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Abstract

We investigate several infinite families of purely cubic complex
congruence function fields with small fundamental units. Specifically,
we compute the fundamental units of fields K of unit rank 1 and
characteristic not equal to 3 where the generator of K over Fq(t) is
a cube root of D = (M3 − F )/E3 with E3 dividing M3 − F and F
dividing M2. We also characterize all purely cubic complex function
fields with regulator 1.

1 Introduction

There is a considerable amount of literature on fundamental units in purely
cubic number fields Q( 3

√
D) (D ∈ Z cubefree) and the solutions of certain

Diophantine equations associated with these units. Oftentimes, the funda-
mental units of these fields are very large, but a number of families of fields
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with small units were analyzed in considerable detail. Stender [5] character-
ized families of fields whereD = m3+a orD = m3+3a with a,m ∈ Z, a divid-
ing m, and a is bounded above by some specified fraction of m. Rudman [2]
improved on previous results and completely described the case D = m3 + a
with a dividing 3m2. Finally, Williams [7] extended Rudman’s work to values
of D where D = (m3 − a)/e3, e divides m3 − a, and a divides 3m2.

In this paper, we derive results analogous to those in [7] for purely cubic
complex congruence function fields. That is, we compute the fundamental
unit of a cubic extension of unit rank 1 of a rational function field in one vari-
able with a generator ρ such that ρ3 = D = (M3 − F )/E3 where D,E, F,M
are polynomials over a finite field, D is cubefree, E3 divides M3 − F and
F divides M2. While we make some use of the methods of Rudman [2]
and Williams [7], our techniques are on the whole quite different and exploit
properties of polynomials. We also give a complete analysis of the situation
where the regulator of a purely cubic complex function field is 1.

For a general introduction to function fields, we refer the reader to [6]; the
purely cubic case is discussed in considerable detail in [1] and [3, 4]. Let
k = Fq be a finite field of order q whose characteristic p is not 3. For some
element t that is transcendental over k, denote by k[t] and k(t) the ring of
polynomials and the field of rational functions, respectively, over k in the
variable t. If D ∈ k[t] is a nonconstant cubefree polynomial and ρ is a fixed
cube root of D in some algebraic closure of k(t), then the cubic extension
K = k(t, ρ) of k(t) is a purely cubic (congruence) function field over the field
of constants k. Note that the other cube roots of D are ιρ and ι2ρ where ι is
a primitive cube root of unity (which may or may not lie in k). We denote by
σ the automorphism on K(ι) that fixes elements in k(ι, t) and maps ρ onto
ιρ, so ρσ = ιρ and ρσ

2
= ι2ρ.

The integral closure O = k[t] of k[t] in K is a ring and a k[t]-module of rank
3. If we write D = GH2 with G,H ∈ k[t] both squarefree and coprime, then
a k[t]-basis of O (which is also a k(t)-basis of K) is {1, ρ, ω} where ρ is as
before and ω = ρ2/H. We note that in contrast to the number field case, it is
easy to determine H from D; namely H = gcd(D,D′) where D′ is the formal
derivative of D with respect to t. We also define D = G2H; then ω3 = D, ω
is also a generator of K over k(t) and in the corresponding integral basis, one
simply has to reverse the roles of ρ and ω. The bases {1, ρ, ρ2} and {1, ω, ω2}
generate submodules Oρ and Oω, respectively, of O; we observe that Oρ = O
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if and only if D is squarefree and Oω = O if and only if D is a square.

For an element α = A+Bρ+ Cω ∈ K (A,B,C ∈ k(t)), the conjugates of α
are ασ = A + Bιρ + Cι2ω and ασ

2
= A + Bι2ρ + Cιω. The norm and trace

of α are the respective quantities

N(α) = αασασ
2

= A3 +B3GH2 + C3G2H − 3ABCGH,

Tr(α) = α + ασ + ασ
2

= 3A.

We have N(α), T r(α) ∈ k(t), and if α ∈ O, then N(α), T r(α) ∈ k[t]. If
α ∈ O, then N(α) ∈ k∗ = k \ {0} if and only if α is a unit in O.

The group O∗ of units of O is an Abelian group whose torsion part is simply
k∗. Its rank is the unit rank of K and a set of generators of the torsion-free
part of O∗ is a system of fundamental units of K. In contrast to purely cubic
number fields (which are complex cubic fields and thus always have unit rank
1), the unit rank of a purely cubic function field can be 0, 1, or 2, depending
on the form of q and D. The cases of different unit rank were completely
characterized in [3]; in our context, we are only concerned with cubic function
fields of unit rank 1 which we call complex in analogy to the terminology for
cubic number fields. This case occurs if and only q ≡ 2 (mod 3), the degree
deg(D) of D is divisible by 3, and the leading coefficient sgn(D) of D is a
cube in k∗. Then k does not contain any primitive cube roots of unity, so
if α ∈ K, then ασ, ασ

2 6∈ K, but ασασ
2

= N(α)α−1 ∈ K. Under these
conditions, K can embedded in the field k((1/t)) of Puiseux series over k.
Nonzero elements in k((1/t)) are of the form α =

∑∞
i=m ai/t

i ∈ k((1/t))
(m ∈ Z, ai ∈ k for i ≥ m, am 6= 0). Denote by

deg(α) = −m the degree of α,

|α| = qdeg(α) = q−m the (absolute) value of α,

sgn(α) = am the sign of α,

bαc =
0∑

i=m

ai
ti

the principal part of α.

We also set deg(0) = −∞, |0| = 0, and b0c = 0. Note that bαc ∈ k[t] and
|α − bαc| < 1. If α ∈ K, then we let deg(ασ) = deg(ασ

2
) = deg(ασασ

2
)/2

and |ασ| = |ασ2| =
√
|ασασ2| = qdeg(ασ).

Henceforth, we assume K to have unit rank 1. Then we have one fundamental
unit ε of negative degree that is unique up to factors in k∗. R = deg(εσ) is
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the regulator of K; we have R ∈ N in contrast to the number field case
where the regulator is an irrational number. In general, |εσ| is very large
– exponentially large in |D|, see [3] – but here, we will investigate fields
with fundamental units whose absolute value is of order |D|. Specifically, we
compute the fundamental units of the infinite family of fields K = k(t, 3

√
D)

where D = (M3 − F )/E3 with E,F,M ∈ k[t], E3 divides M3 − F , and F
divides M2. As in the number field situation, the fundamental units of these
fields lie almost always in the submodule Oρ of O, and in one case, in Oω.
We also classify all purely cubic function fields of unit rank 1 whose regulator
is 1. Our results are summarized in two tables at the end of sections 4 and
5, respectively.

In the next section, we establish some general facts about units in purely
cubic function fields. Section 3 deals with the case of constant F , and section
4 discusses the more complicated setting where F is not constant. In the last
section, we analyze the situation of minimal regulator.

2 General Remarks on Units in Purely Cubic

Function Fields

Before we begin our investigation of fundamental units, we establish some
notation. We use lower case letters to denote elements in the field of con-
stants k. Polynomials in k[t] (and occasionally rational functions in k(t)) are
represented by upper case letters, and Greek letters will signify elements in
O and K (with the exceptions of ι and σ defined in the previous section).
For Q ∈ k[t], Q′ denotes the formal derivative of Q with respect to t. For
P,Q ∈ k[t], write P | Q if P divides Q. Also, write P n ‖ Q (n ∈ N0) if P n is
an exact divisor of Q, i.e. P n | Q and P n+1

- Q. For any field L, we denote
by L∗ = L \ {0} the set of nonzero elements of L.

We begin with a few simple facts about finite fields and polynomials.

Lemma 2.1 Let L be a finite field of characteristic p and order q.
1. Every element in L is a p-th power.
2. If q ≡ 2 (mod 3), then every element in L is a cube.
3. If Q ∈ L[t], then Q′ = 0 if and only if Q is a p-th power in L[t].
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Proof: 1. a = (aq/p)p for all a ∈ k.
2. If q = 2, then this is certainly true. If q > 2, then for any a ∈ k,
(a(q+1)/2)2 = a2, so a(q+1)/2 = ua with u = ±1. Then (ua(q+1)/6)3 = a.
3. If Q′ = 0, then the only nonzero coefficients of Q are coefficients of
terms that are p-th powers of some power of t. Let Q =

∑deg(Q)
i=0 ait

pi, then
by part 1, each ai is a p-th power, say ai = bpi for i = 0, 1, . . . , deg(Q).

Then Q = (
∑deg(Q)

i=0 bit
i)p. Conversely, if Q = P p for some P ∈ k[t], then

Q′ = pP p−1P ′ = 0. 2

We continue with some observations about units in purely cubic function
fields. For the remainder of this paper, we let k be a finite field of charac-
teristic p 6= 3 and order q ≡ 2 (mod 3). K = k(t, 3

√
D) (D = GH2 with

G,H ∈ k[t] squarefree and coprime) is a purely cubic function field of unit
rank 1, so deg(D) ≡ 0 (mod 3) and sgn(D) is a cube in k∗.

Lemma 2.2 Let η = a+V ρ+Wω ∈ O be a unit in O (a ∈ k∗; V,W ∈ k[t]).
Then W | V 2H, V | W 2G, and V 2H/W +W 2G/V = 3a.

Proof: We have N(η) = a3 + V 3GH2 + W 3G2H − 3aVWGH ∈ k∗, so
GH | N(η)− a3 and hence N(η) = a3. Then

V 3H +W 3G− 3aVW = 0. (2.1)

Write V = V0 gcd(V,W ) and W = W0 gcd(V,W ) with V0,W0 ∈ k[t] and
gcd(V0,W0) = 1. Then from (2.1) V V 2

0 H + WW 2
0G − 3aV0W0 = 0. Hence

W0 | V V 2
0 H, so W0 | V H and W | gcd(V,W )V H | V 2H. Similarly, V | W 2G.

Finally from (2.1) V 2H/W +W 2G/V = 3a. 2

Theorem 2.3 Let η = 1 + V ρ + Wω ∈ O be a unit in O with VW 6= 0.
If η is a square in O, say η = (A + Bρ + Cω)2 with A,B,C ∈ k[t], then
p = 2, G | V , H | W , both V/G and W/H are squares in k[t], and A = 1,
B2 = W/H, C2 = V/G.

Proof: We adapt the proof of Lemma 1 in [7] to serve our purpose. Suppose
that η = β2 with β = A+Bρ+Cω and A,B,C ∈ k[t]. By part 2 of Lemma
2.1, N(β) is a cube in k∗, say N(β) = b3. As before, 1 = N(η) = N(β)2 = b6,
so b3 = ±1, and since k does not contain any primitive cube roots of unity,
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b = ±1. If b = −1, replace β by −β, so we may assume that N(β) = 1. We
have

Tr(β2) = Tr(η) = 3, T r((ββσ)2) = Tr(ηησ) = 3(1− VWGH). (2.2)

Set Q = Tr(ββσ) = 3(A2 − BCGH) ∈ k[t] and R = Tr(β) = 3A ∈ k[t]. Us-
ing the fact that N(β) = 1, we compute Tr(β2) = R2−2Q and Tr((ββσ)2) =
Q2 − 2R. Hence from (2.2):

R2 − 2Q = 3, Q2 − 2R = 3(1− VWGH). (2.3)

Now set P = V 2H/W , then P ∈ k[t] and 3 − P = W 2H/V by Lemma
2.2. Furthermore, P (3− P ) = VWGH, so from (2.3) ((R2 − 3)/2)2 − 2R =
3(1− 3P + P 2), or equivalently,

(R− 2)2(R2 + 4R + 6) = 3(3− 2P )2. (2.4)

Thus, (R2 +4R+6)/3 is a square in k[t], say 3U2 = R2 +4R+6 = (R+2)2 +2
with U ∈ k[t]. Setting T = R + 2, we obtain that 3U2 − T 2 = 2.

Since P (3−P ) = VWGH and VW 6= 0, P is not constant, so by (2.4) R and
hence both T and U are not constant. Then 3 sgn(U)2− sgn(T )2 = 0, so 3 is
a square in k∗; say 3 = a2 with a ∈ k∗. It follows that (aU−T )(aU +T ) = 2.
If p 6= 2, then both aU − T and aU + T are constant, contradicting the fact
that T and U are not constant. So p = 2 and η = A2 + B2ρ2 + C2ω2 =
A2 + C2Gρ + B2Hω. Comparing coefficients yields A2 = 1, C2G = V ,
B2H = W . 2

Lemma 2.4 Let η = α3/N where α ∈ O, α 6= 0, and N = N(α) ∈ k[t] is
cubefree. If η is a cube in K, then N is one of a, aD, aD with a ∈ k∗.

Proof: Suppose η = β3 for some β ∈ O, then N = γ3 is a cube in K where
γ = α/β ∈ K∗. If γ ∈ k, then N = a for some a ∈ k∗. If γ 6∈ k, then γ 6∈ k(t)
since N is cubefree. Therefore, γ is a generator of K over k(t) with minimal
polynomial x3 − N ∈ k[t][x]. Let γ = A + Bρ + Cω with A,B,C ∈ k(t).
Then 0 = Tr(γ) = 3A, so A = 0, and 0 = Tr(γγσ) = −3BCGH, so B = 0
or C = 0. If B = 0, then N = N(γ) = C3D, so C ∈ k∗ since N is cubefree.
Similarly, if C = 0, then N = B3D with B ∈ k∗. 2
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Lemma 2.5 Let ε = U + V ρ + Wω ∈ O be a unit with |ε| > 1. Then
|ε| = |U |.

Proof: Since |ε| > 1 and |N(ε)| = 1, we have |εσ| < 1. Thus |ε| = |ε + εσ +
εσ

2| = |Tr(ε)| = |U |. 2

We conclude this section with some equalities that will prove useful. If α =
A+Bρ+ Cω ∈ K (A,B,C ∈ k(t)), then

A =
1

3
(α + ασ + ασ

2

)

B =
1

3ρ
(α + ι2ασ + ιασ

2

) (2.5)

C =
1

3ω
(α + ιασ + ι2ασ

2

)

3 The Fundamental Unit of K = k(t, 3
√
D)

with D = (M 3 − a)/E3

We begin our investigation with the somewhat simpler case of constant F .

Lemma 3.1 Let D = (M3 − F )/E3 with E,F,M ∈ k[t] and E3 | M3 − F .
Then η = M − Eρ is a unit of O if and only if F ∈ k∗.

Proof: Clearly, η ∈ O, and N(η) = M3−E3D = F , so η is a unit if and only
if F is constant. 2

Henceforth, we let K = k(t, 3
√
D) where

D =
M3 − a
E3

, a ∈ k∗, E,M ∈ k[t], E3 |M3 − a. (3.1)

We point out that there are infinitely many fields of the type described in
(3.1). For example, let b ∈ k∗ and E ∈ k[t] so that E ′ is squarefree. Set
a = b3 and M = E3 + b. Then (M3 − a)/E3 = E6 + 3bE3 + 3b2. To see that
this is cubefree, suppose P 3 | (M3 − a)/E3 with P ∈ k[t] irreducible, then
P - E and P 2 | 6E5E ′+9bE2E ′ = 3E2E ′(2E3 +3b), hence P 2 | E ′(2E3 +3b).
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Since E ′ is squarefree, P | 2E3 + 3b. If p = 2, then this is impossible.
Otherwise P | (E6 + 3bE3 + 3b2)− b(2E3 + 3b) = E3(E3 + b), so P | E3 + b
and P | gcd(2E3 + 3b, E3 + b) = 1 which also yields a contradiction.

Proposition 3.2 For every polynomial D of the form (3.1), there exist a
representation of D or D as given in (3.1) such that M is not a p-th power.

Proof: Let D = (M3pr − b)/C3 with b ∈ k∗, C,M ∈ k[t], C3 | M3pr − b, and
M is not a p-th power. By part 1 of Lemma 2.1, b is a pr-th power in k∗; say
b = ap

r
. Then C3D = (M3 − a)p

r
.

Suppose first that r is even, then pr ≡ 1 (mod 3). Since D is cubefree,
(M3−a)p

r−1 | C3. Set E = C/(M3−a)(pr−1)/3 ∈ k[t], then D = (M3−a)/E3

and a,E,M satisfy (3.1).

Suppose now that r is odd, then pr ≡ 2 (mod 3). In this case, (M3−a)p
r−2 |

C3. Set E0 = C/(M3 − a)(pr−2)/3, then D = (M3 − a)2/E3
0 and (M3 − a)2 =

E3
0GH

2. Since G is squarefree, it follows that G | E0 and E0/G is a square,
say E0 = GE2

1 . Then M3−a = ±E3
1G

2H = ±E3
1D where we choose the sign

so that the leading coefficients on both sides match in the case where p 6= 2.
Set E = E1 if the sign is positive and E = −E1 if the sign is negative. Then
D = (M3 − a)/E3 with a,E,M as in (3.1). 2

If K = k(t, 3
√
D) where D is as in (3.1), then the previous proposition shows

that there is no loss of generality in assuming that M is not a p-th power in
k[t]. It is a simple matter to find such a representation, since it is easy to
compute pr-th roots in k∗ (and hence in k[t]): if q = pl, let u = dr/le ∈ N,
i.e. u is the least integer not less than r/l, and lu ≥ r. Then a = aq

u
=

ap
lu

= (ap
lu−r

)p
r

for all a ∈ k. We observe that if we write D instead of D in
the form (3.1), then the basis elements ρ and ω need to be interchanged.

Lemma 3.3 Let D be as in (3.1) and assume that M is not a p-th power in
k[t]. Then |E| < |ρ|.

Proof: Taking the derivative of DE3 = M3−a shows that E2 |M2M ′. Since
gcd(E,M) = 1, E2 |M ′, and since M ′ 6= 0 by part 3 of Lemma 2.1, we have
|E|2 ≤ |M ′| < |M | = |Eρ|, so |E| < |ρ|. 2
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Theorem 3.4 Let K = k(t, 3
√
D) where D is as in (3.1) and M is not a

p-th power in k[t]. Then the fundamental unit of K is ε = M − Eρ and the
regulator of K is R = deg(M).

Proof: By Lemma 3.1, ε is a unit in O. We note that ε−1 = a−1(M2 +
MEρ + E2ρ2), so by Lemma 2.5 |ε|−1 = |M |2. Suppose ε = ηs where η =
A + Bρ + Cω ∈ O with A,B,C ∈ O and s ∈ N. Then A 6= 0 as otherwise
GH | N(η). Since |η| < 1, we have |ησ| > 1, so from (2.5) and Lemma 3.3:

|ησ| = |εσ|
1
s = |εσεσ2|

1
2s = |ε|−

1
2s = |M |

1
s = |Eρ|

1
s < |ρ|

2
s .

Using |ρ|2 = |Hω| ≥ |ω|, we obtain from (2.5):

|B| ≤ |ησ|
|ρ|

< |ρ|
2
s
−1 (3.2)

|C| ≤ |ησ|
|ω|

< |ρ|
2
s
− 1

2 (3.3)

If B 6= 0, then (3.2) implies 2/s− 1 > 0, so s = 1, η = ε, and R = deg(M).
Now suppose B = 0, then C 6= 0 and from (3.3) s ≤ 3. If s = 2, then
comparing coefficients of the identity (A+Cω)2 = M−Eρ yields 2AC = 0, so
p = 2, and A2 = M , contradicting our assumption that M is not a p-th power
in k[t]. If s = 3, then comparing coefficients of ω in M − Eρ = (A + Cω)3

yields 3A2C = 0, contradicting AC 6= 0 and p 6= 3. 2

4 The Fundamental Unit of K = k(t, 3
√
D)

with D = (M 3 − F )/E3

We continue to investigate the more difficult case of nonconstant F .

Lemma 4.1 Let D = (M3 − F )/E3 with E,F,M ∈ k[t], F cubefree, E3 |
M3 − F , and F | M2. Then gcd(M3/F − 1, F ) = gcd(E,F ) = 1, so E3 |
M3/F − 1.

Proof: If P ∈ k[t] is an irreducible divisor of F , then P | M , so P | M3/F
and P -M3/F − 1. If P ∈ k[t] is an irreducible common divisor of E and F ,
then P |M and P 3 | E3, so P 3 |M3−E3D = F , contradicting the fact that
F is cubefree. 2
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Lemma 4.2 Let D = (M3−F )/E3 with E,F,M ∈ k[t], F not constant and
cubefree, and E3 |M3 − F . Then F |M2 if and only if F | HM .

Proof: Let P ∈ k[t] be an irreducible divisor of F , then P ‖ F or P 2 ‖ F
since F is cubefree. Write E3GH2 − F = M3.

Suppose first that P ‖ F . Then P |M2 implies P |M | HM , and conversely,
P | HM implies P | M | M2 or P | H. In the latter case, we have P | M3,
so P |M2 as well.

Now suppose P 2 | F . Then P 2 | M2 implies P 2 | E3GH2. Now P - E by
Lemma 4.1, P 2

- G since G is squarefree, and gcd(G,H) = 1, so P | H. Since
P |M , it follows that P 2 | HM . Conversely, suppose P 2 | HM , then P |M
since H is squarefree, so P 2 |M2. 2

Lemma 4.3 Let D = (M3−F )/E3 with E,F,M ∈ k[t], F not constant and
cubefree, and E3 |M3 − F . Then

η =
(M − Eρ)3

F
= 1− 3M2

F
Eρ+

3HM

F
E2ω

is a unit of O if and only if F divides M2.

Proof: We have N(η) = (M3 − E3D)3/F 3 = 1. If η is a unit, then η ∈ O,
so from looking at the ρ coefficient of η and using Lemma 4.1, F | M2. If
F |M2, then by Lemma 4.2 F | HM , so η ∈ O. 2

We now proceed analogously to section 3; however, since F is not constant
here, the arguments from the previous section need to be somewhat refined.
Henceforth, let K = k(t, 3

√
D) where

D =
M3 − F
E3

, E, F,M ∈ k[t], F nonconstant and cubefree,

E3 |M3 − F, F |M2. (4.1)

There are once again infinitely many fields of this type. For example, let
a ∈ k∗ and E ∈ k[t] a nonconstant polynomial so that E3 + a is squarefree.
Set M = E3 + a and F = aM2, then M is squarefree, so F is cubefree,
F |M2, and (M3 − F )/E3 = M2, so G = 1 and H = M .
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We point out that the assumption of F in (4.1) being cubefree represents no
loss of generality. For if P ∈ k[t] is irreducible with P 3 | F , then P 3 | M3

and hence P 3 | E3 because D is cubefree. Then D = (M̃3 − F̃ )/Ẽ3 where
M̃ = M/P , F̃ = F/P 3, and Ẽ = E/P . As shown below, we may also assume
that M3/F is not a p-th power in k[t].

Lemma 4.4 Let D be as in (4.1) and suppose M3/F is a pr-th power in k[t]
where r ∈ N. Let F = XY 2 with X, Y ∈ k[t] squarefree and coprime, and
set F = X2Y . Then there exists Q ∈ k[t] such that

M3

F
=

{
(FQ3)p

r
if r is even,

(FQ3)p
r

if r is odd.

Proof: Clearly XY | M . Write M3/F = Rpr , so M3 = XY 2Rpr . It follows
that X2Y | Rpr , hence XY | R and Xpr+1Y pr+2 |M3.

Suppose first that r is even, so pr ≡ 1 (mod 3). Since X is squarefree, we have
Xpr+2 |M3, hence Xpr+1 | Rpr , implying X2pr | Rpr . Write Rpr = X2prY prS
with S ∈ k[t], then S is a pr-th power, and since M3 = X2pr+1Y pr+2S, S is
also a cube in k[t]. Let S = Q3pr with Q ∈ k[t], then R = X2Y Q3 = FQ3.

Now assume that r is odd, so pr ≡ 2 (mod 3). Since Y is squarefree and
Y pr+2 | M3, we see that Y pr+4 | M3, hence Y pr+2 | Rpr , implying Y 2pr | Rpr .
Write Rpr = XprY 2prS, then we see as before that S is both a pr-th power
and a cube in k[t], so S = Q3pr for some Q ∈ k[t]. In this case, R = XY 2Q3 =
FQ3. 2

Proposition 4.5 For every polynomial D of the form (4.1), there exist a
representation of D or D as given in (4.1) such that M3/F is not a p-th
power.

Proof: Let D = (N3 − B)/C3 with B,C,N ∈ k[t], C3 | N3 − B, B | N2, B
nonconstant and cubefree, say B = XY 2 with X, Y squarefree and coprime.
Suppose N3/B = Rpr with R ∈ k[t] not a p-th power. Then

D =
B(Rpr − 1)

C3
=
B(R− 1)p

r

C3
.

Suppose first that r is even, so pr ≡ 1 (mod 3). Since D is cubefree and
gcd(B,C) = 1 by Lemma 4.1, (R − 1)p

r−1 | C3. Set E = C/(R − 1)(pr−1)/3,

11



then D = B(R − 1)/E3. From the previous lemma, BR = (XYQ)3 with
Q ∈ k[t]. Setting M = XYQ and F = B, we obtain D = (M3−F )/E3 with
F |M2, E3 |M3 − F , and M3/F = X2Y Q3 = R, again by Lemma 4.4.

Now suppose that r is odd, so pr ≡ 2 (mod 3). In this case, (R−1)p
r−2 | C3.

Set E0 = C/(R − 1)(pr−2)/3, then D = B(R − 1)2/E3
0 and XY 2(R − 1)2 =

E3
0GH

2. Since B is coprime to both C and N3/B − 1 by Lemma 4.1, it
is also coprime to E0 and R − 1, so X | G. Thus, E0G/X is a square,
hence (G/X) | E0 and the quotient of E0 and G/X must be a square. Write
E0 = E2

1G/X, then X2Y (R − 1) = ±E3
1G

2H = ±E3
1D, where we again

choose the sign so that the leading coefficients on both sides match if p 6= 2.
Set E = E1 if the sign is positive and E = −E1 if the sign is negative. If
B = X2Y , then D = B(R − 1)/E3. From Lemma 4.4, BR = (XYQ)3 for
some Q ∈ k[t]. Setting F = B and M = XYQ, we obtain D = (M3−F )/E3

with F | M2, E3 | M3 − F , and M3/F = XY 2Q3 = BQ3 = R by the
previous lemma. 2

Lemma 4.6 Let D be as in (4.1) and assume that M3/F is not a p-th power
in k[t]. Then |E| < |ρ|.

Proof: By Lemma 4.1 E3 | M3/F − 1. Taking derivatives shows that E2

divides (
M3

F
− 1

)′
=
M2

F

(
3M ′ − MF ′

F

)
,

where we note that F | MF ′. Since E and M2/F are coprime by Lemma
4.1, E2 | 3M ′ −MF ′/F . Since M3/F is not a p-th power in k[t], we have
(M3/F )′ 6= 0 by part 3 of Lemma 2.1, so 3M ′ −MF ′/F 6= 0 and |E|2 ≤
|M ′| < |M | = |Eρ|, implying |E| < |ρ|. 2

Theorem 4.7 Let K = k(t, 3
√
D) where D is as in (4.1), and M3/F is not

a p-th power. Set

η =
(M − Eρ)3

F
= 1− 3M2

F
Eρ+

3HM

F
E2ω.

Then the fundamental unit of K is
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1. ε = E − (M/GH)ω if and only if F = aD for some a ∈ k∗, in which
case η = −a−1ε3;

2. η otherwise.

The regulator of K is R = deg(E) = deg(M3/F )/3 in case 1 and R =
deg(M3/F ) = 3 deg(E)− deg(D)− deg(F ) in case 2.

Proof: By Lemma 4.3, η is a unit in O. We note that η−1 = (M2 +MEρ+
E2ρ2)3/F 2, so by Lemma 2.5, |η|−1 = |M |6/|F |2.

Suppose first that η is a cube. Since F is not constant, by Lemma 2.4,
F ∈ {aD, aD} for some a ∈ k∗. Since G and H are both squarefree, GH |M .
Suppose F = aD, then H2 |M3−E3D = aD, a contradiction. Thus F = aD
and a simple calculation shows that η = −a−1ε3 where ε = E − (M/GH)ω.
So it suffices to show that ε is not a power of an element γ ∈ O.

Suppose ε = γs where γ = A+Bρ+Cω ∈ O with A,B,C ∈ k[t] and s ∈ N.
We have ε−1 = εσεσ

2
= E2 + (M2/D)ρ + (M/GH)Eω, so |ε|−1 = |E|2 by

Lemma 2.5. Then as in the proof of Theorem 3.4, |γσ| = |εσ| 1s = |ε| 1
2s =

|E| 1s < |ρ| 1s by Lemma 4.6. As before, we obtain

|B| ≤ |ε
σ|
|ρ|

< |ρ|
1
s
−1, |C| ≤ |ε

σ|
|ω|

< |ρ|
1
s
− 1

2 (4.2)

Since s > 0, (4.2) implies B = 0. If C 6= 0, then (4.2) shows that s < 2, so
s = 1. If C = 0, then −E + (M/GH)ω = As which yields a contradiction.
This proves case 1 of the theorem.

Suppose now that η is not a cube and assume that η = εs where ε = A +
Bρ + Cω ∈ O with A,B,C ∈ k[t] and s ∈ N, s 6≡ 0 (mod 3). If A = 0,
then GH | N(ε) which is impossible. Suppose B = 0. Since s is not divisible
by 3, the constant coefficient of εs is a multiple of A, so comparing constant
coefficients in the equality η = εs shows that A ∈ k∗. But then C3G2H =
N(ε) − A3 ∈ k which is a contradiction. The assumption C = 0 yields a
similar contradiction. So ABC 6= 0. By Lemma 4.6 |M | = |Eρ| < |ρ|2, so

|εσ| = |ησ|
1
s = |η|−

1
2s =

(
|M3|
|F |

) 1
s

<

(
|ρ|6

|F |

) 1
s

. (4.3)

Thus, |B| ≤ |εσ|/|ρ| < |ρ| 6s−1, hence s ≤ 5, i.e. s ∈ {1, 2, 4, 5}.
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Suppose first that s is even, then η is a square, so by Theorem 2.3, p = 2
and H | (HM/F )E2. If s = 2, then comparing coefficients of ω implies
B2H = HME2/F , in which case M3/F = (BM/E)2. If s = 4, then again
comparing coefficients of ω shows that C4D = HME2/F , implying M3/F =
(C2GM/E)2. In either case, M3/F is a square, contrary to our assumption
that M3/F is not a p-th power in k[t]. So we only need to rule out the case
s = 5.

Assume η = (A+Bρ+ Cω)5, then

1 = A5 + 10A2B3GH2 + 20A3BCGH + 5B4CG2H3

+30AB2C2G2H2 + 10A2C3G2H + 5BC4G3H2 (4.4)

−3
M2

F
E = 5A4B + 5AB4GH2 + 30A2B2CGH + 10A3C2G

+10B3C2G2H2 + 20ABC3G2H + C5G3H (4.5)

3
MH

F
E2 = 10A3B2H +B5GH3 + 5A4C + 20AB3CGH2

+30A2BC2GH + 10B2C3G2H2 + 5AC4G2H (4.6)

Assume first that p 6= 5. Then from (4.6), H | FA4C. Since GH | A3−N(ε),
H and A are coprime, so H | FC. Then GH2 | FB3GH2 + FC3G2H −
3FABCGH = F (A3 −N(ε)), and from (4.4), D | F (A5 − 1). Hence D/F |
(A5 − 1)− A2(A3 −N(ε)) = N(ε)A2 − 1.

Suppose that A is not constant, then by (2.5) and (4.3) |D/F | ≤ |A|2 ≤
|εσ|2 < |D2/F |2/5, implying |F |3/5 > |D|1/5 or |F | > |D|1/3. Then

|εσ| <
(
|D|2

|F |

) 1
5

< |D|(2− 1
3) 1

5 = |D|
1
3 ,

so from (2.5) |B| ≤ |εσ|/|ρ| < 1, implying the contradiction B = 0. So A
must be constant. Then N(ε) = A3 and from (4.4), A5 = 1. Dividing (4.4)
by 5BCGH gives

0 = 2A2B
2H

C
+ 4A3 +B3GH2 + 6ABCGH + 2A2C

2G

B
+ C3G2H.

Applying Lemma 2.2 to ε yields B2H/C + C2G/B = 3A, so

0 = 10A3 +GH(B3H + 6ABC + C3G). (4.7)
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If p = 2, then (4.7) is equivalent to 0 = BCGH(B2H/C + C2G/B) =
ABCGH, contradicting ABC 6= 0. If p 6= 2, then (4.7) implies GH | A3,
contradicting the fact that A is constant. So the case where p 6= 5 leads to a
contradiction and hence p = 5. Multiplying (4.5) by (4.6) and by GH yields
M3E3D/F 2 = (BCGH)5, or equivalently, (M3/F )(M3/F −1) = (BCGH)5.
Thus, M3/F must be a fifth power in k[t], contradicting our assumption that
M3/F is not a p-th power. So η is not a fifth power in O, and ε = η. 2

We point out that in the case where F = aD with a ∈ k∗, D = (E3 + a)/M̃3

with M̃ = M/GH ∈ k[t], so D is of the form (3.1).

We summarize our results from the previous two sections in Table 1 below.
Here, D = (M3 − F )/E3 where E,F,M ∈ k[t], E3 | M3 − F , F | M2, and
M3/F is not a p-th power in k[t].

F Fundamental Unit

Nonzero constant M − Eρ

Constant multiple of D E − M

GH
ω

All other cases 1− 3
M2

F
ρ+ 3

HM

F
ω

Table 1: Fundamental Units of K = k

(
t,

3

√
M3 − F
E3

)

5 Characterization of Minimal Regulator

In this section, we determine when exactly the regulator of a purely cubic
complex function field is 1.

Lemma 5.1 Let α = A + Bρ + Cω ∈ O (A,B,C ∈ k[t]) with A 6= 0. If
|ασ| < 1, then BC 6= 0, |A| = |Bρ| = |Cω|, and bBρc = bCωc.
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Proof: |Bρ − Cω| = |ασ − ασ2| < 1, so BC 6= 0, bBρc = bCωc and |Bρ| =
|Cω|. Let Bρ + Cω = 2bBρc + δ with δ ∈ O and |δ| < 1. If p 6= 2, then
2(A − bBρc) = |ασ + ασ

2
+ δ| < 1, so A = bBρc and |A| = |Bρ|. Suppose

now that p = 2. Then α = A + δ and ασασ
2

= Aα + BCGH + δ2, so
|Aα| = |BCGH|. Since |α| = |A| and |Bρ| = |Cω|, we have |A| = |Bρ|. 2

Lemma 5.2 If R = 1, then deg(D) = 3 or deg(D) = 3.

Proof: Let ε−1 = A + Bρ + Cω with A,B,C ∈ k[t]. Then A 6= 0. Since
R = 1, by Lemmas 2.5 and 5.1 bBρc = bCωc = U for some U ∈ k[t], and
deg(U) = deg(A) = deg(ε−1) = 2R = 2. Write Bρ = U + γ, Cω = U + δ
with γ, δ ∈ O and |γ|, |δ| < 1. Then

(B3H − C3G)GH = B3ρ3 − C3ω3 = (U + γ)3 − (U + δ)3

= (γ − δ)(3U2 + 3U(γ + δ) + γ2 + γδ + δ2),

so deg(B3H−C3G) < 2 deg(U)−deg(GH) = 4−deg(GH). Thus, deg(GH)
≤ 3 as otherwise B3H = C3G and D = (BC−1H)3 would be a cube in k[t].
So we must have deg(ρ) + deg(ω) ≤ 3 and hence deg(ρ) = 1, in which case
deg(D) = 3, or deg(ω) = 1, which case deg(D) = 3. 2

Lemma 5.3 Let D = t3 + rt + s be squarefree where r, s ∈ k and r 6= 0.
Then R > 1.

Proof: Since D is squarefree, ω = ρ2, so deg(ω) = 2 deg(ρ) = 2. Suppose
R = 1, then deg(ε−1) = 2. Let ε−1 = A + Bρ + Cω. By Lemmas 2.5
and 5.1 deg(A) = deg(Bρ) = deg(Cω) = 2, so A is quadratic, B is linear,
and C is constant. Without loss of generality, assume that C = 1 and let
A = at2 + bt+ c and B = dt+ e with a, b, c, d, e ∈ k, ad 6= 0. Then

N(ε−1) = (at2 + bt+ c)3 + (dt+ e)3(t3 + rt+ s) + (t3 + rt+ s)2

−3(at2 + bt+ c)(dt+ e)(t3 + rt+ s).

Comparing coefficients of ti for 1 ≤ i ≤ 6 yields

0 = a3 + d3 + 1− 3ad (5.1)

0 = a2b+ d2e− ae− bd (5.2)
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0 = 3a2c+ 3ab2 + 3de2 + d3r + 2r − 3be− 3cd− 3adr (5.3)

0 = 6abc+ b3 + e3 + 3d2er + d3s

+2s− 3ce− 3aer − 3bdr − 3ads (5.4)

0 = 3ac2 + 3b2c+ 3de2r + 3d2es+ r2

−3ber − 3cdr − 3aes− 3bds (5.5)

0 = 3bc2 + e3r + 3de2s+ 2rs− 3cer − 3bes− 3cds (5.6)

Now the factorization of (5.1) is (a+d+ 1)(a+ ι(ιd+ 1))(a+ ι2(ι2d+ 1)) = 0
where we recall that ι is a primitive cube root of unity, so either a = d = 1
or a = −(d+ 1).

Suppose first that a = d = 1. Then (5.3) implies b2−be+e2 = 0, so b = e = 0
as otherwise be−1 would be a primitive cube root of unity in k. Then from
(5.5) 0 = 3c2 + r2−3cr. If p = 2, then this would once again imply that cr−1

is a primitive cube root of unity. If p 6= 2, then we have (2c/r − 1)−2 = −3,
so −3 is a square in k, say −3 = m2 with m ∈ k∗. But then (m − 1)/2 is a
primitive cube root of unity, so m = 1 and −3 = 1, contradicting p 6= 2.

Now suppose that a = −(d+1), then d 6= −1 as a 6= 0. Substituting this into
(5.2) yields (d2 + d + 1)(b + e) = 0, so b = −e. Continuing the substitution
with (5.3) results in the equality 3(d2 + d + 1)c + (d3 + 3d2 + 3d + 2)r = 0,
so after dividing by d2 + d+ 1, we obtain 3c = −(d+ 2)r. Substituting these
expressions for a, b, and c into (5.4) and (5.5) and dividing by d2 + d+ 1, we
obtain

er + (d+ 2)s = 0 (5.7)

and
3es− (d+ 1)r2 = 0. (5.8)

Since d 6= −1 and r 6= 0, es 6= 0. Combining (5.7) and (5.8) and dividing by
r yields

3e2 + (d+ 1)(d+ 2)r = 0. (5.9)

Performing the substitutions for a, b, and c on (5.6) and dividing by er yields

r(d3 + 6d2 + 6d+ 2) + 3e2(2d+ 1) = 0. (5.10)

We now substitute (5.9) into (5.10) and obtain −dr(d2 + d+ 1) = 0 contra-
dicting dr 6= 0. 2

17



We note that D(t) = t3 + rt+ s is squarefree if and only if 4r3 + 27s2 6= 0. If
p = 2, then D is squarefree if and only if s = 0. If p 6= 2, then by part 2 of
Lemma 2.1, it is always possible to write s = −2a3 for some a ∈ k (assuming
q ≡ 2 (mod 3)). Then D is squarefree if and only r 6= −3a2.

Lemma 5.3 shows that not all polynomials D(t) of degree 3 give rise to a
function field with regulator 1. This is in contrast to real quadratic function
fields, where every quadratic polynomial generates a field with regulator 1;
this field is in fact itself a field of rational functions.

Theorem 5.4 R = 1 if and only if one of the following holds:

1. D = GH2 where G and H are linear,

2. D = M3 − a where a ∈ k∗ and M ∈ k[t] is linear,

3. D = (M3 − a)2 where a ∈ k∗ and M ∈ k[t] is linear.

If D = GH2 with G = at + b and H = at + c where a, b, c ∈ k, a 6= 0, and
not both b and c are 0, then

ρ = a

(
t+

b+ 2c

3
−
(
b− c

3

)2

t−1 + . . .

)
,

ω = a

(
t+

2b+ c

3
−
(
b− c

3

)2

t−1 + . . .

)
,

ε =
b− c

3
+ ρ− ω.

If D = M3 − a with M = bt+ c where a, b, c ∈ k and ab 6= 0, then

ρ = bt+ c− a

3b2
t−2 + . . . ,

ω = b2t2 + 2bct+ c2 − 2a

3b
t−1 + . . . = ρ2,

ε = bt+ c− ρ.

If D = (M3 − a)2 with M = bt+ c where a, b, c ∈ k and ab 6= 0, then

ρ = b2t2 + 2bct+ c2 − 2a

3b
t−1 + . . . = ω2,

ω = bt+ c− a

3b2
t−2 + . . . ,

ε = bt+ c− ω.
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Proof: Assume first that one of the three conditions on D above are satisfied.

If deg(G) = deg(H) = 1, then let G = at+ b and H = at+ c with a, b, c ∈ k,
a 6= 0 and not both b and c are 0. Then D = M3 − F with F | M2 where
M = at+c = H and F = (c−b)(at+c)2. From Theorem 4.7, we obtain (after
multiplying by (b− c)/3) ε = (b− c)/3 + ρ− ω and R = deg(M3/F ) = 1. It
is a simple matter to verify the expressions for ρ and ω.

If D = M3− a with a ∈ k∗ and M ∈ k[t] linear, then it is easy to see that D
is squarefree, so ω = ρ2. Once again, the expressions for ρ and ω are easily
checked. By Theorem 3.4, R = deg(M) = 1 and ε = M − ρ.

If D = (M3 − a)2 with a ∈ k∗ and M ∈ k[t] linear, then D = M3 − a, so we
only need to reverse the roles of ρ and ω in the previous setting to obtain the
correct expressions for ε, ρ, and ω in this case. Once again, R = deg(M) = 1.

Now assume R = 1 and suppose that that D is of neither of the forms
described above. By Lemma 5.2 deg(D) = 3 or deg(D) = 3. If deg(D) = 3,
then D is squarefree, as otherwise D would satisfy case 1. Hence D = G and
D = G2 with deg(G) = 1. Similarly, if deg(D) = 3, then D is squarefree, so
D = H2 and D = H with deg(H) = 3. Either way, one of D, D is squarefree
of degree 3 and the other is the square of the first. Let U ∈ {D,D} have
degree 3, say U = a3t3 + bt2 + ct + d with a, b, c, d ∈ k and a 6= 0. Set
x = a−1t − a−3b/3, then U = x3 + rx + s for some r, s ∈ k. If r = 0, then
U = x3 + s, so D would satisfy case 2 or 3. Hence r 6= 0. Let K̃ = k(x, ρ̃)
where ρ̃ ∈ k((1/x)) with ρ̃(x) = ρ(t) = ρ(ax + a−2b/3). By Lemma 5.3,
R̃ > 1 where R̃ is the regulator of K̃.

The map ψ : k[t] → k[t] that maps t onto x is a k-automorphism of the
polynomial ring k[t] which has natural extensions to k-automorphisms of k(t),
O, K, and k((1/t)), respectively; in particular, K̃ = ψ(K) = K; however,
elements inK are represented with respect to the variable t, whereas elements
in K̃ are expressed in terms of the variable x. ψ preserves degrees; that
is, if α ∈ k((1/t)), then degt(α) = degx(ψ(α)); here the subscript on the
degree refers to the variable with respect to which the degree is taken. Since
0 = degt(N(ε)) = degx(ψ(N(ε)) = degx(N(ψ(ε)) and 2R = degt(ε

−1) =
degx(ψ(ε−1)) = degx(ψ(ε)−1), ψ(ε)−1 is a unit in K̃ of degree 2R > 0. Thus
R̃ | R (it is in fact easy to see that the two regulators are equal), contradicting
R = 1 and R̃ > 1. 2
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We point out that by [3, 4], K has genus deg(GH) − 2. Hence the fields
identified in part 1 of Theorem 5.4 are rational (i.e. genus 0) function fields,
whereas the fields described in parts 2 and 3 of the theorem and in Lemma
5.3 are elliptic (i.e. genus 1) function fields. Once again, we summarize our
results in a table:

D Fundamental Unit Field Type

GH2 with G,H ∈ k[t] linear
and sgn(G) = sgn(H)

G−H
3

+ ρ− ω Rational

M3 − a with a ∈ k∗ and
M ∈ k[t] linear

M − ρ Elliptic

(M3 − a)2 with a ∈ k∗ and
M ∈ k[t] linear

M − ω Elliptic

Table 2: Fields K = k(t, 3
√
D) with regulator R = 1
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