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Summary A major obstacle to the practical application of advanced techniques for process identification is
lack of suitable hardware. By its very nature an identification computer must be able to store and adjust
large numbers of variable parameters, and to use these for purposes of prediction and control. Conventional
analog and digital computers both have disadvantages in this application, and there is a need for hardware
specifically designed for identification purposes, economical in cost, reliable and drift-free like the digital
computer, and capable of parallel operation to achieve the size-independent bandwidth of the analog
computer. In particular this hardware should take full advantage of the advanced state of integrated circuit
technology.
This paper outlines the principles and structure of the Stochastic Computer, and describes three
identification techniques of increasing generality which take especial advantage of novel features in
stochastic computing elements. The first technique is one of steepest descent to the best linear relationship
between the inputs and outputs of the process to be identified—three conventional techniques, including
polarity-coincidence correlation, are compared with three stochastic techniques. The second technique is
one of statistical decision theory, in which Bayes Theorem is used to invert conditional probabilities and
bring them to a form suitable for estimation and prediction. The final technique is one of Markov modelling
of the state-class transitions of the process.
In conclusion it is suggested that advances in integrated circuit technology mean that feasible control
practice will, in a few years time, have advanced beyond control theory—at least as it stands at present.

Introduction
A major obstacle to the practical application of advanced techniques for process identification is
the lack of suitable hardware. By its very nature an identification computer must be able to store
and adjust large numbers of variable parameters. In the analog computer this requires analog
multipliers and low-leakage integrators, both liable to be costly and inaccurate. In the digital
computer repeated multiplications and updating of stores during each sampling interval restrict
the available bandwidth in the identification of complex systems. There is a need for hardware
specifically designed for identification purposes, economical in cost, reliable and drift-free like
the digital computer, and capable of parallel operation to achieve the size independent bandwidth
of the analog computer. This hardware should take every possible advantage of the advanced
state of integrated-circuit technology, so that sophisticated identification computers may be
realized in a small size with high speed and reliability at low cost.
This paper describes techniques of identification with Stochastic Computing hardware developed
as part of a program of research on the structure, realization and application of advanced
automatic controllers in the form of Learning Machines [1, 2]. The Stochastic Computer [3, 4]
and its derivative, the Phase Computer [5], have been described elsewhere, and only a brief
introduction to the hardware is given here. Three particular identification techniques of
increasing generality are then described, which take especial advantage of novel features in
stochastic computing elements.
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The first technique is one of steepest descent to the best linear relationship between the inputs
and outputs of the process to be identified. The theory underlying this technique is already well-
known, and it has been applied to many practical systems with continuous inputs and outputs.
Particular attention is paid to the problem of identifying low bandwidth parameters of high
bandwidth systems; to the relationship between polarity-coincidence techniques and stochastic
equivalents; and to the convergence of stochastic adaptive threshold logic.
The second technique is applicable to systems with arbitrary inputs and outputs which do not
necessarily lie on continua, and utilizes maximum likelihood prediction based on Bayes
inversion of conditional probabilities. This has been suggested for identification in some learning
controllers, but never implemented in practice because of its computational requirements. The
use of stochastic computing elements enables the direct estimation of normalized likelihood
ration, in a form suitable for prediction.
The third technique makes even less assumptions about the nature of the process to be identified,
and is based on a Markovian model of the state-transitions of the plant. Its application has been
suggested in the neighbourhood of optimal trajectories where accurate identification is especially
important.

Stochastic Computing
Computations within the stochastic computer are carried out using standard logic-elements,
gates, flip-flops etc., but with data represented in an unconventional form as the generating
probabilities of Bernoulli sequences of logic levels. Thus a quantity in the stochastic computer is
represented by a binary sequence of ON and OFF logic levels, generated by a random process
such that successive levels are statistically independent, and the probability of the logic level
being ON is a measure of that quantity. Because a probability cannot be measured exactly but
only estimated as the relative frequency of ON logic levels in a sufficiently long sample, the
information representation in the stochastic computer is generally less efficient than that in other
forms of computer. For example, to represent a quantity to an accuracy of one part in N:

the analog computer requires one continuous level;
the general purpose digital computer requires log2kN ordered binary levels;
the pulse-counting computer (e.g. DDA) requires kN unordered binary levels;
and the stochastic computer requires kN2 unordered binary levels;

where k > 1 is a constant representing the effects of round-off error or variance. The N2 term for
the stochastic computer arises in the estimation of a generating probability, where the expected
error decreases as the square root of the length of sequence sampled.
Although this progression from 1 < log2N < N < N2 shows the stochastic computer to be the least
efficient in its representation of quantity, it is the only digitally-based computer to have a strictly
local representation of data in which the logic levels in a sequence are independent, and through
this it gains in simplicity and economy of computation. In practice also, pseudo-stochastic
techniques may be used, such as those of the phase-computer [5], with little loss of simplicity
and a major gain in efficiency and bandwidth.
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In the next sections stochastic representations are first described, and then the range of stochastic
computing hardware for multiplication, addition, integration, control of analog variables,
conversion, estimation, and so on is described.

Stochastic Representations
In some applications of the Stochastic Computer, such as the Bayesian and Markovian estimators
described later, one is dealing with the estimation of probabilities of external events, and the
[0,1] range of generating probabilities in the computer itself has a natural interpretation.
Generally, however, it is necessary to map some other variable into this range, in the same way
that one maps quantities into the range of voltages of an analog computer. Many mappings are
possible, but those most relevant to the present discussion are:
(1) Asymmetric Binary Given a quantity E in the range, 0 ≤ E ≤ V, represent it by the
generating probability

p(ON) = E/V (1)
i.e. the magnitude of a positive bounded quantity is represented by the logic level always ON for
maximum quantity, always OFF for zero quantity, and fluctuating randomly for intermediate
quantities.
(2) Symmetric Ternary The above representation may be extended to bipolar quantities by
representing the sign of the quantity as a logic level on one line, and the magnitude stochastically
as above. This may be transformed to an equivalent but preferred arrangement in which positive
sign and ON magnitude correspond to the UP line being ON, whilst negative sign and ON
magnitude correspond to the DOWN line being ON. In this case for a quantity E, such that
V ≤ E ≤ V, we have:

E/V = p(UP= ON) - p(DOWN= ON) (2)
i.e. maximum positive quantity is represented by the UP line always ON, maximum negative
quantity by the DOWN line always ON, and zero quantity by both lines always OFF (or possibly
by equal non-zero probabilities that the UP line and DOWN line will be ON).
(3) Symmetric Binary Alternatively a bipolar quantity may be represented on a single line by
the mapping.
 p(ON) = E/2V + 1/2 (3)
i.e. maximum positive quantity is represented by a logic level always ON, maximum negative
quantity by it always OFF, and zero quantity by a logic level fluctuating randomly with equal
probability of being ON or OFF. This last property is a disadvantage of representation (3)
compared with (2) since zero quantity is represented with maximum variance in (3) but zero
variance in (2)—hence the latter is to be preferred when quantities requiring accurate
representation of small values, such as ‘satisfaction error’, are to be represented.

Stochastic Computing Elements
Invertors To multiply a quantity in representation (2) by -1 requires only the interchange of UP
and DOWN lines. In representation (3) a simple logical invertor whose output is OFF when its
input is ON performs arithmetic inversion.
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Figure 1 Inversion
Multipliers To multiply together two quantities in representation (1) a simple AND gate suffices
as shown in Figure 2(i). In representation (2) it is required that the UP output be ON when both
UP inputs are ON, or when both DOWN inputs are ON, and that the DOWN output should be
ON when one UP input and one DOWN input is ON. This may be realized by the gating shown
in Figure 2(ii). In representation (3) an inverted exclusive OR gate may be used, whose output is
ON when its inputs are equal.

Figure 2 Multiplication
Summers Addition of the quantities represented on a number of lines in the stochastic computer
may be effected by switching the output line at random to one of the input lines. For example, if
there are two input lines and the output is switched to one, representing the quantity E, with
probability λ, and hence to the other, representing E' with probability 1-λ, then the output will
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represent the quantity λE + (1-λ)E'. A two-input stochastic summer for representations (1) and
(3) is shown in Figure 3(i)—Flip-Flop1 is in a random state which is transferred to Flip-Flop2 at a
clock-pulse; dependent on the state of Flip-Flop2 one or other of the input lines is reproduced at
the output.
It is advantageous to use additional gating to minimize the variance of the output in
representation (3), and this is shown in Figure 3(ii).

Figure 3 Summation
Integrators A reversible binary counter may be used as integrator in the stochastic computer.
For quantities in representation (2) the UP and DOWN lines may be attached to the equivalent
lines on the counter to obtain a single-input integrator. A two-input summing integrator may be
obtained by feeding both the first and second stages of the counter to cause it to count by one or
by two, using the input logic shown in Figure 4(i). For quantities in representation (3) a two-
input summing integrator is naturally obtained using the logic of Figure 4(ii).
If the counter has N+1 possible states then the value of the integral when it is its k’th state is:

= −∫ V i N( / )2 1 (4)

If this quantity is to be used in further computations it must be made available in a stochastic
representation and this may be achieved by comparing it with a uniformly-distributed, digital
random number (obtained from a pseudorandom shift-register or a sampled cycling counter). In
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representation (2) the count is regarded as a signed number in twos-complement form, and its
sign bit determines which output line is operatives whilst the result of the comparison determines
whether this line is ON. Hence if the counter is above its mid-count only its UP output line may
come ON, and when the counter is in its N’th state this line is ON at every clock-pulse. In
representation (3) the result of the comparison determines whether the single output line shall be
ON, and we have:

p(OUTPUT = ON) = k/N (5)

for an N+1 state counter in its k’th state. A third input line, HOLD, may be added to control the
operation of the integrator, and it is convenient to use a standard symbol for the overall device as
shown in Figure 4(iii).

Figure 4 ADDIE
Outward Interface A stochastic integrator with negative feedback to one of its inputs acts as a
smoothing or estimating element (Fig.4(iv), the ‘ADDIE’). In terms of the representation it may
be regarded as a transfer function:
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l/(s + 1).
In terms of the generating probabilities it may be shown that, for the configuration of Figure 4(ii)
connected as in Figure 4(iv), the fractional count in the store tends to an unbiased estimate of the
probability that the input line will be ON at a clock pulse. That is, for an N+1 state store in its
k’th state:

p(INPUT=ON) = k/N (6)

with a time-constant of order N clock pulses, and a final variance:

€ 

σ 2(p) = p(1− p) /N  (7)

Hence any quantity represented linearly by a probability in the stochastic computer may be read
out to any required accuracy by using an ADDIE with a sufficient number of states, but the more
states the longer the time constant of smoothing and the lower the bandwidth of the computer.
Hence variables within the computer may be regarded as degraded by Gaussian noise, whose
power increases in proportion to the bandwidth required from the computer.
Since the counter has a parallel digital output, it forms the natural outward interface of the
stochastic computer. In many applications this output is used to control the analog variables in a
hybrid configuration. This may be done precisely by having the digital output control the
switched summing resistors of an operational amplifier, but this leads to transients in the analog
channel which decrease its available bandwidth. In many applications, such as model-reference
adaptive control [6, 7] and adaptive line equalization, [8, 9] an exact linear relationship between
the digital output and the analog multiplier is unnecessary, because the multiplier is within the
adaptive loop; only a monotonic relationship without wide variation in slope is required. This
may be achieved by using the digital output to control a photo-emissive source driving a photo-
conductive input resistor to an amplifiers by this means low-bandwidth digital control of very
high bandwidth analog channels is economically performed.
The integrator or ADDIE may be used to generate arbitrary functions by imposing suitable
nonlinear relationships between the stored count and stochastic output. In particular, a switching
function may be realized by discarding the comparators and noise generators of Figures 4(i and
ii), and having the output line ON (the UP line ON) when the count is above mid-level.
Inward Interface Conversion of an analog level to a stochastic representation may be achieved
by sampling it at a clock pulse and comparing it (or its magnitude in the case of representation
(2)) with a random level. Since it is simpler to generate accurate digital random distributions than
analog ones, it is preferable in practice to convert the analog level to digital form
deterministically (using a standard ramp plus comparator coupled to the counter of a stochastic
integrator) and generate a stochastic output from this.
By strobing the analog input with a very narrow pulse it is possible to use the information
passing through a very high bandwidth channel to identify its low bandwidth parameters, either
open-loop [10] or by gradient techniques. By delaying the strobe pulse between channels it is
possible to simulate and measure time delays in the analog channel. Both these techniques
greatly extend the range of application of the stochastic computer.



8

Gradient Techniques
Before considering the realization of gradient techniques in the stochastic computer, it is of
interest to discuss the alternative technique of open-loop identification using cross-correlation of
input and output to obtain the impulse response. There have been many attempts to simplify and
reduce the cost of correlators by replacing the analog multipliers with gates or relays, using
digital [11, 12] or mixed analog/digital [13, 14] computation. Under low noise conditions with
Gaussian signals, these techniques may be shown to give results having a 1 to 1 correspondence
with the true correlation function [15]. However, in the presence of noise or with strongly
asymmetric distributions this correspondence no longer holds, and the structure of the true
response is lost.
Addition of appropriate random signals to the correlator inputs has been suggested as a means of
overcoming these defects, [16, 17] and leads to a structure identical to that of a stochastic
multiplier and integrator for quantities in representation (3). The accuracy of the results for a
given period of integration may be increased by utilizing representation (2);  this may be seen as
an application of coarse quantization [18, 19] together with stochastic interpolation. Similarly the
action of a stochastic representation in removing the noise-bias effects of polarity-coincidence
correlation and emulating analog multiplication may be viewed as statistical linearization [20,
21] of the relay switching function.

Comparison of Hardware for Gradient Techniques

Whilst the linearization inherent in the stochastic representation is essential in obtaining unbiased
results from an open-loop determination of process parameters using polarity coincidence
correlation, it is by no means obvious that the same is true of closed-loop determinations such as
gradient techniques for learning-model [22] or model-reference [7, 24] adaptive control. It has
been suggested that relay-correlation may lead to interactions between coefficients which are
otherwise orthogonal [25], and it might be expected that the noise-bias would be greater for
polarity-coincidence techniques. Since, however, the zero-crossings of the polarity-coincidence
function and the true correlation function are the same for Gaussian inputs [15], even in the
presence of noise, the noise-bias of null-seeking gradient techniques should be virtually
independent of the method of correlation used.
Because of the practical importance of gradient techniques in both communication and control, it
would seem worthwhile to devote some effort to a detailed comparison of the performance of
various forms of hardware. The first stages of such a study and the initial results obtained are
outlined in the next section.
Parameter Determination The problem selected for the initial study was the determination of
the parameters of the first-order transfer-function:

l/(a0 + a1s),

given the input/output waveforms of the noise-excited systems. This is an example of the general
problem of finding the best (in some sense) weights, {wi}, to approximate the output, Z, of some
system by a linear combination of its inputs {Xi}. The error in satisfying the system relationship,
E:

€ 

E = wi∑ Xi − Z  (8)
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is a function both of the estimated weights and the system state, and some functional of E is to be
minimized.
Six techniques for varying the weights have been investigated:
1. Steepest Descent

€ 

˙ w = −αE Xi (9)

requiring analog multipliers for both the weights and their adaption.
2. Relay Correlation

€ 

˙ w = −α sgn(E) Xi (10)

requiring analog multipliers (which may be simple motorized potentiometers) for the weights
only.
3. Stochastic Relay Correlation

€ 

˙ w = −α sgn(E + γ) Xi (11)

where γ is a random variable uniformly and symmetrically distributed over the range of E; this
effectively linearizes the relay.
4. Polarity-Coincidence

€ 

˙ w = −α sgn(E) sgn(Xi) (12)

where wi now takes discrete values and the integration is performed by a counter, so that no
analog multipliers are required.
5. Stochastic Ternary

€ 

˙ w = −α sgn(E) sgn(Xi)(1+ sgn( E − γ))(1+ sgn( Xi −δ)) /4 (13)

this may be regarded as polarity-coincidence correlation with stochastic weighting according to
the magnitude of the inputs (γ and δ are random variables uniformly distributed in the range of
magnitudes of E and Xi respectively).
6. Stochastic Binary

€ 

˙ w = −α sgn(E + γ) sgn(Xi + δ) (14)

this may be regarded as polarity-coincidence correlation with statistical linearization of the
comparators (γ and δ are random variables symmetrically and uniformly distributed in the ranges
of E and Xi respectively).
The computing arrangement for this last technique is shown in Figure 5 (one channel). If the
‘high-frequency sawtooth’ amplitude is reduced to zero this becomes an implementation of
polarity-coincidence correlation (Equation 12). For intermediate values of the sawtooth
amplitude the multiplication is proportional for small values of E and Xi, and bang-bang for large
values—the partial linearization gives rise to ‘dual-mode’ operation.
Experimental Study There are four figures of merit which have to be determined for the various
techniques:
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(a) Speed of Response How rapidly are the weights adjusted in response to a step change. This
is not simple to define since the equivalent gain of a relay is a function of the input amplitude.
Hence, when E becomes large following a change in the system parameters, the speed of
response of methods 1, 3, 5 and 6 is greater than that of methods 2 and 3. As the estimates
converge and E becomes small, however, the speed of the first group decreases whilst that of the
second pair remains constant. This cross-over shows clearly in the graph of Figure 6, comparing
methods 1 and 2 in estimating a0 with noise-free data.

Figure 5 Stochastic Descent

Figure 6 Speeds of Response
(b) Bias Due to Noise on Data All the techniques will underestimate the magnitude of the
weights when uncorrelated noise is added to Z and each of the {Xi} For the reason stated earlier,
it was expected that this bias would not be greater for methods 3 and 4 than for the others, but
this was subject to check under realistic conditions.

(c) Interaction Between Weights In order that a step-change in one parameter shall not cause
transient changes in the estimates of the others, it is necessary to chose the {Xi} to be orthogonal

functions (relative to the functionals implied by equations (9) to (14)). a0 and a1 do multiply
orthogonal functions with respect to methods 1,3,5 and 6, but it is not obvious that they remain

orthogonal for 2 and 4 (although again the results of Reference 15 would suggest that they do
under reasonable conditions).
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(d) Variance in the Final Estimates Under noise-free conditions E tends to zero and the
estimates reach fixed, stable values (apart from the one-unit relay ‘chatter’ in methods 2 and 4,
and the stochastic variance in methods 3 and 6). Noise on the {Xi}, however, induces variance in
the [wi] which increases with the gains, a, of the various methods. If the speeds of response are
matched (in some sense) then the gain-varying methods (2 and 4) would be expected to have
more variance in their estimates, as would also the stochastic binary techniques (3 and 6).
Results The gain of each method was adjusted so as to equalize their speeds of response (time
taken to traverse 0.9 of the step) under high-noise conditions (uniformly-distributed noise, 0.2 of
signal). The noise-bias in the estimate was measured under these conditions, together with the
variance of the final estimate. The interaction between coefficients was measured under noise-
free conditions by examining the effect of a step in one parameter on the estimate of the other.
The overall time of convergence was set to be about 5 process time-constants.
It was found that:

The noise-bias was the same in every case (estimate about 0.8 of true value).
The interaction was the same in every case.
The variances of the final estimates were approximately in the ratios:

1.  Steepest Descent 1
2.  Relay Correlation 4
3.  Stochastic Relay Correlator 2
4.  Polarity Coincidence 10
5.  Stochastic Ternary 1
6.  Stochastic Binary 2

Hence the high α required to give the relay and polarity-coincidence techniques a sufficient
speed of response leads to excessive gain in the converged condition and poor noise-rejection.

Adaptive Threshold Logic
Addition of a threshold element at the output of a steepest descent configuration:

€ 

+1 if wi∑ Xi ≥θ

Y = 0 if wi∑ Xi <θ

+1 if wi∑ Xi ≤−θ

(15)

and consideration of two-level inputs only (Xi = ±1 or 0,1), converts it to an ‘adaptive threshold
logic’ element. These have been expensively studied as Perceptrons [26], Adalines [27],
Learning Matrices [28], and so on [29], and are basic components of most learning-machines and
adaptive pattern-recognizers. The standard convergence proof [30] for an adaptive threshold
logic element, given a sufficient range of examples of an input/output relationship which it is
capable of realizing, uses a reductio ad absurdum argument demanding that the weight
magnitudes be potentially greater than the minimum necessary for a solution to exist. An
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alternative mode of adaption is possible in which an a priori bound is fixed for the magnitude of
the weights:

let 

€ 

Ui
J  be a set of binary vectors such that there exists some vector 

€ 

ηi:

€ 

ηi∑ Ui
J > θ , for all J.

Given a sequence of vectors Xi(n), frequently containing only UJ for all J, recursively construct a
sequence of weight vectors.

€ 

wi(n +1) =
wi(n) if wi∑ Xi >0

αwi(n) + (1−α)Xi(n) otherwise
(16)

Then it may be shown that wi(n) converges to a vector wi such that:

€ 

€ 

wi∑ Ui
J > 0

provided (l-α) is small compared with θ   2.
This result depends however on the continuity of the weights, and when these are both discrete
and bounded not only do the convergence proofs fail but also counter-examples may be given
showing limit-cycle behaviour rather than a solution. For example the set of binary vectors

A  (1, 1, 1, -1)
B  (1,-1,-1, 1)
C  (-1, 1,-1, 1)
D  (-1,-1, 1, 1)

may be identified by the weight vector:
W ( 1, 1, 1, 2),

and hence weights with the possible values wi = -2, -1, 0. +1, +2, should be capable of
converging to a solution. Given the repetitive cycle A B C D A B C D ..... however a limit cycle
is formed:

W(0) 0 0 0 0
A

W(1) 1 1 1 -1
B

W(2) 2 0 0 0
C

W(3) 1 1 -1 1
D

W(4) 0 0 0 2
A

W(5) 1 1 1 1
B

W(6) 2 0 0 2
C

W(7) 1 1 -1 2
D

W(8) 0 0 0 2
A
...................................................



13

Consider now the equivalent device utilizing stochastic computing elements to realize equation
(16) on average by stochastic interpolation. We have:

€ 

Wi∑ Xi >0 (17)

and if

€ 

Wi∑ (n)Xi(n)≤0 (18)

then

€ 

Wi(n +1) = Wi(n) +ϕ iXi(n) (19)

where 

€ 

ϕ i  is a random vector, 

€ 

ϕ i  = 0, 1. Consider now:

€ 

(Wi∑ −Wi (n +1))2 = (Wi∑ −Wi (n))
2 − 2 ϕ i(Wi∑ −Wi (n) + Xi(n) /2)Xi(n) (20)

combining (17) and (18) we have that, for some i,

€ 

(Wi −Wi(n))Xi(n)> 0 (21)

and hence from equation (20) there is a non-zero probability that the distance between the
vectors at Wi and Wi(n) will decrease. Thus, if the weights do not form a solution, during any
cycle of the inputs there is a non-zero probability that the weight vector will move nearer an
arbitrary solution vector. Hence, since the weights have a finite set of possible values, the
probability of convergence tends uniformly to 1 with the number of training cycles.
The net result is that a stochastic adaptive-threshold-logic element requires less redundant states
than the equivalent deterministic device.

Bayes Predictor for Binary Inputs
Statistical inference based on Bayes’ ‘Theorem’ is fundamental to modern probability theory
[31, 32, 33] and devices to implement various predictors based on the Theorem have been put
forward many times [34, 35, 36] as basic components of learning machines.
Consider some event E whose occurrence (designated e(n)=1) is dependent upon which members
of a set of events {Ei} have occurred. Let the binary vector [ei] be such that ei=1 if the event E.
has occurred and ei=0 otherwise. Then the probability that e(n) =1, given [ei(n)], is to be used to
make the best prediction of E. The simplest utilization is that of maximum likelihood prediction,
in which E is predicted to occur if:

€ 

p(e(n) =1 |[ei(n)]) > 0.5 (22)

but more complex procedures may be used if further information is available, e.g. if the costs of
predicting incorrectly one way or the other are known.
To estimate the conditional probability of E occurring for each possible combination of events
from {Ei} would not only require great storage capacity but also much experience, and in
practice it is necessary to make certain simplifications which are equivalent to having the
machine generalize from its experience. An estimating and predicting scheme based on Bayes
Theorem together with certain assumptions about the nature of the events E and {Ei} is
developed in the next section.

Estimation and Prediction

Consider the likelihood ratio:
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€ 

L(n) = p(e(n) =1 |[ei(n)]) / p(e(n) = 0 |[ei(n)]) (23)

By Bayes’ Theorem this can be re-written:

€ 

L(n) =
p([ei(n)] | e(n) =1)p(e(n) =1)
p([ei(n)] | e(n) = 0)p(e(n) = 0)

(24)

Now assume that the components, ei(n), are statistically independent under the occurrence of E,
so that:

€ 

p([ei(n)] | e(n) =1) = p(ei(n) | e(n) =1)
i
∏ (25)

 (where 

€ 

i
∏ means ‘the product for all i’),

and apply Bayes Theorem to the expanded terms:

€ 

L =
p(e =1)
p(e = 0)

=
p(e =1 | ei)p(e = 0)
p(e = 0 | ei)p(e =1)i

∏ (26)

(where the argument ‘n’ has been dropped for clarity), which may be written:

€ 

L = L0π i Li (27)

using an obvious notation.
Equation (27) implies that the quantity required in prediction, L, is the product of L0 and the
normalized likelihood ratios, Li, of those events E. which have occurred. It is customary tb take
logarithms, turning the product into a sum for easier computation; the quantity ln(Li) is in fact
the information in the event Ei relative to the event E [23]. Estimation of Li, ln(Li) or even the
unormalized likelihood ratios is difficult, however, because they are nonlinear and unbounded
functions; in practice no compatible estimation and prediction scheme using simple computing
elements has been developed for the Bayes Predictor.

Stochastic Realization of Bayes Predictor

Estimation of the L and prediction based on them is achieved quite simply using stochastic
computing elements. To each event E there corresponds a stochastic integrator estimating a
probability pi such that:

€ 

pi
(1− pi)

= Li (28)

A single integrator connected to the outputs of these implements equation (27) for prediction.
The integrators shown in Figure 7 are minor extensions of those in Figure 4(ii) in that they have
multiple inputs, the counter incrementing only when they are all ON and decrementing when
they are all OFF. The integrator estimating pi receives inputs from a line which is ON when E
has occurred; from the inverted output of the L0 integrator estimating p(e=l); and from its own
inverted output. Its HOLD line is ON only when the Estimate line is ON and Ei has occurred.
The outputs from the integrators are gated according to the Ei which have occurred and feed an
integrator which may be connected as a switching function if maximum likelihood prediction
alone is required. Its output during prediction tends either to an estimate of the conditional
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probability of E given the Ei which have occurred, or, in the case of a switching function, to the
predicted E itself.
Thus the stochastic computer lends itself to a simple and economical realization of a Bayes
Predictor for binary information.

Figure 7 Bayes Estimator and Predictor

Markov Modelling
It has become conventional to introduce the abstract concept of a process through its state-
transitions [37] rather than through the differential or difference equations which describe
particular examples. To identify a real process on this basis, however, is not feasible, because the
number of states is generally very large, the number of potential transitions very much larger,
and hence both the storage capacity and time for identification required become astronomical. In
practice it is necessary to make topological assumptions, such as continuity or linearity, which
correspond to the generalization of experience of members of a class of transitions to all
members of that class.
A Markov model of transitions between state-classes, however, may be made the basis of a very
powerful and general identification technique, particularly if adaptive classification and selection
of state-classes relevant to the control problem are also utilized. The computations involved are
slow in the conventional digital computer, because they involve the repeated multiplication of
large matrices. With stochastic computing elements, however, it is possible to establish a direct,
parallel simulation of the state-transitions.
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Consider the set of states {Si} (state-classes, policy-elements), and let the probability of a
transition from Si to Sj be pij. We may assume that:

€ 

pij
j
∑ =1 (29)

by taking S0 to be the class of states not included in {Si}; pi0 is then the probability of going out
of the state space considered, and p0i the probability of coming into it at Si from outside. Note
that the transitions need not be first-order Markovian, but are assumed to be so for purposes of
identification; the transition probabilities may appear to vary if this assumption does not hold.
The transition probabilities are estimated using the principle of the ADDIE (Fig.4(iv)), with one
stochastic integrator for each pij. Prediction consists of direct simulation of the state-transitions,
and a slight modification of the integrator of Figure 4(ii) is required since a transition from Si can
occur to one and only one state Sj. All the integrators for transitions from Si form a single unit
containing a counted for each Si and a single random generator. The feedback from the output is
built-in, and each unit has a set of inputs corresponding to transitions to Sj occurring, and a set of
outputs corresponding to transitions to Sj being predicted.
In estimation, if a transition occurs from Si to Sj, then the ESTimate (HOLD) line of the i’th
integrator, together with its j’th input, are turned ON. In prediction, a flip-flop attached to each
integrator unit determines which of the Si is the current state. At a clock-pulse the output of this
unit determines which flip-flop will be ON corresponding to the next state. By setting the i’th
flip-flop ON and running the process through N clock-pulses several times, it is possible to
estimate the probability of a transition from Si to Sk within N steps (by counting the number of
times that the k’th flip-flop is ON). Similarly it is possible to estimate the average path-length
from Si to Sk, and any other parameters or cost-functions of the process which may be required.

Conclusions
It is a common complaint that control theory has developed far beyond control practice. In fact
the conceptual gap is accentuated out of all proportion to its true significance by the tremendous
rate of growth of both control theory and electrotechnology—a temporal gap of even two years
may make all the difference between technical failure and technical success.
Eight years ago we would have built a ‘learning machine’ with vacuum tubes and relays, and it
would have been massive, unreliable and useless. Four years ago we would have built it with
discrete semiconductor devices and it would have served as a demonstration of principle—the
cost and size of a powerful machine would have been prohibitive. Today we have available
integrated circuits containing several basic functional elements, such as flip-flops, on a single
chip. In four years time we shall have complex arrays containing hundreds of gates and flip-flops
interconnected as a complete system. The difficulty for the circuit manufacturer is not only in
making these elements, but also in knowing what they should be. The requirements will come
from the users, and control engineers may be expected to form a high proportion of these.
There are some general principles in the utilization of these new components which greatly affect
the type of control system that may be realized: capacitors have a bulk far greater than equivalent
digital storage elements and hence analog storage is wasteful and inefficient—on the other hand
very high quality, low-drift, high-bandwidth amplifiers are available and their gains may be
digitally controlled, the connections to a chip are its least reliable and most expensive feature and
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should be minimized—equally cross-connections between the small, complex systems realizable
in a single can are a major factor in the cost of fabricating a controller and must also be
minimized both in number and in length—this implies that the circuit elements should be
complete subsystems, and that data-transmission between them should be along a single wires
the cost of the circuit elements is largely dependent on the number manufactured, and hence as
few different types as possible should be used.
The advances in integrated circuit technology mean that feasible control practice will, in a few
years time, have advanced beyond control theory—at least as it stands at present. It has been the
objective of this paper to demonstrate that the gap between control theory and control technology
is closing, and may even be expected to open in the opposite direction.
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