
WebGrid: Knowledge Modeling and Inference
through the World Wide Web

Brian R. Gaines and Mildred L. G. Shaw
Knowledge Science Institute

University of Calgary
Alberta, Canada T2N 1N4

{mildred, gaines}@cpsc.ucalgary.ca

Abstract: WebGrid is a knowledge acquisition and inference server on the World Wide Web
that uses an extended repertory grid system for knowledge acquisition, inductive inference for
knowledge modeling, and an integrated knowledge-based system shell for inference. This
demonstration shows WebGrid modeling a standard dataset for the NASA autolander problem
which illustrates the system’s capability for open-class reasoning with incompletely specified
cases.

1 Introduction
A description of WebGrid, associated applications and example applications, can be found in our
associated paper (Gaines and Shaw, 1996). WebGrid is a port of our KSS0/RepGrid knowledge
acquisition tools to operate as a server on the World Wide Web, allowing a web client on any
platform world-wide to be used for knowledge modeling and inference. The system is interesting
for a number of reasons:
• It provides widely available access to knowledge-based system development tools
• It is open in its architecture and designed to support integration with other systems
• The repertory grid technology is extended to support data types other than rating scales, such

as categorical data, integers, floats and dates
• The inductive modeling methodology can generate rules, rules with exceptions, factored rules

with exceptions (EDAG’s) and ripple-down rules
• The performance engine is integrated so that test cases may be checked and, if appropriate,

corrected and posted into the dataset to change the model
• The acquisition, modeling and inference tools are designed to reason correctly with open data

having don’t care or unknown values

This articles demonstrates some of these features using a dataset that has been widely analyzed
in the literature.

2 The NASA Autolander Problem
Michie (1989) has used as an example of the successful application of machine learning, the
development of a program developed to advise the pilot of a space shuttle about the advisability
of using its autolander system. He reports that an attempt to develop an algorithm through
conventional programming failed after several months of effort, but the use of an inductive
modeling package produced a solution very rapidly.

Figure 1 shows the dataset used for induction. It comprises 16 cases characterized by 4 binary
attributes and 2 4-valued attributes, leading to a binary decision. The 16 cases are interesting
because they involve large numbers of “don’t care” values such that they cover all 256 possible
situations. Michie notes that the first 15 cases were elicited in the first knowledge acquisition
phase, and the 16th case was added specifically to give such full coverage.

2

-
no
yes
yes
-
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

stab

-
-
lx
xl
-
ss
ss
ss
mm
mm
mm
mm
mm
mm
mm
mm

errors signwind

-
-
-
-
-
-
-
-
tail
head
head
tail
tail
head
tail
head

mag

-
-
-
-
out
light
med
strong
-
light
med
light
med
strong
strong
-

-
-
-
-
-
-
-
-
negative
positive
positive
positive
positive
positive
positive
negative

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Case

no
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

visauto

use
not
not
not
not
use
use
use
not
use
use
use
use
not
use
not

Figure 1 NASA autolander dataset (Michie, 1989)

Induction of a minimal decision tree leads to a tree with 15 root nodes, and induction of rules
leads to 13 rules with 38 clauses. When Induct is run on this dataset in KSSn it models it with the
EDAG shown in Figure 2 which captures the essential algorithm to use the autolander unless the
visibility is yes and one of a number of exception conditions hold.

-> class = use auto

vis = yes

errors = mm

sign = negative

wind = head
mag = strong

stab = no errors = lxerrors = xlmag = out

-> class = not auto

Figure 2 EDAG produced by Induct from NASA autolander dataset

A rational reconstruction of this dataset has been used to exemplify the operation of WebGrid.

3 Eliciting the Autolander Data in WebGrid
Figure 3 shows the initial screen of WebGrid. The HTML form requests the usual data required
to initiate grid elicitation: user name; domain and context; terms for elements and constructs;
default rating scale; data types allowed; and a list of initial elements. It also allows the
subsequent screens to be customized with an HTML specification of background and text colors,
ruler line, and a header and trailer (not shown). The capability to include links to multimedia web
data is also used to allow annotation, text and pictures, to be attached to elements.

3

Figure 3 WebGrid initial screen

The knowledge engineer has entered the data noted and the names of 6 initial stereotypical cases
and clicks on “Done”. WebGrid generates the triadic elicitation screen shown in Figure 4 which
asks the expert in what way one case differs from the other two. The obvious answer in this case
is that one should use the autolander in case 1 but not use it in cases 2 and 4. The expert clicks on
the radio button for the case which is different, enters its attribute and the contrasting one for the
other two cases, and clicks on “Done”.

4

Figure 4 Construct elicitation from a triad

Note some features of the screen of figure 4. The horizontal rules and background color have
been customized as specified at the bottom of Figure 4. More significantly, there are options at
the bottom of the screen to enter categorical data, name the attribute, give it a weight in
clustering, a priority in data requests, and to specify whether it is an input to inductive modeling
or an output to be predicted. WebGrid has generated these options because the knowledge
engineer selected the radio button “+Categories” in the initial screen of Figure 3.

If the default of “Ratings” had been left selected then none of the options would have appeared
and WebGrid would act as a simple repertory grid tool. Knowledge elicitation can be
commenced in this simple mode and changed to offer more data types at any time. This enables
the elicitation process to be kept as simple as possible and more features to be added through a
graceful upgrade as the expert gains confidence in the use of the tool.

When the expert clicks on “Done” WebGrid generates the screen of Figure 5 which allows all the
elements to be rated on the new construct. Note that the name of the construct, the extreme
values, the rating scale, and so on, can all be changed. The system is highly non-modal, enabling
errors to be corrected and improvements made at any time.

5

Figure 5 Rating elements on a construct

Elements are rated by using popup menus as shown in Figure 6. The menu provides a natural
rating scale replacing the special rating widgets developed for KSS0/RepGrid.

Figure 6 Popup menus used for rating scale entry

6

The expert can rate an element or leave it as a “?” which is taken as a “don’t care” value in later
modeling. When the rating is complete he clicks on “Done” and WebGrid generates the main
status screen shown in Figure 7 which shows the elements and constructs, allowing them to be
selected if required, and offers various context-dependent options.

Figure 7 Main status screen showing elements, constructs and options

4 Entering Categorical Data in WebGrid
To illustrate the entering of categorical data, consider the triadic elicitation screen of Figure 8.
The expert has noted that case 5 differs from the other in that the turbulence is out of range
whereas for case 6 it is light. He also realizes that medium and strong turbulence may be
significant for other cases and decides to enter these as categories, clicking on the “Categories”
radio button in the bottom part of the screen. He gives the category the name “turbulence”. The
primary use of such naming is disambiguation when more than one construct with rating or
categorical data has similar names for its values. In the later knowledge modeling the values will
be referenced as “turbulence = light” rather than just “light”.

7

Figure 8 Entering a category

The expert has the option to enter all the category values in the list box next to “Categories”. If
he does not, the values entered in response to the questions will be taken as extremal and the
others as interpolated between them. Thus, in the example given, the ordering will be: “out of
range”, “strong”, “medium”, “light”. Again the system is highly non-modal and more category
values can be added later in the elicitation, or categories re-ordered, and WebGrid adjusts
existing values so that no data re-entry is required.

When the expert clicks on “Done” WebGrid generates the data entry screen shown in Figure 9
where popup menus are again used to allow elements to be assigned value son constructs, but
now from a list of categories rather than a rating scale.

8

Figure 9 Entering categorical data

Figure 10 shows the upper part of the main status screen when all the cases from Figure 1 have
been entered. Note the detailed feedback that WebGrid has generated suggesting the addition of
further elements and constructs to break matches. As shown in Figure 7, this status screen also
provides the capability of deleting, editing and adding more constructs and elements, annotating
elements with multimedia notes that will be displayed in the elicitation process, analysis of the
data, saving it, and so on.

9

Figure 10 Main status screen when all the data from Figure 1 has been entered

10

6 Knowledge Modeling in WebGrid
Figure 11 shows the output returned when the “FOCUS” button is used to sort the grid to bring
similar elements and similar constructs together. The results of analysis are graphed, converted
to GIF format and returned to the client where they can be examined and saved if required. Note
that the grid itself is a mixture of rating and categorical data, and that the construct clusters show
that the use of the autolander is associated with visibility, stability and small errors.

Figure 11 FOCUS clustering of NASA autolander data

Figure 12 shows the output returned when the “PrinCom” button is used to provide a principal
components analysis of the grid by rotating it in vector space to give maximum separation of
elements in two dimensions. The results of analysis are graphed, converted to GIF format and
returned to the client where they can be examined and saved if required. On the right of the
graph it can be seen that the use of the autolander is counter-indicated when the wind is head,
there is visibility, errors are large, turbulence is out of range, attitude is negative or the shuttle is
unstable.

11

Figure 12 Principal components clustering of NASA autolander data

The cluster analyses provides the expert with feedback that enables him to check whether the
model being modeled appears correct but does not capture fine details and idiosyncratic
exceptions. Inductive modeling provides a more precise account of logical structure that
accounts for the data. Figure 13 shows the rules returned when the “Induct” button is clicked.

When the knowledge selects a factored EDAG in the control panel at the bottom of Figure 13
and clicks on “Induct” to run it again, the EDAG shown in Figure 14 is returned. This is
precisely that of Figure 2 taking into account the slightly different vocabulary used.

12

Figure 13 Induct modeling of NASA autolander data through rules

Figure 14 Induct modeling of NASA autolander data as EDAG

13

7 Integrated Inference in WebGrid
New cases may be tested against the rules by clicking the “Test” button under the list of elements
in Figure 10. This results in the data entry screen shown in Figure 15 which allows the attributes
of a test case to be entered and the rules used to infer a conclusion. The WebGrid inference
engine uses open class reasoning to make correct inferences with data that has missing values.
The current inference is that it is open whether to use the autolander or not.

Figure 15 Test case data entry and inference

The user enters data through the popup menus, say that there is visibility, the vehicle is unstable
and the wind is medium, and clicks on “Infer”. There is enough data to produce a definite
conclusion even though some attributes are unspecified, and WebGrid returns the screen of
Figure 16 showing that it can be inferred that one should not use the autolander.

The expert can continue to adjust the test case data and run inference until he is either satisfied
that the system is correct or he finds a case for which the inference is incorrect. He can then
correct the conclusion and click on the “Add” button to enter the data as a new case. When
Induct is run again it will generate a new model that takes account the additional case and, if
possible, will then be corrected on the existing cases together with the new one. Thus, knowledge
acquisition can be integrated with performance.

14

Figure 16 Test case data entry and inference

8 Conclusions
This demonstration has shown how WebGrid provides an interactive knowledge modeling
system through the Internet. The main paper (Gaines and Shaw, 1996) gives more details of
related systems and of other capabilities in WebGrid.

Acknowledgments
Financial assistance for this work has been made available by the Natural Sciences and
Engineering Research Council of Canada.

URLs
WebGrid can be accessed at http://tiger.cpsc.ucalgary.ca/WebGrid/
Related papers on WebGrid can be accessed through http://ksi.cpsc.ucalgary.ca/articles/

References
Gaines, B.R. and Shaw, M.L.G. (1996). A networked, open architecture knowledge management

system. Gaines, B.R. and Musen, M.A., Ed. Proceedings of Tenth Knowledge Acquisition
Workshop.

Michie, D. (1989). Problems of computer-aided concept formation. Quinlan, J.R., Ed.
Applications of Expert Systems Volume 2. pp.310-333. Sydney, Addison-Wesley.

