of them in different problem-solving situations. Method in learning is always an active process involving both problem identification and problem solving, and education enables one to exercise these competences in an increasing variety and complexity of situations. Learning requires an attitude of mind which may run counter to being taught or effectively instructed, although a proficient learner is able to extract an education from a course of instruction.

Facilitating learning

Facilitating learning is usually done in one of two ways: by organizing the content so that it slips in unobserved, or by enabling the learner to handle less palatable material. A good infant teacher intuitively does this very well, but the problems increase with the age of the learner. The techniques used by the teacher of young children take account of the facts that: it is relatively easy to gain the attention of the infant, and temporarily interest him or her in new things; the content is not over-emphasized but is often less important than the activities and processes of learning; and most important, there is less discrepancy between what the infant thinks and feels and what he or she says. Consequently, to find where the child is and to start from there is a feasible proposition. In the secondary school and in further and higher education the learners-children or students-may have developed in many directions and the adage "start from where the learner is" becomes almost impossible for all but the "born" teacher to do intuitively.

The experienced teacher may be able to make informed guesses which work some of the time for some of the class, but there is a need for a simple technique for encouraging each learner to express his or her understanding of a topic or area in his or her own terms in a form which both the learner and the teacher or tutor can easily understand and use.

Psychological techniques

Psychology has offered the teacher many techniques for discovering where the learner is but very few of these have proved to be of lasting value. Questionnaires, attitude scales, and many observation techniques are intended to do just that. However, they all presuppose that the learner can use the terms offered to him. A questionnaire necessarily asks questions that embody the position of the question asker, and the good conventional personality test, for example, would pride itself in having a high reliability which can be taken as a measure of its resistance to change. Attitude scales, even including the categories in the Affective Domain of Bloom's Taxonomy of Educational Objectives (Bloom, Engelhart, Furst, Hill \& Krathworth, 1964) presuppose that the subject thinks and feels about the issue in the terms of the measuring device. Observation techniques such as those devised by Flanders (1960) and Bales (1950) are also designed to help the teachers to understand the teacher-learner situation more clearly, but too often the categories seem inappropriate to their own understanding of events.

Personal constructs and the Kelly Repertory Grid

However, there is a technique in psychology which does allow a person to discover the terms in which he experiences attitudes, thoughts and feelings. This is the Kelly Repertory Grid. George Kelly (1955) developed the theory of personal constructs to explain how similar events could produce quite different behaviour in different people. He suggests that each person has a unique system through which he experiences life. The individual's system of personal constructs is like a pair of spectacles focusing and colouring the world.

In a grid the universe of discourse is represented by a set of elements. Kelly used as his elements people well known to the person, but elements of all kinds are suitable. These elements are then presented in triads and a construct elicited by saying in what way two are alike and why the other differs. For instance, think of three school subjectsMathematics, English Literature and Art. In what way are two of these similar and different from the other.

Jane says: "Mathematics and English Literature are alike because they are about a body of knowledge and Art is about self expression";
Philip says: "English Literature and Art are alike because they are about life and Mathematics is abstract";
Peter says: "Mathematics and Art are alike because they are about communication by symbols and forms and English Literature is about communication by words";
Mary says: "Mathematics and English Literature are alike because they are useful in life and Art is a waste of time".

Already it is clear that there are different opinions and values. Each of these dimensions is called a construct, and is in fact a personal construct if it is expressed in the person's own terms.

To elicit further constructs another triad of elements may be taken and grouped into a pair and a singleton in a similar way. As each construct is elicited all the elements (not just the three in the triad) are assigned to one end or the other. For example, Jane used her construct:

Fig. 1.
You may disagree with her opinion, but you begin to understand how she views these subjects. The following grid is elicited about books read in the last term. In this grid, a
five point rating scale is used to differentiate more sensitively between the ends or poles of the constructs.

FAMILIAR GIVE UP ANY TIME 2	$\begin{array}{llllllllll}5 & 1 & 1 & 5 & 4 & 2 & 4 & 4 & 5 & 2 \\ 5 & 4 & 1 & 4 & 2 & 1 & 5 & 3 & 2 & 2\end{array}$	different view ADDICTIVE
LOW LASTING INFLUENCE 3	41155314521	HIGH LASTING INFLUENCE
LESS ATtRACTIVE 4	$4 \begin{array}{llllllllll}4 & 5 & 1 & 3 & 4 & 1 & 4 & 4 & 1 & 5\end{array}$	ATTRACTIVE
EASY 5	$1 \begin{array}{llllllllll}1 & 3 & 4 & 2 & 1 & 1 & 2 & 5\end{array}$	DIFFICULT
SERIOUS 6		ENTERTAINING
FACTS MORE IMPORTANT 7	$\begin{array}{lllllllllll}5 & 2 & 1 & 5 & 4 & 4 & 5 & 2 & 5 & 1\end{array}$	IDEAS MORE IMPORTANT
COGNITIVE IMPACT 8	$4 \begin{array}{llllllllll}4 & 1 & 2 & 5 & 5 & 2 & 2 & 5 & 1\end{array}$	EMOTIONAL IMPACT
		USTER ANALYSIS OURTH WAY OGY OF LEARNING MATHEMATICS E ART OF MOTORCYCLE MAINTENANCE CURE

Fig. 2.

Focusing the grid

The FOCUS computer program developed and written by the authors (Thomas \& Shaw, 1976) analyses the grid using a two-way cluster analysis to re-order systematically the rows of constructs and columns of elements to produce a FOCUSed grid showing the least variation between adjacent constructs and adjacent elements. This is done with respect to the way in which the constructs order the elements rather than by the verbal labels given to the poles of the construct. This method allows the feedback of the FOCUSed grid to proceed with less mathematical mystification and more insight and understanding. The relationships are highlighted by the tree diagram which shows the highest similarities in the clusters. Appendix 2 shows a sample output from the FOCUS program.

The FOCUS program has been used by people in industry for quality control, management selection and development, appraisal of subordinates, and for the selection of observers in assessment centres. In therapy it has been used with children and adolescents in psychiatric units and hospitals, and in education to investigate the content of children's reading, and the ways student teachers use their teaching practice. It has also been used for the evaluation of courses and in the investigation of magistrates' decision-making.

As an articulator of conversation, the focused grid is a crude but useful tool. It is the beginnings of a psychological reflector which can reflect back to a person a view of himself as seen with his own eyes. However, during the feedback of the results the elicitee may wish to add to his grid as his awareness increases. PEGASUS provides the facility for doing that.

PEGASUS—eliciting personal models

PEGASUS or "Program Elicits a Grid And Sorts Using Similarities" is an interactive computer program for eliciting a person's model of the world, using a grid structure (Thomas \& Shaw, 1977). Figure 3 is a user's flow diagram of PEGASUS. It does not demonstrate the complete flow of the program but only the interaction, which divides into six sections. The first one is the "Basic Grid" in which explanations are given and the first four constructs are elicited.

Before choosing his elements the user is asked to think about his purpose for eliciting the grid. This is of great importance for the interaction which is to follow, as it sets both the intentionalities and the universe of discourse. The mutual dependencies of the elements on the purpose, the constructs on the elements, and the purpose jointly on the elements and constructs, contributes to the satisfaction and satisfactoriness of the process of elicitation. The user is then asked for six elements which represent his universe of discourse. It is essential that initially elements are of the same type so that meaningful comparisons can be made. As the elicitation proceeds he may add elements at different stages in the process, and for different reasons, but each time he must keep in mind his purpose, and ensure that the list of elements continues to be representative. If during the process of elicitation the purpose is modified, elements of a different type may be added and other elements dropped. Traditionally, the elements that have been used have been people, especially "significant others", but the authors have used a variety of elements related to a wide variety of purposes. Some of these have been sculptures, significant learning events, audio-visual equipment, graphic art, L.P. records, examination scripts, prospective careers, mathematical concepts and books.

As each construct is elicited, the poles are named and ratings assigned to each of the elements on this dimension. The elements are then grouped according to the ratings given to highlight the patterning and allow the user to revise his ratings or pole names if he wishes. After four constructs the elicitation moves into the second phase where the procedure is less like the traditional grid elicitation and more individual freedom is given. This takes various forms such as the user choosing his own triad, or adding a construct without using a triad; adding or deleting elements; deleting constructs; choosing to see his grid displayed in a focused form; or choosing when to finish. After each input from the user the computer processes, re-orders and feeds back the results of the processing where appropriate. The feedback concerns the matching or similar use of constructs, and the matching or similar use of elements; and gives opportunities to act on the information given at each stage. Very little structure is imposed on the user, and a variety of choice is given wherever possible. Appendix 3 shows a sample output from the PEGASUS program and Fig. 4 is an annotated form of the final restl.

The user may choose to finish when he feels that his grid is complete, and see the analysis of the results. Although the FOCUSing and the feedback of results is an important part of the PEGASUS procedure, the elicitation experience is both stimulating and demanding. The computer acts as a cognitive mirror in which the user sees himself through his own eyes, perhaps for the first time. Much of this experience may not be visible in the results, but a greater understanding of oneself and one's models often develops after the interaction with PEGASUS-the mythological winged horse.

The PEGASUS grid differs from the Kelly Repertory Grid in that it encourages the user to explore the differentiations he can learn to make rather than just elicits those he does habitually make. This is due to the rigorous feedback and the opportunities and

Fig. 3. The PEGASUS flow diagram.

THIS IS ARTHUR'S GRID
PURPOSE:
EXFLLDRE LEARNING SITUATIONS
$\stackrel{-1}{0}$
$\underset{N}{N}$
$\underset{\infty}{\infty}$
M

8
71
$\stackrel{12}{1}$
か $\stackrel{4}{\infty}$
Arthur's focused grid with element and construct trees
Fig. 4.
encouragement to change which is given. It is felt that learning is exhibited by changes in construing and should be actively encouraged.

Learning-centred grids

Consequently this program can be approached from two points of view: the "gridcentred" approach of the Kelly Repertory Grid; and the "learning-centred" approach of cognitive modelling.

Users familiar with the Kelly Repertory Grid will see the program as a convenient package for eliciting grids and extending their application by using the real-time data processing of the computer to provide feedback during the elicitation, and analysis of the results immediately on completion. Although this facility can provide a powerful aid to anyone who is using grids in a conversational form, this "grid-centred" point of view does not make full use of the potential of this type of program. Kelly has put forward a view of Man as Scientist, modelling reality-people, events and thingsto enable him to anticipate and act on the basis of this anticipation. The quality of a person's models, both specific and general, will determine the level of skill, coping, competence and creativity he will be able to achieve. There is a rich potential for deepening understanding and heightening awareness of the world in interactive computer programs like PEGASUS.

Developing psychological tools

The underlying belicf is that models of meaning are best elicited using the conversational method. Conversations may take place between two people, in a group of people, or within one person. Conversational heuristics are embodied in context free forms, of which one is the PEGASUS grid in which a conversation within one person is held through the computer. The nature of the heuristic determines the nature of the model of meaning elicited, the mental processes used and the modelling facility which is amplified and brought to bear.

PEGASUS-BANK is an addition to the PEGASUS program. It allows a bank of constructs to be stored in the computer representing an "expert" view of an area of public knowledge. As the processing takes place, continual comparison with the bank gives feedback on how the user's constructs map on to the expert's construing of the same elements. Since the comparison is made in terms of how the construct orders the elements rather than in terms of the verbal labels, it is often found that although a person may have only a vague idea of the expert's terms, he may in fact be using very similar constructs. One example is that of a grid using animals as elements. The biologist had elicited a grid which was stored in the bank, the user had elicited a construct which he called: "horrible creepy crawlies-nice, soft cuddly ones". The computer's feedback response was that "horrible creepy crawlies" was highly matched with the biologist's term "arachnida", and "nice, soft cuddly ones" was being called "warmblooded mammals". Very often the user is both surprised and enlightened to find the similarity between the patterning in his grid and that of the expert. This technique therefore provides a sound basis for assessment and a useful starting point for training.

The PEGASUS program is constantly used by staff, students and visitors to explore their own problems from the marking of projects to choosing a future career. It has been
used by architecture students construing their favourite buildings, and by a group from the management services section of a large industrial company construing their subordinates for staff development. In each case the individual is encouraged to explore the dimensions of his understanding and increase his awareness of the situation.

These two programs, together with others developed by the authors (see Appendix 1), which enable a person to become aware of his own models, offer him a powerful facility to review and revise the basis of his anticipation. This is the essence of learning. An external observer sees learning as the achievement of certain behavioural objectives, but for the learner himself it is a revision of his cognitive models, that is in the way he perceives and construes events and behaves in the situation. This "learning-centred" approach is recommending PEGASUS to an increasing variety of users in Industry, Education and Psychotherapy. These include teachers and industrial inspectors, artists and managers, maintenance engineers, counsellors, caterers, and Naval Officers. Thus the PEGASUS grid has a wider field of application than the traditional Kelly Repertory Grid.

References

Bales, R. F. (1950). Interaction Process Analysis: A Method for the Study of Small Groups. Cambridge, Mass.: Addison-Wesley.
Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H. \& Krathworth, D. R. (1964). Taxonomy of Educational Objectives; Handbook 2: Affective Domain. London: Longmans.
Dearden, R. F. (1967). Instruction and learning by discovery. In Peters, R. S., Ed., The Concept of Education. London: Routledge.
Flanders, N. A. (1960). Interaction analysis in the classroom: a manual for observers. Unpublished manuscript, University of Michigan.
Kelly, G. (1955). A Theory of Personal Constructs. Norton.
Schools Council (1975). Working Paper 53. The Whole Curriculum 13-16. Evans and Methuen Educational.
Thomas, L. F. \& Shaw, M. L. G. (1976). FOCUS Manual. Centre for the Study of Human Learning, Brunel University.
Thomas, L. F. \& Shaw, M. L. G. (1977). PEGASUS Manual. Centre for the Study of Human Learning, Brunel University.

Appendix 1: Computer programs

The BASIC computer programs produced by the Centre for the Study of Human Learning are:

SPACED;

SOCIOGRIDS;

ARGUS;
CORE.
FOCUS is a method of grid analysis which uses a two-way hierarchical cluster analysis technique to re-order systematically the rows of constructs and columns of elements to produce a focused grid showing the least variation between adjacent constructs and adjacent elements. This is done with respect to the way in which the constructs order the elements rather than the verbal labels given to the poles of the construct.

$$
\begin{aligned}
& \text { Input specification } \\
& \text { Number of grids. } \\
& \text { For each grid: } \\
& \text { Name or identification. } \\
& \text { Number of elements. } \\
& \text { Number of constructs. } \\
& \text { Range of rating scale. } \\
& \text { Matrix of raw grid responses. } \\
& \text { Output given. } \\
& \text { Raw grid. } \\
& \text { Construct matching scores. } \\
& \text { List of reversed constructs. } \\
& \text { Element matching scores. } \\
& \text { Element tree. } \\
& \text { Construct tree. } \\
& \text { Focused grid. }
\end{aligned}
$$

FOCI is the FOCUS program with Interpretation and suggested use of each part of the output given.

SPACED is a variation of the final printout which blocks the focused grid in order to indicate those elements and constructs which are most alike.

PEGASUS is an interactive program to elicit a repertory grid. Initially six elements are chosen by the user with special attention to the purpose for eliciting the grid. The first four constructs are elicited using fixed triads and thereafter random or chosen triads are offered. Real-time data processing allows feedback about highly matched constructs and elements.

Options offered are:

1. To add an element to split highly matched constructs.
2. To replace two highly matched constructs by one.
3. To add a construct to split highly matched elements.
4. To delete one or more element.
5. To delete one or more construct.
6. To add a construct without using a triad.
7. To add an element.
8. To change the level of feedback commentary.
9. To redefine the purpose for eliciting the grid.
10. To see the grid focused at stages during the run.

When the elicitation is completed a choice of printout of the analysis of the grid is given together with the lists of elements and constructs.

PEGASUS-BANK provides an "expert" grid which the user does not at first see, but against which the elicited constructs are matched. Feedback is given not only on how the user's constructs match each other, but also how they relate to the "expert" constructs. Finally the total grid is focused to show how the two sets of constructs are inter-related.

PRE-PEGASUS allows the user to continue an elicitation started at an earlier date.
MIN-PEGASUS is a straightforward grid elicitation without feedback, but with the opportunity given to add or delete elements and constructs where appropriate.

SOCIOGRIDS analyses a set of repertory grids elicited from a group of people who share a set of elements. It focuses grids singly and in pairs, and produces a set of socionets showing the links within the group. A "mode grid" of the most highly matched constructs is extracted and then focused. Each grid is focused with this mode grid and a measure of overlap of each with the mode, is calculated.

Input specification

Number of grids.
Choice of focusing of grids singly.
Choice of computations of socionets, mode grid, or both.
Number of constructs in the mode grid.
Number of elements in each grid.
Range of rating scale.
For each grid:
Number of constructs.
Name of grid.
Matrix of raw grid responses.

Output given

Optional full focusing of single grids.
For each pair of grids:
List of reversed constructs.
Construct tree.
Focused grid.
Gridmix similarity measure.
Matrix of gridmix similarity measures.
Lists of socionets showing number of links, current link found, and value of current link.
Table of grids against constructs, showing average match values for every construct in every grid with any other adjacently focused construct.
List of mode constructs and the original position of each:
Full focusing of the mode grid.

For each grid focused with the mode grid:
List of reversed constructs.
Construct tree.
Focused grid.
Gridmix similarity measure.
This technique is used for investigating the relative positions of the members of a small group, and the content of the sharing of terms and values. It can be used in conjunction with the Delphi technique to promote understanding in the group.

ARGUS elicits a set of grids simultaneously from one person from several roles or points of view. Firstly the elements (roles) are elicited, then three constructs from fixed triads. These construct labels are then used for a new set of ratings to be filled in for each role name in turn, and at each stage another construct which is felt to be important for that role is added. Finally the set of grids all with the same element and construct labels, but with different ratings, are processed on SOCIOGRIDS.

CORE is an interactive program which starts with two repertory grids, each with the same elements and constructs. These would usually be grids done by the same person at different times or by different people using "exchange grids". The two grids are processed by successively determining the element which is seen least similarly and the construct which is used least similarly in both grids. The user is then offered the opportunity to delete the element or construct at each stage, given the extent of the discrepancy. The CORE grids may then be focused in the usual way. This is especially useful to chart change over time, or to evaluate courses or training by examining change in the learner rather than by the conventional method of examining behavioural objectives.

These programs and further details are available from the authors.

Appendix 2

FOCUS OUTPUT

[^0]```
IF YOU HAUE ELICITED A GRID WITH FEGASUS FECENTLY YOUR DATA MAY
ALfEADY BE ON FILE BUT IF NOT YOU WILL HAVE TO TYFE IT ALLL IN
```

IS YOUR JATA IN FEGASUS?YES
WHAT IS YOUR FILE NAME?BODKS
CENTRE FOR THE STUDY OF HUMAN LEARNING
**************************************
MILIRED'S GRID

| ELEMENTS | CONSTRUCTS | RATINGS |
| :--- | :---: | :--- |
| 10 | 8 | 1 TO 5 |

C.S.H.L.
RAW GRID


THE UNITS OF DUTPUT WHICH YOU WILL NOFMALLLY GET WITH FOCUS ARE: 1) CONSTRUCT MATCHING SCQRES
2) TEEE FOR CONSTRUCTS
3) ELEMENT MATCHING SCDRES
4) TFEE FOK ELEMENTS AND FOCUSED GRII

THE FOLLOWING EXFLANATIUN RETAINS THIS OEDER EUT THE READER MAY FIND IT EASIER TO KEAD RUICKLY THFOUGH THE FIRST FART AND THEN FE-READ "FOCUSING THE CONSTFUCTS" AFTEF A MOFE LIETAILED REAIING OF "FOCUSING THE ELEMENTS".

FOCUSING THE CONSTRUCTS
***********************
CONSTRUCTS ARE GIFQLAR. THAT MEANS THAT A CONSTRUCT CAN HE THOUGHT OF AS A LINE OR DIMENGION ALONG WHICH EACH ELEMENT HAS A FILACE IN FELATION TO ALL THE OTHEF ELEMENTS, AND THE CONSTKUCT CAN BE LQOKEII AT EITHER WAY FOUNII.


```
IS THE SAME AS
```



Element ei is still between the midile of the scale and pole b. WE NEED TO LOOK FOR THE TWO CONSTFUCTS WHICH ARE MOST HIGHLY MATCHEL, BUT RECAUSE OF THE EIFOLAR NATURE OF A CONSTRUCT A COMFLETE MISMATCH OR NEGATIUE MATCH IS AS SIGNIFICANT AS A COMFLETE FOSITIUE MATCH.
TO ENSUFE THAT THE KEST MATCH IS FOUNI, ALL THE CONSTFUCTS ARE INCLUDEI TWICE, ONCE WITH THE FOLES AND THE RATINGS REVERSEA, ANLI THE ACTUAL CHOICE OF OFIGINAL OR REVERSEI FORM IS MADE AT THE TIME OF INCORFORATION INTU A CLUSTER.
THE CLUSTERS ARE FURMED EY SUCCESSIVELY CHOOSING THE FAAR OF CONSTRUCTS WHICH AEE MOST HIGHILY MATCHED. IF DNE OF THEM HAS EEEN CHOSEN GEFORE THEN THE NEW ONE IS ADIED INTO THAT GROUF OR CLUGTER NEXT TO THE DNE IT HAS BEEN MATCHEO WITH.

TWO MATRICES DF CONSTRUCT MATCHING SCDRES AKE FROLUCED FROM THE TWO FORMS DF THE CONSTRUCTS. EACH IS SYMMETRICAL ABOUT ITS IEAIING DIAGONAL, SO TU FELULE FRINTING TIME THE FRINTOUT SHOWS A HALF DIF EACH DF THESE MATRICES FUT TOGETHER INTO ONE SQUARE. THE NUMEEKS RANGE FFOM 100 FOR FEEFECT MATCH, O FOK NO SIMILARITY, THFIOUGH TO - 100 FOF PEFFECT NEGATIVE MATCH.
C.G.H.L.
CONGTRUCT MATCHING SCORES -- MILIREI'S GRID

|  | * 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| **** | ***** | ***** | ***** | **** | *** | **** | **** | ***** |
| 1 | * | 40 | 60 | 25 | 5 | 今 | 65 | 35 |
|  | * |  |  |  |  |  |  |  |
| 2 | *-10 |  | 50 | 45 | 5 | 45 | 35 | - 5 |
|  | * |  |  |  |  |  |  |  |
| 3 | *-40 | $-30$ |  | 35 | $-5$ | 15 | 35 | 15 |
|  | * |  |  |  |  |  |  |  |
| 4 | * 5 | $-15$ | $-5$ |  | 0 | 20 | 0 | $-10$ |
|  | * |  |  |  |  |  |  |  |
| 5 | * 15 | 35 | 15 | 30 |  | $-10$ | 0 | 0 |
|  | * |  |  |  |  |  |  |  |
| 6 | * 35 | $-15$ | 5 | 10 | 40 |  | 20 | 30 |
|  | * |  |  |  |  |  |  |  |
| 7 | *-35 | $-5$ | $-25$ | 20 | 30 | 20 |  | 50 |
|  | * |  |  |  |  |  |  |  |
| 9 | *-15 | 25 | 5 | 50 | 20 | $-10$ | $-40$ |  |
|  | * |  |  |  |  |  |  |  |

```
CONSTRUCT 4 REVERSEH
CONSTRUCT S REVEFSEN
```

FOR EXAMFLE IF WE FICK ON CONSTRUCT 1 WHICH IS
POLE 1 -FAMILIAR
FULE - - IIFFERENT UIEW

THE LINE OF CONSTRUCT MATCHING SCORES WITH THE HIGHEST MATCM UF THE ORIGINAL OR REVERSED FURMS OF EACH CONSTRUCT IS

$$
\begin{array}{lllllll}
2 & 3 & 4 & 5 & 6 & 7 & 8 \\
40 & 60 & 25 & 15 & 35 & 65 & 35
\end{array}
$$

IF YOU LOOK ALONG THIS LINE YOU CAN SEE HOW EACH OF YOUR CONGTRUCTG FELATES TO THIS ONE. IT IS USED

```
4O FEER CENT THE SAME AS GIVE UP ANY TIME-.--ALLICTIVE
60 FER CENT THE SAME AS LOW LASTING INFLUENCE---HIGH LASTING INFLUENCE
2S FEF CENT THE SAmE as lesS attRactive---attRactive
15 FEFI CENT THE SAME AS IIIFFICILT---EASY
35 FER CENT THE SAME AS ENTERTAINING--SERIOUS
65 PEF CENT THE SAME AS FACTS MORE IMFOETANT---ILEAS MORE IMPURTANT
35 FER CENT THE SAME AS COGNITIUE IMFACT-MEMOTIGNAL IMFACT
THE ONE MOST LIKE IT IS C }7\mathrm{ WHICH YOU CALLEN
FACTS MORE IMFORTANT-..IIEAS MORE IMFORTANT.
```

```
FOCUSING THE ElEmENTS

THE FOCUSING OF THE ELEMENTS 1S A SIMILAF FROCESS IO IHAY OF
FOCUSING THE CONSTRUCTS gUT MUCH EASIER EECAUSE ELEMENTS ARE NOT
miFOLAK AND SO CANNOT EE MATCHEI NEGATIVELY.
THE HIGHEST MATCH EETWEEN TWO ELEMENTS IS 100 ANA THE LOWEST IS O
```

THE TWO ELEMENTS THAT MATCH MOST HIGHLY ON ALL THE EONSTRULTS ARE CHOSEN FIRST, THEN SUCCESSIUELY CLUSTEFS ARE BUILT UF EY FINDING THE NEXT HIGHEST MATCH IN THE MATCHING
SCORES MATRIX.
C. S. H. L.

ELEMENT MATCHING SCOFES -- MILIREI'S GFID

|  | * | 1 | 2 | 3 | 4 | 5 | \% | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ********************************************** |  |  |  |  |  |  |  |  |  |  |  |
| 1 | * |  | 46 | 15 | 62 | 65 | 46 | 81 | 59 | 46 | 21 |
| 2 | * | 46 |  | 62 | 40 | 50 | 50 | 53 | 82 | 25 | 68 |
| 3 | $\begin{aligned} & * \\ & * \end{aligned}$ | 15 | 62 |  | 40 | 43 | 62 | 34 | 50 | 50 | 75 |
| 4 | * | 62 | 40 | 40 |  | 59 | 34 | 75 | 71 | 65 | 46 |
| 5 | * | 65 | 50 | 43 | 59 |  | 68 | 71 | 75 | 68 | 50 |
| 6 | * | 46 | 50 | 62 | 34 | 68 |  | 46 | 43 | 62 | 43 |
| 7 | * | 81 | 53 | 34 | 75 | 71 | 46 |  | 78 | 46 | 40 |
| 8 | * | 59 | 62 | 50 | 71 | 75 | 43 | 78 |  | 43 | 56 |
|  | * |  |  |  |  |  |  |  |  |  |  |
| 9 | * | 46 | 25 | 50 | 65 | 68 | 62 | 46 | 43 |  | 50 |
|  | * |  |  |  |  |  |  |  |  |  |  |
| 10 | * | 21 | 68 | 75 | 46 | 50 | 43 | 40 | 56 | 50 |  |
|  | * |  |  |  |  |  |  |  |  |  |  |

IF WE NOW LOOK AT ELEMENT 3 FOR EXAMFLE WHICH WAS

THEORIES OF LEARNING
YOU CAN SEE HOW SIMILAKLY TO EACH OF THE OTHER ELEMENTS YOU HAUE CONSTFUED IT. IT IS

15 FER CENT SIMILAR TO LIICE MAN
62 FER CENT SIMILAR TO COMFUTER LIE
40 FER CENT SIMILAR TO SOCIAL CUNTRACT (ARILREY)
43 PER CENT SIMILAR TO GESTALT THERAFY UEREATIM
62 FER CENT SIMILAR TO JUNE THE OESCUEE
34 FEF CENT SIMILAR TO ZEN \& THE ART OF M'CYCLE MAINT'CE
50 PEF CENT SIMILAR TD FSYCH QF LEARNING MATHEMATICS
50 PER CENT SIMILAR TO THE FQURTH WAY
75 PER CENT SIMTLAR TO CLUSTER ANALYSIS

DON'T FORGEY THAT THIS IS ONLY WITH EESFECT TO THE CONSTRUCTS YOU USED IN THIS GRII. IF YOU USEN MORE CONSTRUCTS OR LIFFERENT CONSTRUCTS THESE VAI..UES COULI VARY.

## YOUR CONSTRUCTS ARE:

| attractive | Less attractive |
| :---: | :---: |
| cognitive impact | Emotional impact |
| Facts more imfortant | IDEAS MORE IMFORTANT |
| FAmiliak | different view |
| LOW LASting influence | high lasting influence |
| give lif any time | andictive |
| SERTOUS | Entertaining |
| nifficult | EASY |

FOR THE FURFOSE OF ilisplaying your grid in a limiten sface, Flease type in an agrreviation for each fole name in no more than nine characters.

C.S.M.L.

MILIRED'S FOCUSED GRID WITH ELEMENT AND CONSTRUCT TEEES


$$
\begin{aligned}
& 8 \text { - } \\
& \text { i } \because \underset{\sim}{9} \quad \underset{\sim}{a} \\
& \text { 옥 } \\
& \text { 告 } \\
& \text { a }
\end{aligned}
$$



[^1]CLUSTERS ARE FORMER EY JOINING TWO NUMEERS TO THE NEW CLUSTER NUMEER. E.G. JUIN 7 ANI 9 INTO CLUSTER 16 WOULD MEAN ELEMENT TREE CONSTRUCT TREE


```
TO JOIN UF THE CONSTRUCT TREE

JOIN }7\mathrm{ AND 1 INTO CLUSTER %
JOIN 9 ANH 3 INTO CLUGTER 10
JOIN 1O AND 2 INTO CLUSTER 11
JOIN 8 AND 11 INTO CLUSTER }1
JOIN 4 AND 12 INTO CLUSTER 13
JOIN 13 AND 6 INTO CLUSTER }1
JOIN 14 AND 5 INTO CLUSTER 15
```

```
TO JOIN UP THE ELEMENT TREE

JOIN }7\mathrm{ ANN 1 INTO CLUSTER 11
JOIN 8 AND 11 INTO CLUSTER 12
JOIN 5 ANEI 12 INTO CLUSTER 13
JOIN 10 ANH 3 INTO CLUSTER 14
JOIN G ANII 13 INTO CLUSTER 15
JOIN 2 AND 14 INTO CLUSTER 16
JOIN 4 ANII g INTO CLUSTER 17
JOIN 15 ANI 17 INTO CLUSTEK 18
JOIN 16 AND 18 INTO CLUSTER 19
```

```
FDR AN EXFLANATION OF OTHER FRGGRAMS ASK FOR A COFY OF
'NOTES ON THE COMPUTER PROGRAMS'.
THIS MAY RE OBTAINED FROM THE CENTRE FOR THE STULYY OF HUMAN LEARNING
(ADDRESS AROUE) TOGETHER WITH THE LIST OF FUBLICATIONS.
THE MAIN ONES ARE:-
 FOCUS -- THE GRID ANALYSIS PROGRAM;

 FEGASUS -- AN INTERACTIUE FROGRAM TO ELICIT A GRID WITH
 ******* REAL-TIME FEEDBACK;
 SOCIO-GRINS -- A FROGRAM FOR EXFLORING COMMONALITY OF CONSTRUING
 *********** IN A SMALL GROUF;
 ARGUS -- AN INTERACTIVE FROGRAM FOR COUNSELLING AND THERAPY;

 CORE -- AN INTERACTIUE FROGRAM TO FIND THE CORE COMMONALITY
 **** EETWEEN TWO GRIIS.
```

CENTRE FOR THE STUDY OF HUMAN LEAFNING, COFYFIGHT 1976

## Appendix 3

## PEGASUS OUTPUT

## FFEGRUS <br> *********

FROGRAM ELICITS GKIN AND SORTS USING SIMILARITTES MAY1976. UFGATELI UEFSION OF DEMON 1968 DEUISEI ANH WEITTEN EY
LAURIE F. THOMAS AND MILHFEI L.G. SHAW CENTRE FOR THE STULIY OF HUMAN LEAFNING BFUNEL UNIUERSITY
UXBFILIGE
LONION

THIS IS A FROGRAM TO ELICIT A KELLY REFEKTORY GKID. PLEASE REAL CAREFULLY EVERYTHING THAT IS FRINTEL, AND MAKE SURE YOU UNIERSTAND WHAT YOU HAUE TO IO.
A REFERTOKY GRID IS A TECHNIGUE DEUISEN BY KEIL.Y TO HELF YOU EXFLORE THE TIMENSIONS OF YOUR THINKING. YOU MUST LECILIE ON A FURFOSE FOR HUING THE GRTII ANI KEEF THIS IN MINI WHEN YOU CHOOSE THE ELEMENTS--THE THINGS YOU ARE GOING TO THINK ABOUT IURING THE FKOGRAM. THESE ELEMENTS WILL THEN EE USED TO ELICIT CONSTRUCTS. YOU ARE LIMITEI TO 25 LETTERS AND SFACES FOF YOURI ELEMENT AND CONSTRUCT NAMES.
IF YOU MAKE A TYPING EFROR FRESS THE IIELETE KEY AS MANY TIMES AS YOU WANT TO ERASE A CHARACTEK, THEN CARIKY DN. THROUGHOUT THIS FROGRAM THE QUESTION WILL EE ASKED -IO YOU NEE[I HELF? EACH TIME JUST TYFE YES IF YOU NO ANL PRESS THE RETUFN KEY BEFQRE YOU START THIS GRID, WHAT IS YQUR NAME ? ARTIIUR
TYFE IN ON ONE LINE YOUR FURFOSE FOR IOING THIS GRID TEXFLORING LEARNING SITUATIONS

```
NAME SIX ELEMENTS
YOU MUST CHOOSE A SET OF ELEMENTS KEEFING IN MINIT
WHY YOU WANT TO LO THIS GRJD. THEY COULD GE FEOFLE,EVENTS,
FIECES OF MUSIC, FICTURES, KOUKS OR WHAT YOU WANT BUT
WHATEVER YOU CHOOSE THEY MIJST GE OF THE SAME TYPE AND
EACH MUST EE WELLL KNOWN TO YOU, TRY TO CHOOSE SFECIFIC
THINGS. NOW TYFE EACH ONE AFTEK EACH QUESTION MAKKK.
DO NOT FORGET TO FRESS THE FETUFN KEY AFTER EACH.
```

| ELERENT | 1 | ?LECTURE |
| :--- | :--- | :--- |
| ELEMENT | 2 | ?TUTORIAL |
| ELEMENT | 3 | ?SEMINAR |
| ELEMENT | 4 | ?PFACTICAL |
| ELEMENT | 5 | ?FILM |
| ELEMENT | 6 ?LIGRARY |  |

```
ELICITATION OF CONSTNUCT 1
TRIAD
 1 LECTURE
 2 TUTORIAL
 3 SEMINAR
```

NAME THE FAIK
CAN YOU CHOOSE TWO OF THIS TRIAD OF ELEMENTS WHICH ARE IN
SOME WAY ALIKE AND DIFFEFENT FKOM THE OTHER ONE ?
TYFE IN THE NUMEERS OF THE FAIK ONE AFTER EACH QUESTION
MARK. DONT FORGET TO FRESS THE RETURIV KEY AFTER EACH.
$? 2$
$? 3$

NAME THE POLES OF YOUR CONSTRUCT
NOW I WANT YOU TO THINK AEOUT WHAT YOU HAVE IN MIND WHEN YOU
SEPARATE THE FAIR FROM THE OTHER ONE. HOW CAN YOU DESCRIBE
THE TWO ENDS OR FOLES OF THE SCALE WHICH IISCRIMINATE
TUTORIAL AND SEMINAK FROM LECTURE
JUST TYPE ONE OR TWO WORDS FJR EACH FOLE TO REMINI YOU WHAT
YOU AFE THINKING OR FEELING WHEN YOU USE THIS CONSTKUCT.
LEFT FOLE (RATED 1) --?INUOLVEMENT
RIGHT FOLE (FATED 5 )--?REMOTENESS
TYFE IN THE RATINGS
NOW IF TUTORIAL AND SEMINAR ARE
ASSIGNED THE UALUE 1 AND LECTURE IS
ASSIGNED THE UALUE 5

PLEASE ASSIGN TO EACH OF THE OTHER ELEMENTS IN TURN A FROUISIONAL UALUE FROM 1 TO 5 ACCORIING TO HOW YOU FEEL ABOUT THEM. AS BEFDRE WAIT FOR EACH QUESTION MARK, IIONT FORGET RETURN

| 2 | TUTORIAL | 1 |
| :--- | :--- | ---: |
| 3 | SEMINAR | 1 |
| 1 | LECTURE | 5 |
| 4 | FRACTICAL | $? 1$ |
| 5 | FILM | $? 5$ |
| 6 | LIBFAFiY | $? 1$ |

FOLE I - - INVOLVEMENT

```
2 TUTORIAL 1
3 SEMINAF 1
4 FFACTICAL 1
```

6 LIEFABY 1

```
1 LECTUFEE S
5 FILM
5
```

POLE E - -REMOTENESS

IIO YOU WANT TO CHANGE ANY OF THESE VALUES?YES
If YOU HAUE CHANGED YOUR MIND GHOUT ANY OF THESE VALUES INCLUIING THE ELEBEITS YOU HAD IN THE TEIAG,
TYFE IN HOW HANY YOU WANT TO ALTER WHEN YDU AKE ASNED.
THEN TYFE THE NUMBER OF THE FIRST ELEMENT AND FRESS THE RETURN KEY. ON THE NEXT LINE TYFE IN THE VBILUE YOU WANT IT TO HAVE, anit continue until you have figine them all. IONT FORGET RETUFN AT THE END OF EACH LINE.

HOW MANY?2
ELEMENT NUMEEF? 2
NEW FATING FUF ELEMENT 2 ? 2
ELEMENT NUMBEF? 1
NEW FATING FOF ELEMENT 1 ? 4

FOLE 1 --INVOLUEMENT

| 3 SEMINAR | 1 |
| :--- | :--- | :--- |
| 4 FRACTICAL | 1 |
| 6 LIERAFiY | 1 |
| 2 TIUTORIAL | 2 |
| 1 LECTURE | 4 |
| 5 FILMM | 5 |

POLE S --REMOTENESS

```
IG YOU WANT TO CHANGE ANY OF THESE UALUES?YES
IF YOU HAUE CHANGED YOUR MINI ABOUT ANY OF THESE VALIJES
INCLUIING THE ELEMENTS YOU HADI IN THE TRIAD,
TYFEE IN HOW MANY YOU WANT TD ALTEK WHEN YOU ARE ASKKED.
THEN TYFE THE NUMEER OF THE FIRST ELEMENT ANII FRESS THE RETURN KEY.
ON THE NEXT LINE TYFE IN THE UALUE YOU WANT IT TO HAVE,
AND CONTINUE UNTIL YOU HAVE IIONE THEM ALL.,
IIONT FORGET RETURN AT THE END OF EACH LINE.
HOW MANY?2
ELEMENT NUMEEFP?
NEW FATING FOR ELEMENT 2 ?3
ELEMENT NUMRER?3
NEW FATING FOR ELEMENT 3 P2
FOLE 1 --INUOLVEMENT
 4 \text { FRACTICAL 1}
 6 LIBRAKY 1
 3 SEMINAR 2
 2 TUTORIAL 3
 1 LECTURE 4
 5 FILM . 5
FOLE 5 --REMOTENESS
```

```
DO YOU WANT TQ CHANGE ANY OF THESE VALUESPNO
dO YOU WANT TO CHANGE THE FOLE NAMES?NO
NOW YOU HAVE GOT ONE CONSTRUCT YOU KNOW WHAT TO DO.
A CONSTRUCT CAN BE THOUGHT OF AS A LINE ALONG WHICH
EACH OF YOUR ELEMENTS HAS A PLACE IN RELATION TO ALL THE
OTHER ELEMENTS.
PLEASE DO NOT USE CONSTRUCTS WHICH DO NOT AF'FLY TO ALL
YOUR ELEMENTS. AN EXAMFLE OF THIS IS:
REIHEAD---BLOND ,AS IT IS IMFOSSIRLE TO RATE A FERSON
WITH FLACK HAIR ON THIS CONSTRUCT.
GNE POLE MUST EE IN SOME SENSE WHAT THE OTHER IS NOT,
AND THEY MUST IIUITE YOUR ELEMENTS INTO TWO AFFROXIMATELY
EQUAL GROUFS, SO FLEASE TRY TO AVOID CONSTFUCTE
WHERE NEAKLLY ALL. THE ELEMENTS ARE AT ONE ENI. AN EXAMFLEE MIGHT BE
A GREEN-EYED MONSTER---NOT A GREEN-EYED MONSTEK
```

ELICITATION OF CONSTRUCT 2
TRIAI
4 PRACTICAL
5 FILM
6 LIBRARY
NAME THE PAIR
CAN YOU CHOOSE TWO OF THIS TRIAD OF ELEMENTS WHICH AKE IN
SOME WAY ALIKE AND LIFFERENT FROM THE OTHER ONE ?
TYFE IN THE NUMBERS OF THE FAIR ONE AFTER EACH QUESTION
MARK. DONT FORGET TO PRESS THE RETURN KEY AFTER EACH.
? 4
? 6
NAME THE POLES OF YOUR CONGTRUCT
LO YOU NEED HELF?ND
LEFT POLE (RATEN 1) --?FLEXIBLE
FIGHT FOLE (KATED 5 )--?RIGID
TYFE IN THE RATINGS
JO YOU NEED HELF?NO
4 PRACTICAL 1
6 LIBRARY 1
5 FILM
1 LECTURE ?
1 LECTURE ? 4
2 TUTORIAL ? 4
3 SEMINAR ? 3
FQLE 1 --FLEXIBLE

| 4 FRACTICAL | 1 |  |
| :--- | :--- | :--- |
| 6 LIERARY | 1 |  |
| 3 |  |  |
|  |  |  |
| 1 SEMINAR | 3 |  |
| 2 | TUTORIAL | 4 |
| 5 | FILM | 5 |

FOLE 5 --RIGID

```
DO YOU WANT TO CMANGE ANY DF THESE VALUESTYES
DO YOU NEED HELP?NO
HOW MANY?1
ELEMENT NUMBEF?4
NEW KATING FQK ELEMENE 472
FOLE 1 --FLEXIGLL
6 LIRFARY }
4 \text { FRACIICAL 2}
3 SEMINAR 3
1 LECTURL 4
2 THIOKIAL 4
SFILMS
FOLE 5 --FIGID
TIO YOU WANT IO CHANGE ANY OF THESE YALUES?NO
LO YOU WANT TO CHANGE THE FOLE NAMESTND
THE TWO CONSTRUCTS YOU CALLED
 1 INUOL UEMENT--REMOTENESS
 2 FLEXIRIE--KIGID
ARE MATCHED AT THE 7S FERCENT LEVEI
THIS MEANS THAT MOSI OF THE TIME YOU ARE SAYING
INUOLUEMENT YOU ARE ALSO SAYING
FLEXIBLE
AND MOST OF THE TIME YOU AKE SAYING
REMOTENESS YOU ARE ALSO SAYING
RIGID
THINK OF ANOTHER ELEMENT WHICH IS EITHER
INVOLVEMENT AND RIGID
OR FLEXIBLE ANI REMOTENESS
IF YOU REALLY CANNOT DO THIS THEN JUST PRESS RETURN AFTER THE
FIRST QUESTION MAFK, BUT FLEASE TKY. THEN YOU MUST GIVE
THIS ELEMENT A RATING VALUE ON EACH CONSTRUCT IN TURN.
TYPE A VALUE FROM 1 TO 5 AFTER EACH QUESTION MARK.
WHAT IS YOUR ELEMENT?FFROGRAMMED TEXT
RATIMGS :
INVOL VEMENT--REMOTENESS?2
FLEXIELE-~RIGIE?S
ELICITATION OF CONSTRUCT }
TRIAD
 1 LECTUQE
 3 SEMINAR
 5 FILM
NAME THE FAIF
DG YOU NEED HELF?ND
```

```
PLECTURE
PLEASE TYFE A NUMEER BETWEEN }1\mathrm{ AND }
?1
?3
```

```
NAME THE POLES OF YOUR CONSTRUCT
DO YOU NEED HELF?NO
LEFT POLE (RATED 1) --?ND EQUIPMENT
RIGHT FOLE (RATED 5)--?EQUIPMENT
TYPE IN THE RATINGS
IO YOU NEED HELP?ND
 1 LECTURE 1
3 SEMINAR 1
5 FILM
2 TUTORIAL ?1
4 \text { PRACTICAL 7S}
6 LIBRARY 72
7 PROGRAMMED TEXT ?4
POLE 1 --NO EQUIPMENT
 1 LECTURE 1
2 TUTORIAL 1
3 SEMINAR 1
6 LIBRARY 2
7 PROGRAMMED TEXT
4
4 PRACTICAL 5
5 FILM 5
POLE S --EQUIPMENT
00 YOU WANT TO CHANGE ANY OF THESE UALUESYYES
DO YOU NEED HELF?FND
HOW MANY?Z
ELEMENT NUMBERTI
NEW RATING FOR ELEMENT 1 ?2
ELEMENT NUMBER?6
NEW RATING FDR ELEMENT 6 ?3
POLE 1 --NO EQUIPMENT
 2 TUTORIAL 1
 3 SEMINAR 1
 1 LECTURE 2
 6 LIBRARY 3
 7 \text { PROGRAMMED TEXT}
 4
 4 PRACTICAL 5
5 FILM
 5
POLE 5 --EQUIPMENT
```

do you want to change any of these values?no thank you
do You want to change the fole names?no thank you

```
ELICITATIUN OF CONSTRUCT 4
TEIAD
 2 TUTORIAL
 4 FFACTICAL
 6 LIERARY
NAME THE FAIR
\O YOU NEEI HELP?NO
?2
?4
NAME THE FOLES OF YUUF CONSTFIJCT
DO YOU NEELI HELF?NO
LEFT FOLE (FIATED 1) --PSTAFF-DRGANISED
RIGHT FOLE (FATEL 5) --?SELF-ORGANISEL
TYFE IN THE RATINGS
IO YOU NEED FELFF'?NO
 2 TUTOFIAL 1
 4 FRACTICAL 1
 6 LIBFAEF
 1 LECTURE ?1
 3 SEMINAK ?2
 5 FILM ?1
 7 FROGRAMMELI TEXT ?3
FOLE 1 --STAFF-GFGANISED
 1 LECTUFE 1
 2 TUTORIAL }
 4 FRACTICAL. }
 5 FILM
 3 SEMINAR 2
 7 \text { FROGRAMMEO TEXT}
 3
 6 \mp@code { L I R F A R Y ~ 5 }
FOLE S --SELF-ORGANISED
NO YOU WANT TO CHANGE ANY OF THESE VALUES?YES
IO YOU NEED HELFFNO
HOW MANY?Z
ELEMENT NUMBEF??
NEW RATING FOR EILEMENT 2 ?2
ELEMENT NLIMEER?4
NEW FATING FOR ELEMENT 4 ?3
ELEMENT NUMBEE?7
NEW KATING FOR ELEMENT 7 ?4
```

FOLE 1 - STAFF ORGANISED

| 1 | LECTURE | 1 |  |
| :---: | :---: | :---: | :---: |
| 5 | FILM | 1 |  |
| 2 | TUTORIAL | 2 |  |
| 3 | SEMITAR | 2 |  |
| 4 | PRACTICAL. | 3 |  |
| 7 | FFROGRAMMEL | TEXT | 4 |

6 LIERARY 5
FOLE 5 --SELF-ORGANISED

DO YOU WANT TO CHANGE ANY OF THESE VALUES?NO
IIO YOU WANT TO CHANGE THE FGLE RAMES?NO
THE TWO ELEMENTS 2 TUTORIAL ANLI 3 SEMINAR
ARE MATCHEI AT THE 87 FERCENT LEVEL
THIS MEANS THAT SO FAR YOU HAVE NOT IISTINGUIGFIED
EETWEEN TUTORIAL AND SEMINAF
LO YOU WANT TO SFLIT THESE
ANSWER YES OF NOTYES
TO SFLIT THESE DO YOU NEEI HEL.F?YES

THINK OF A CONGTKUCT WHICH GEPARATES THESE
TWO ELEMENTS AND THEN KEEFING THIS IN MINU
FLEASE ASSIGN TO EACH OF THE OTHER ELEMENTS IN IURN A FROUISIOMAL UALUE FFOM 1 TO 5 ACCORGING TO HOW YUU FEEL AIOUT THEM. AS BEFORE WAIT FOR EACH QUESTION MAKK, IIONT FORGE: FETURN

```
NAME THE FOLES OF YOUK CONSTRUCT
L.EFT FOLE (FATED 1) --?SMALL GFOUF
RIGHT POLE (FATEN 5)--PLAFIGE GROUP
```

TYFE IN THE FATINGS
2 TUTORIAL 1
3 SEMINAR 5
1 LECTURE ?5
4 PRACTICAL ? 4
5 FILM ?
6 LIEFARY? ?
7 FROGRAMMEI TEXT ? 1
FULE 1 --SMALL GROUP
2 TUTORIAL 1
6 LIERAEY I
7 FROGRAMMED TEXT
1
4 FRACTICAL 4
1 LECTURE 5
3 SEMINAR S
5 FILM 5
POLE 5 -LARGE GROUP

```
DO YOU WANT TO CHANGE ANY UF THESE UALUESTYES
HELFPNO
HOW MANYPZ
ELEMENT NUMEER??
NEW RATING FOR ELEMENT 2 P2
ELEMENT NUMSER?3
NEW RATING FOR ELEMENT 3 >3
FOLE 1 - -.SMALL GROUF
 6 LIRFARY 1
 7 FROGFAMMELI TEXT I
 2 TUTORIAL 2
 3 SEMINAK 3
 4 \text { FRACTICAL 4}
 1 LECTURE 5
 5 FILM
 5
POLE 5 --LARGE GROUF
DG YOU WANT TO CHANGE ANY OF THESE UALUES?YES
HELP?NG
HOW HANY?1
ELEMENT NUMEEFI?S
NEW RATING FOR ELEMENT 3?4
FQLE 1 --SMALL GROUF
 6 LIBRARY 1
 7 FROGRAMMED TEXT 1
 2 TUTORIAL 2
 3 SEMINAR 4
 4 \text { PRACTICAL } 4
 1 LECTURE 5
 S FILM 5
FOLE 5 --LARGE GROUP
DG YOU WANT TO CHANGE ANY OF THESE UALUES?NO
DO YOU WANT TO CHANGE THE POLE NAMES?NO
DO YOL WANT TO FINISH NOW?NO
DD YOU WANT A PRINTOUT OF THE FOCUSEI GRII SO FAR?YES
```

```
 * 5 1 2 3 3 4 6 % 7

 5 * 5 5 lllllll
4
1 * % 5 4 4
2
3 * 1 4 4 5 5 5 1 3 2
* * * * * * * *
* * * * * * * * * * * PRO
* * * * FRACTICAL
* * SEMINAR
TUTORIAL
* lECTURE
FILM
LIST OF CONSTRUCTS
SMALL GROUP * 5 LARGE GROUP
SELF-ORGANISED * 4 STAFF-ORGANISED
INUOLUEMENT * i REMOTENESS
FLEXIBLE *2 RIGID
EQUIFMENT * 3 NO EGUIFMENT
```

THIS IS ARTHUR'S GRID
PURFOSE:
EXFLORING LEARNING SITUATIONS

```
IS YOUR KEASON FOR DOING THIS GRID STILL
EXFLDRING LEARNING SITUATIONS
ANSWER YES OR NO?YES
YOU HAUE NOW GOT S CONSTRUCTS AND }7\mathrm{ ELEEMENTS
AND YOU MUST DECIDE WHETHER THEY AKE THE IMFORTANT
ONES FOR YOU IN THE PURPOSE YOU HAD FOR DOING THIS
GKID WHICH YGU SAIII WAS
EXPLORING LEAFNING SITUATIONS
```

IF YOU FEEL THAT ONE OR MORE OF YOUR CONSTiUUCTS OR ELEMENTS
doEs not beldng with the otheris you may delete then
HERE IS A LIST OF YOUR ELEMENTS

```
1 LECTURE
2 TUTORIAL
3 SEMINAR
4 \mp@code { F R A C T I C A L }
5 FILM
6 \mp@code { L I B R A R Y }
7 PROGFAMMELI TEXT
IO YOU WANT TO DELETE AN ELEMENT ?NO
```

```
here is a list of your constructs
 1 INUOLVEMENT--REMOTENESS
 2 FLEXIBLE--RIGID
 3 EQUIPMENT--NO EQUIPMENT
 4 SELF-ORGANISED--STAFF-ORGANISED
 5 SMALL GROUP--LARGE GRDUP
DO YOU WANT TO DELETE A CDNSTRUCT TNO
YOU HAVE ONE OF THREE CHOICES. YOU MAY
1)ELICIT A CONSTRUCT FROM A TRIAD
2)adD ANDTHER ELEMENT
3)ADD ANOTHER CONSTRUCT
what is the number dF the chorce you have made
11
ELICITATION OF CONSTRUCT 6
TRIAD
WOULD YOU LIKE TO ChOOSE YOUR OWN tRIAD
ANSWER YES OR NOPYES
 1 LECTURE
 2 TUTORIAL
 3 SEMINAR
 4 \text { FRACTICAL}
 5 FILM
 6 LIBRARY
 7 PROGRAMMED TEXT
TYPE IN THE NUMBERS OF THE ELEMENTS ONE AFTER EACH QUESTION MARK
?5
 5 FILM
37
 7 PROGRAMMED TEXT
76
 6 \text { LIBRARY}
NAME THE PAIR
HELFPNO
P2
 2 IS NOT ONE OF yOUR TRIAD PLEASE RETYPE It
?5
P7
Name the poles of your construct
HELPTNO
LEFT FOLE (RATEN 1) --TSPECIFIC CONTENT
RIGHT FOLE (RATED 5)-~?VARIARLE CONTENT
TYFE IN THE RATINGS
HELF?NO
5 FILM 1
7 FROGRAMMED TEXT 1
6 LIEFARY 5
1 LECTURE ?2
2 TUTORIAL T2
3 SEMINAR ?3
4 \text { PRACTICAL ?2}
```

FOLE 1 -SFECIFIC CONTENT

```
 S FILM
 7 FROGRAMMEI TEXT 1
 1 LECTURE 2
 2 TUTORIAL 2
 4 FFACTICAL }
 3 SEMINAR 3
 6 LIERARY 5
FOLE 5 --VARIABLE CONTENT
```

IIO YOU WANT TO CHANGE ANY OF THESE VALUES?YES
HELF?NO
HOW MANY?Z
ELEMENT NUMEER?4
NEW RATING FOR ELEMENT 4 ?3
ELEMENT NUMBER?3
NEW FATING FOF ELEMENT 3 ? 4
FOLE 1 --SFECIFIC CONTENT

```
 5 FILM 1
 7PRQGRAMMEL TEXT 1
```

    1 LECTURE 2
    2 TUTORIAL 2
    4 FRACTICAL 3
    3 SEMINAFI 4
    6 LIARARY 5
    FOLE 5 -UARIAELE CONTENT

```
IIO YOU WANT TO CHANGE ANY OF THESE UALUES?NO
```

IID YOU WANT TO CHANGE IHE FOLE NAMESTNO
THE TWO CONSTRUCTS YOU CALLED
2 FLEXIBLE--RIGII
6 UARIARLE CONTENT--SFECIFIC CONTENT
ARE MATCHEII AT THE 85 FERCENT LEVEL
THIS MEANS THAT MOST OF THE IIME YOU AKE SAYING
FLEXIELE YOU ARE ALSO SAYING
VARIABLE CONTENT
AND MOST OF THE TIME YOU ARE SAYING
FIIGID YOU ARE ALSO SAYING
SFECIFIC CONTENT
THINK OF ANOTHER ELEMENT WHICH IS EITHER
FLEXIRLE ANI SFECIFIC CONTENT
OR VAFIARLE CONTENT ANG FIGIG
IF YOU REALLY CANNOT DO THIS THEN JUST FRESS RETURN AFTER THE
FIRST QUESTION MARK, EUT FLEASE TEY. THEN YUU MUST GIVE
THIS ELEMENT A RATING VALUE ON EACH COIVSTRUCT IN T, JFN
TYFE A VALUE FFOM 1 TO 5 AFTEF EACH QUESTION MAFK.

```
WHAT IS YOUR ELEMENTPUIIEO TAPE
RATINGS :
INVOLVEMENT--REMOTENESSP3
FLEXIBLE--RIGID?2
EQUIPMENT--NO EQUIPMENT?1
SELF-DRGANISED--STAFF-DRGANISED?2
SMALL GROUP--L.ARGE GROUF?1
UARIAELE CONTENT--SFECIFIC CONTENTTS
JO YOU WANT TO FINISH NOW?NO
ID YOU WANT A FRINTOUT OF THE FOCUSED GKID SD FAF?ND
ARE YDU HAPFY WITH THE AMGOUNT OF FEEDBACK COMMENTAKY
IS IT : 1)OKAY 2)TOO MUCH 3)TOO LITTLE.
TYFE IN 1,2 OR 3
?1
YOL HAUE ONE OF THREE CHOICES. YOU MAY
1)ELICIT A CONSTRUCT FROM A TRIAD
2)AIID ANOTHER ELEMENT
3)ADD ANOTHER CONSTRUCI
WHAT IS THE NUMBER OF THE CHOICE YOU HAUE MAIIE
?2
WHAT IS YOUR ELEMENT?INFORMAL INTEFACTION
RATINGS :
INUOLVEMENT--REMOTENESST1
FLEXIBLE--RIGID?1
EQUIPMENT--NO EQUIPMENTTS
SELF-ORGANISED--STAFF-ORGANISED?1
SMALL GROUP~-LARGE GRDUF'P3
UARIABLE CONTENT--SPECIFIC CONTENT?I
ELICITATION DF CONSTRUCT 7
TRIAD
WOULD YOU LIKE TO CHOOSE YOUK OWN TRIAII
ANSLER YES DR NOTNO
 2 TUTORIAL
 6 LIBRAFIY
 8 UIDED TAPE
NAME THE PAIR
HELP?NO
P2
?8
NAME THE FOLES OF YOUR CONSTFUCT
HELPTNO
LEFT FOLE (FATEII 1) --?DISLIKE
RIGHT FOLE (RATEN S)--PLIKE
tYPE IN THE FATINGS
HELFPNO
2 TUTORIAL 1
8 UIDED TAFE 1
6 LIBRARY S
1 LECTURE *1
3 SEMINAR ?A
4 \text { FRACTICAL ?4}
5 FILM ?1
7 PROGRAMMED TEXT ?1
9 INFDRMAL INTERACTIOH VS
```

```
POLE 1 -mISLIKE
 1 LECTURE 1
 2 TUTORIAL 1
 5 FILM 1
 7 PROGRAMMED TEXT
 8 VIIEO TAPE 1
 3 SEMINAR
 4 PRACTICAL 4
 6 LIBRARY 5
 9 \text { INFOFMAL INTERACTION 5}
FOLE 5 --LIKE
HO YOU WANT TO CHANGE ANY OF THESE VALUESTYES
HELP?ND
HOW MANY'?1
ELEMENT NUMEER?2
NEW RATING FOR ELEMENT 2?2
POLE 1 - DISLIKE
 1 LECTURE 1
 5 FILM 1
 7 FROGRAMMEN TEXT I
 8 UIDEO TAPE 1
 2 TUTORIAL 2
 3 SEMINAR 4
 4 \text { PRACTICAL 4}
 6 LIBRARY 5
 9 INFORMAL INTERACTION S
PDLE 5 --LIKE
IO YOU WANT TO CHANGE ANY OF THESE VALUES?NO
DO YOU WANT TO CHANGE THE FOLE NAMES?ND
THE TWO CONSTRUCTS YOU CALLED
 6 UARIABLE CONTENT--SPECIFIC CONTENT
 7 LIKE--DISLIKE
ARE MATCHED AT THE }88\mathrm{ PERCENT LEVEL
THIS MEANS THAT MOST OF THE TIME YOU ARE SAYING
UARIABLE CONTENT YOU ARE ALSO SAYING
LIKE
AND MOST OF THE TIME YOU ARE SAYINB
SPECIFIC CONTENT YOU ARE ALSO SAYING
DISLIKE
THINK OF ANQTHER ELEMENT WHICH IS EITHER
UARIABLE CONTENT AND DISLIKE
OR LIKE AND SPECIFIC CONTENT
IF YOU REALLY CANNOT DO THIS THEN JUST FRESS RETURN AFTER TME
FIRST QUESTION MARK, BUT FLEASE TRY. THEN YOU MUST GIVE
THIS ELEMENT A RATING UALLEE ON EACH CONSTRUCT IN TURN.
TYPE A UALUE FROM 1 TO 5 AFTER EACH QUESTION MARK.
```

```
WHAT IG YOUR ELEMENT?
WOULD YOUS LIKE TO:
 1) DELETE A CONSTRUCT
 2)REFLACE THE TWO CONSTRUCTS BY ONE
 3)JUST CARRY ON
UHAT IS THE NUMEER OF THE CHOLCE YOU HAUE MANE
?3
DO YOU WANT TO FINISH NOW?YES
DO YOU WANT:
 1) A COMFLLETE FRINTOUT OF THE ANALYSIS OF YOUR GRID
 2) ONLY THE RESULTS OF THE ANAL.YSIS
WHAT IS THE NUMBER OF YOUR CHOICE
?2
GRID COMPLETE
CONSTFUCT 3 REVERSED
TEEE FOR CONSTRUCTS
 88 72 61 33
* 5
* 1
* 4
* 2
* 6
* 7
* 3
```

TREE FOR ELEMENTS
6016 1:
$71 \quad 15 \quad 14$
$75 \quad 13$
78
12
82
11
8510

|  |  | * | * | * | * | * | * | * | * | * |  | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ******* |  |  | 6 | 4 | 3 | 2 | 1 | 5 | 7 | 8 |  |
|  |  | *** | ** | 4 | 4 | 2 | 5 | ${ }_{5}^{* *}$ | ** | **** |  |
| 5 | * | 3 | 1 |  |  |  |  |  |  | 1 |  |
| 1 | * | 1 | 1 | 1 | 2 | 3 | 4 | 5 | 2 | 3 |  |
| 4 | * | 1 | 1 | 3 | 4 | 4 | 5 | 5 | 2 | 2 |  |
| 2 | * | 1 | 1 | 2 | 3 | 4 | 4 | 5 | 5 | 2 |  |
| 6 | * | 1 | 1 | 3 | 2 | 4 | 4 | 5 | 5 | 5 |  |
| 7 | * | 1 | 1 | 2 | 2 | 4 | 5 | 5 | 5 | 5 |  |
| 3 | * | 1 | 3 | 5 | 1 | 1 | 2 | 5 | 4 | 5 |  |
|  |  | * | * | * | * | * | * | * | * | * |  |
|  |  | * | * | * | * | * | * | * | * |  | TAFE |
|  |  | * | * | * | * | * | * | * | F'R | Ra | TEXT |
|  |  | * | * | * | * | * | * | FI |  |  |  |
|  |  | * | * | * | * | * | LE | TuF |  |  |  |
|  |  | * | * | * | * |  | RI |  |  |  |  |
|  |  | * | * | * |  | INA |  |  |  |  |  |
|  |  | * | * Friactical |  |  |  |  |  |  |  |  |
|  |  | * |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Informal interaction |  |  |  |  |  |  |  |  |  |  |

LIST OF CONSTRUCTS

| SMALL GROUP | $* 5$ | LARGE GROUP |
| ---: | :--- | :--- |
| INUOLUEMENT | $* 1$ | REMOTENESS |
| SELF-ORGANISED | $* 4$ | STAFF-QRGANISED |
| FLEXIBLE | $* 2$ | RIGID |
| VARIABLE CONTENT | $* 6$ | SPECIFIC CONTENT |
| LIKE | $* 7$ | DISLIKE |
| NO EQUIPMENT | $* 3$ | EQUIFMENT |

THIS IS ARTHUR'S GRID
PUFFOSE:
EXFLORING LEARNING SITUATIONS

CENTRE FOR THE STUDY OF HUMAN LEAFNING, COPYRIGHT 1976


[^0]:    USUALLY THE COMPUTER RUNS THE FQCUS PROGRAM WITHOUT ANY INTEFIFRETATION. THIS PROGRAM (FOCI) GIUES AN INTERFRETATION OF THE OUTFUT FROM THE FOCUS PROGRAM, BUT DOES NOT ATTEMFT TO EXFLAIN REFERTORY GRIIS OR THEIR USAGE.
    FOCUSING IS A METHOU FOR RE-SORTING THE ELEMENTS AND CONSTRUCTS IN THE RAW GRID TO PRONUCE A FOCUSEI GRIII IN WHICH THE ELEMENTS ANII THE CONSTRUCTS AFE AFRANGED SO THAT THE ONES MOST ALIKE ARE NEAREST TO EACH OTHEF, IT CAN BE DONE RUITE EASILY WITH A FENCIL ANL FAFER BUT THE FROGFAM LIOES ALL THE CALLULATING ANII FRINTING FOR YOU.

[^1]:    THIS IS MILTIRER S IORILI
    TO THINK ABOUT FOOKS

