
April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

201

Fast arithmetic on hyperelliptic curves via continued fraction

expansions

M. J. Jacobson, Jr.

Department of Computer Science, University of Calgary,

2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

E-mail: jacobs@cpsc.ucalgary.ca

R. Scheidler∗

Department of Mathematics and Statistics, University of Calgary,

2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

E-mail: rscheidl@math.ucalgary.ca

A. Stein

Department of Mathematics, University of Wyoming

1000 E. University Avenue, Laramie, WY 82071-3036, USA

Email: astein@uwyo.edu

In this paper, we present a new algorithm for computing the reduced sum of

two divisors of an arbitrary hyperelliptic curve. Our formulas and algorithms
are generalizations of Shanks’s NUCOMP algorithm, which was suggested ear-

lier for composing and reducing positive definite binary quadratic forms. Our

formulation of NUCOMP is derived by approximating the irrational contin-
ued fraction expansion used to reduce a divisor by a rational continued frac-

tion expansion, resulting in a relatively simple and efficient presentation of

the algorithm as compared to previous versions. We describe a novel, unified
framework for divisor reduction on an arbitrary hyperelliptic curve using the

theory of continued fractions, and derive our formulation of NUCOMP based

on these results. We present numerical data demonstrating that our version
of NUCOMP is more efficient than Cantor’s algorithm for most hyperelliptic

curves, except those of very small genus defined over small finite fields.

Keywords: Hyperelliptic curve, reduced divisor, continued fraction expansion,
infrastructure, Cantor’s algorithm, NUCOMP

∗The research of the first two authors is supported by NSERC of Canada.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

202

1. Introduction and Motivation

Divisor addition and reduction is one of the fundamental operations re-

quired for a number of problems and applications related to hyperelliptic

curves. The group law of the Jacobian can be realized by this operation,

and as such, applications ranging from computing the structure of the divi-

sor class group to cryptographic protocols depend on it. Furthermore, the

speed of algorithms for solving discrete logarithm problems on hyperelliptic

curves, particularly of medium and large size genus, depend on a fast com-

putation of the group law. There has been a great deal of work on finding

efficient algorithms for this operation (see for instance [5]).

Cantor’s algorithm [2] is a generic algorithm that allows this opera-

tion to be explicitly computed. It works by first adding the two divisors

and subsequently reducing the sum. One drawback of this approach, and

most algorithms derived from it, is that one has to deal with intermedi-

ate operands of double size. That is, while the basis polynomials of the

two starting divisors and the final reduced divisor have degree at most g,

where g is the genus of the curve, the divisor sum has a basis consisting

of two polynomials whose degree is usually as large as 2g, and reduction

only gradually reduces the degrees back down to g. This greatly reduces

the speed of the operation, and it is highly desirable to be able to perform

divisor addition and reduction without having to compute with quantities

of double size.

The group operation of the class group of positive definite binary

quadratic forms, composition and reduction, suffers from the same problem

of large intermediate operands. In 1988, Shanks [13] devised a solution to

this problem, an algorithm he called NUCOMP. The idea behind this algo-

rithm is to stop the composition process before completion and apply a type

of intermediate reduction before computing the composed form. Instead

of using the rather expensive continued fraction algorithm that produces

the aforementioned intermediate operands of double size, the reduction is

performed using the much less costly extended Euclidean Algorithm. The

coefficients are only computed once the form is reduced or almost reduced.

As a result, the sizes of the intermediate operands are significantly smaller,

and the binary quadratic form produced by NUCOMP is very close to being

reduced.

In [11], van der Poorten generalized NUCOMP to computing with ideals

in the infrastructure of a real quadratic number field by showing how the

relative generator corresponding to the output can be recovered. Jacobson

and van der Poorten [6] presented numerical evidence for the efficiency

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

203

of their version of NUCOMP. They also sketched an adaptation of this

method to arithmetic in the class group and infrastructure of a hyperelliptic

curve. Their computational results indicated that their version of NUCOMP

was more efficient than Cantor’s algorithm for moderately small genera

(between genus 5 and 10), and that the relative efficiency improved as both

the genus and size of the ground field increase. However, a formal analysis

and description of NUCOMP in the hyperelliptic curve setting was not

provided.

Shanks’s formulation of NUCOMP, as well as the treatments in [11]

and [6], are based on the arithmetic of binary quadratic forms. In [8], the

authors described NUCOMP in terms of ideal arithmetic in real quadratic

number fields. They provided a clear and complete description of NUCOMP

in terms of continued fraction expansions of real quadratic irrationalities

and, in addition, showed how to optimize the formulas in this context.

In this paper, we provide a unified description of NUCOMP for divisor

arithmetic on the three different possible models of a hyperelliptic curve:

imaginary, real, and unusual [3]. We generalize the results in [8], describ-

ing and deriving NUCOMP in terms of continued fraction expansions in

all three settings. Furthermore, we explain NUCOMP purely in terms of

divisor arithmetic, also incorporating the infrastructure arithmetic of a real

hyperelliptic curve. Our formulation of NUCOMP is complete and some-

what simpler than that in [6], and its relation to Cantor’s algorithm is

more clear. In addition, we prove its correctness and a number of related

results, including the fact that the output is in most cases reduced, and

is in the worst case only one step away from being reduced. The end re-

sult, supported by computational results, is that our improved formulation

of NUCOMP offers performance improvements over Cantor’s algorithm for

even smaller genera than indicated in [6].

We begin in Sec. 2 with an overview of continued fractions, and explain

divisor arithmetic on hyperelliptic curves and its connection to continued

fractions in Sec. 3–Sec. 5. Based on this foundation, we describe divisor

addition and reduction as well as NUCOMP in Sec. 6–Sec. 10. We conclude

with numerical results in Sec. 11, including a discussion of the efficiency of

our two different versions of NUCOMP as given in Sec. 9.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

204

2. Continued Fraction Expansions

For brevity, we write the symbolic expression

s0 +
1

s1 +
1

. . .

sn +
1

αn+1

as [s0, s1, . . . , sn, αn+1]. If we wish to leave the end of the expression unde-

termined, we simply write [s0, s1, . . .].

Let k be any field, k[t] the ring of polynomials in the indeterminate t with

coefficients in k, and k(t) the field of rational functions in t with coefficients

in k. It is well-known that the completion of k(t) with respect to the place

at infinity of k(t) (corresponding to the discrete valuation “denominator

degree minus numerator degree”) is the field k〈t−1〉 of Puiseux series in t−1;

that is, any non-zero element in k〈t−1〉 is of the form

α =
d
∑

i=−∞

ait
i ,

where d ∈ Z, ai ∈ k for i ≤ d, and ad 6= 0. Define

bαc =
d
∑

i=0

ait
i , sgn(α) = ad , deg(α) = d . (2.1)

Also, define b0c = 0 and deg(0) = −∞.

Let n ≥ 0, s0, s1, . . . , sn a sequence of polynomials in k[t], and α ∈
k〈t−1〉 non-zero. Then the expression

α = [s0, s1, . . . , sn, αn+1] (2.2)

is referred to as the (ordinary) continued fraction expansion of α with partial

quotients s0, s1, . . . , sn. It uniquely defines a Puiseux series αn+1 ∈ k〈t−1〉
where α0 = α and αi+1 = (αi − si)

−1 for 0 ≤ i ≤ n. If we set

A−2 = 0 , A−1 = 1 , Ai = siAi−1 + Ai−2 ,

B−2 = 1 , B−1 = 0 , Bi = siBi−1 + Bi−2 ,
(2.3)

for 0 ≤ i ≤ n, then Ai/Bi = [s0, s1, . . . , si] for 0 ≤ i ≤ n − 1. Since

AiBi−1 − Ai−1Bi = (−1)i−1 for −1 ≤ i ≤ n, Ai and Bi are coprime for

−2 ≤ i ≤ n.

If si = qi with qi = bαic for i ≥ 0, then Eq. (2.2) is the well-known regu-

lar continued fraction expansion of α. Here, the partial quotients q0, q1, . . .

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

205

are uniquely determined by α, and deg(qi) ≥ 1 for all i ∈ N. The rational

function Ai/Bi = [q0, q1, . . . , qi] is the i-th convergent of α. This term is

motivated by the well-known inequalities

deg

(

α − Ai

Bi

)

≤ −deg(BiBi+1) < −2 deg(Bi) (2.4)

for all i ≥ 0. The following result is also well-known:

Lemma 2.1. Let α ∈ k〈t−1〉, E, F ∈ k[t] with αF 6= 0 and gcd(E,F) = 1.

If

deg

(

α − E

F

)

< −2 deg(F) ,

then E/F is a convergent in the regular continued fraction expansion of α.

Throughout this paper, we reserve the symbols qi and q̂i for the quo-

tients of a regular continued fraction expansion; for arbitrary partial quo-

tients, we use the symbol si. To distinguish expansions of rational functions

from those of Puiseux series, we henceforth use the convention that partial

quotients and convergents relating to expansions of rational functions are

equipped with a “ˆ” symbol, whereas quantities pertaining to expansions

of Puiseux series do not have this symbol.

One of the main ideas underlying NUCOMP is to approximate the reg-

ular continued fraction expansion of a Puiseux series by that of a rational

function “close” to it. We then expect the convergents, and hence the two

expansions, to agree up to a certain point:

Theorem 2.1. Let α ∈ k〈t−1〉 and α̂ ∈ k(t) be non-zero, and write α̂ =

E/F with E,F ∈ k[t]. Let q̂i (0 ≤ i ≤ m) and r̂i (−1 ≤ i ≤ m) be the

sequences of quotients and remainders, respectively, obtained by applying the

Euclidean Algorithm to α̂; that is, r̂−2 = E, r̂−1 = F, r̂i−2 = q̂ir̂i−1+r̂i with

q̂i = bri−2/ri−1c for 0 ≤ i ≤ m, so r̂m−1 = gcd(E,F) and r̂m = 0. If there

exists n ∈ Z, −1 ≤ n ≤ m − 1, such that 2 deg(r̂n) > deg(F 2(α − α̂)), then

the first n+2 partial quotients in the regular continued fraction expansions

of α and α̂ are equal.

Proof. Let α = [q0, q1, . . . , qm, . . .] be the regular continued fraction expan-

sion of α. The regular continued fraction expansion of α̂ is obviously α̂ =

[q̂0, q̂1, . . . , q̂m]. Then Ai/Bi = [q0, q1, . . . , qi] and Âi/B̂i = [q̂0, q̂1, . . . , q̂i]

are the i-th convergents of α and α̂, respectively. We wish to prove that

qi = q̂i for 0 ≤ i ≤ n + 1.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

206

Suppose n as in the statement exists. If n = −1, then 2 deg(r̂−1) =

2 deg(F) > deg(F 2(α− α̂)) implies deg(α− α̂) < 0, so q0 = bαc = bα̂c = q̂0.

Assume now inductively that 2 deg(r̂n−1) > deg(F 2(α−α̂)) implies qi =

q̂i for 0 ≤ i ≤ n and suppose that 2 deg(r̂n) > deg(F 2(α− α̂)). Since the ri

are decreasing in degree for −1 ≤ i ≤ m, we have 2 deg(r̂n−1) > 2 deg(r̂n) >

deg(F 2(α − α̂)), so qi = q̂i for 0 ≤ i ≤ n by induction hypothesis, and we

only need to show qn+1 = q̂n+1.

A simple induction argument yields r̂i = (−1)i−1(ÂiF − B̂iE) for −2 ≤
i ≤ m, so by assumption and Eq. (2.4),

deg(α − α̂) < 2 deg

(

r̂n

F

)

= 2 deg(Ân − B̂nα̂) ≤ −2 deg(B̂n+1) .

It follows again from Eq. (2.4) that

deg

(

α − Ân+1

B̂n+1

)

≤ max

{

deg(α − α̂),deg

(

α̂ − Ân+1

B̂n+1

)}

< −2 deg(B̂n+1) .

Since gcd(Ân+1, B̂n+1) = 1, Lemma 2.1 implies that Ân+1/B̂n+1 = Aj/Bj

for some j ≥ 0. If j < n + 1, then [qj+1, . . . , qn+1] = 0 which is a contradic-

tion. If j > n + 1, then similarly [q̂n+2, . . . , q̂j] = 0, again a contradiction.

Thus, Ân+1/B̂n+1 = An+1/Bn+1, and hence qn+1 = q̂n+1.

Let E,F ∈ k[t] be non-zero, and assume that deg(E) > deg(F). Con-

sider again the regular continued fraction expansion of the rational function

E/F = [q̂0, q̂1, . . . , q̂m], where m ≥ 0 is again minimal with that property.

Set φ̂0 = E/F and φ̂i+1 = (φ̂i − q̂i)
−1, so q̂i = bφ̂ic for i ≥ 0. This contin-

ued fraction expansion corresponds to the Euclidean algorithm applied to

E and F. We define

b−1 = E , b0 = F , bi+1 = bi−1 − q̂ibi ,

a−1 = 0 , a0 = −1 , ai+1 = ai−1 − q̂iai ,
(2.5)

so q̂i = bbi−1/bic, for 0 ≤ i ≤ m. Then q̂i and bi+1 are the quotients and

remainders, respectively, when dividing bi−1 by bi. We have

bi−1 = q̂i bi + bi+1 , deg(bi+1) < deg(bi) (−1 ≤ i ≤ m) , (2.6)

and the bi strictly decrease in degree for −1 ≤ i ≤ m+1. Then m is minimal

such that bm+1 = 0, so bm = gcd(E,F).

As before, denote by Âi/B̂i = [q̂0, q̂1, . . . , q̂i] the i-th convergents of φ̂0

for 0 ≤ i ≤ m. The quantities Âi, B̂i can be computed recursively by

Â−2 = 0, Â−1 = 1, Âi = q̂iÂi−1 + Âi−2 (0 ≤ i ≤ m) ,

B̂−2 = 1, B̂−1 = 0, B̂i = q̂iB̂i−1 + B̂i−2 (0 ≤ i ≤ m) .
(2.7)

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

207

Then induction yields ai = (−1)i−1Âi−1 for −1 ≤ i ≤ m + 1; in particular,

we see that the ai increase in degree for −1 ≤ i ≤ m + 1. We also obtain

b−1 = (−1)i(ai−1bi − aibi−1) (0 ≤ i ≤ m + 1) . (2.8)

We require the following basic degree properties later on:

Lemma 2.2.

(a) deg(bi) = deg(bi−1) − deg(q̂i) ≤ deg(bi−1) − 1 (0 ≤ i ≤ m) .

(b) deg(ai) = deg(ai−1) + deg(q̂i−1) ≥ deg(ai−1) + 1 (1 ≤ i ≤ m + 1) .

(c) deg(bi) ≤ deg(b−1) − i − 1 (−1 ≤ i ≤ m + 1) .

(d) deg(ai) ≥ i (0 ≤ i ≤ m + 1) .

(e) deg(ai) + deg(bi−1) = deg(b−1) (0 ≤ i ≤ m + 1) .

Proof. Since deg(q̂i) ≥ 1 for 0 ≤ i ≤ m by Eq. (2.6), (a) and (b) follow

from Eq. (2.5). Parts (c) and (d) can then be obtained from (a) and (b),

respectively, using induction. Finally, since deg(aibi−1) > deg(ai−1bi) by

(a) and (b), (e) now follows from Eq. (2.8).

3. Hyperelliptic Curves

We employ an algebraic framework of hyperelliptic curves based on the

treatments of function fields given in [12], [17], and [4], as opposed to a

more geometric treatment. Let k be a finite field of order q. Following [3],

we define a hyperelliptic function field of genus g ∈ N to be a quadratic

extension of genus g over the rational function field k(u), and a hyperelliptic

curve of genus g over k to be a plane, smootha, absolutely irreducible, affine

curve C over k whose function field k(C) is hyperelliptic of genus g. The

curve C and its function field are called imaginary, unusual, or real, if the

place at infinity of k(u) is ramified, inert, or split in k(C), respectively.

Then C is of the form

C : v2 + h(u)v = f(u) , (3.1)

where f, h ∈ k[u], h = 0 if k has odd characteristic, h is monic if k has even

characteristic, and every irreducible factor in k[u] of h is a simple factor of f ;

in particular, f is squarefree if k has odd characteristic. Then the function

field of C is k(C) = k(u, v) and its maximal order is the integral domain

k[C] = k[u, v], the coordinate ring of C over k. The different signatures at

infinity can easily be distinguished as follows:

aA hyperelliptic curve does have singularities at infinity if it is not elliptic, i.e. g ≥ 2

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

208

(1) C is imaginary if deg(f) = 2g +1, and if deg(h) ≤ g if k has character-

istic 2;

(2) C is unusual if the following holds: if k has odd characteristic, then

deg(f) = 2g + 2 and sgn(f) is a non-square in k, whereas if k has

characteristic 2, then deg(h) = g + 1, deg(f) = 2g + 2 and the leading

coefficient of f is not of the form e2 + e for any e ∈ k∗.

(3) C is real if the following holds: if k has odd characteristic, then deg(f) =

2g + 2 and sgn(f) is a square in k, whereas if k has characteristic 2,

then deg(h) = g + 1, and either deg(f) ≤ 2g + 1, or deg(f) = 2g + 2

and the leading coefficient of f is of the form e2 + e for some e ∈ k∗.

In some literature sources, unusual curves are counted among the imaginary

ones, as there is a unique place in k(C) lying above the place at infinity of

k(u) for both models. Note also that an unusual curve over k is real over a

quadratic extension of k; whence the term “unusual”.

It is well-known that the places of k(u) are given by the monic irreducible

polynomials in k[u] together with the place at infinity of k(u). Define S to be

the set of places of k(C) lying above the place at infinity of k(u), and write

S = {∞} if C is imaginary or unusual, and S = {∞1,∞2} if C is real. Then

the places of k(C) are the prime ideals lying above the places of k(u) (the

finite places) together with the elements of S (the infinite places). To every

place p of k(C) corresponds a normalized additive valuation νp on k(C)

and a discrete valuation ring Op = {α ∈ k(C) | νp(α) ≥ 0}; for brevity, we

write νi = ν∞i
(i = 1, 2) if C is real. The degree deg(p) of a place p is the

field extension degree deg(p) = [Op/p : k]. Note that deg(∞) = 1 if C is

imaginary, deg(∞) = 2 if C is unusual, and deg(∞1) = deg(∞2) = 1 if C is

real. The norm of a finite place p is the polynomial N(p) = Pdeg(p) ∈ k[u],

where P is the unique place of k(u) lying below p.

For any place p of k(C), denote by k(C)p the completion of k(C) with

respect to p. Then it is easy to see that the completions k(C)S of k(C) with

respect to the places in S are, respectively,

k(C)S =







k(C)∞ = k〈u−1/2〉 if C is imaginary ,

k(C)∞ = k′〈u−1〉 if C is unusual ,

k(C)∞1
= k(C)∞2

= k〈u−1〉 if C is real ,

where k′ = k(sgn(v)) is a quadratic extension of k. For C imaginary or

unusual, the embedding of k(C) into k(C)S is unique, whereas for the real

case, we have two embeddings of k(C) into k〈u−1〉. Here, we number the

indices so that ν1(v) ≤ ν2(v), and choose the embedding with deg(α) =

−ν1(α) for all α ∈ k(C).

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

209

To unify our discussion over all hyperelliptic models, we henceforth in-

terpret elements in k(C) as series in powers of u−1, where in the imaginary

case, the exponents of these powers are half integers. All degrees of function

field elements are then taken with respect to u; more exactly, we set

deg(α) = degu(α) =







−ν∞(α)/2 if C is imaginary ,

−ν∞(α) if C is unusual ,

−ν1(α) = −ν2(α) if C is real ,

for α ∈ k(C). Here, if α = a + bv ∈ k(C) with a, b ∈ k(u), then α =

a − b(v + h) is the conjugate of α. Note that for imaginary curves, deg(α)

can be a half integer. The following properties are easily seen:

Lemma 3.1.

(a) If C is imaginary, then deg(v) = deg(v + h) = g + 1/2.

(b) If C is unusual or real with deg(f) = 2g+2, then deg(v) = deg(v+h) =

g + 1.

(c) If C is real and deg(f) ≤ 2g + 1, then deg(v) = g + 1 and deg(v + h) =

deg(f) − (g + 1) ≤ g.

A divisor b is a formal sum D =
∑

p νp(D)p where p runs through all

the places of k(C) and νp(D) = 0 for all but finitely many places p. The

support supp(D) of D is the set of places for which νp(D) 6= 0, and the

degree of D is deg(D) =
∑

p νp(D) deg(p); this agrees with the notion of

degree of a place. A divisor whose support is disjoint from S is a finite

divisor. Every divisor D of k(C) can be written uniquely as a sum of two

divisors

D = DS + DS where DS is finite and supp(D) ⊆ S .

The norm map extends naturally to all finite divisors DS via Z-linearity,

and we can now define the norm of any divisor D to be N(D) = N(DS).

For two divisors D1 and D2 of k(C), we write D1 ≥ D2 if νp(D1) ≥
νp(D2) for all places p of k(C). With this notation, we see that k[C] is the

set of all α ∈ k(C) with div(α)S ≥ 0 and its unit group k[C]∗ consists of

exactly those α ∈ k(C) with div(α)S = 0.

bAn equivalent geometric definition of a divisor (defined over k) that is frequently used in
the literature on hyperelliptic curves is as follows: it is a formal sum D =

P
P νP (D)P

that is invariant under the Galois action of k, where P runs through all the points

on C with coordinates in some algebraic closure of k. The degree of D is then simplyP
P νP (D).

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

210

Let D denote the group of divisors of k(C), D0 the subgroup of D of

degree 0 divisors of k(C), and P the subgroup of D0 of principal divisors of

k(C). Then the degree 0 divisor class group Pic0 = D0/P of k(C) is a finite

Abelian group whose order h is the (degree 0 divisor) class number of C.

Recall that the conjugation map on k(C), arising from the hyperelliptic

involution on C, maps each element α = a + bv ∈ k(C) with a, b ∈ k(u) to

α = a− b(v +h). This map thus acts on all the finite places of k(C) as well

as on S via ∞ = ∞ if C is imaginary or unusual and ∞1 = ∞2 if C is real.

This action extends naturally to the groups D, D0, P, and hence to Pic0.

Note that N(D) = N(D) and D + D = div(N(D)) for any degree 0 divisor

D.

Define DS = {DS | D ∈ D}, DS = {DS | D ∈ D}, PS = P ∩ DS , and

PS = P∩DS . By Proposition 14.1, p. 243, of [12], there are exact sequences

(0) → k∗ → k[C]∗ → PS → (0) , (3.2)

(0) → (DS ∩ D0)/PS → Pic0 → DS/PS → Z/fZ → (0) , (3.3)

where f = gcd{deg(p) | p ∈ S}, so f = 2 if C is unusual and f = 1

otherwise. If C is imaginary or unusual, then DS ∩ D0 = PS = 0, whereas

if C is real, then DS∩D0 = 〈∞1−∞2〉 and PS = 〈R(∞1−∞2)〉, where R is

the order of the divisor class of ∞1 −∞2 in Pic0 and is called the regulator

of C. The principal divisor R(∞1 − ∞2) is the divisor of a fundamental

unit of k(C), i.e. a generator of the infinite cyclic group k[C]∗/k∗. For

completeness, if C is imaginary or unusual, simply define the regulator of

C to be R = 1.

A fractional k[C]-ideal is a subset f of k(C) such that df is a k[C]-ideal

for some non-zero d ∈ k[u]. Let I denote the group of non-zero fractional

k[C]-ideals, H the subgroup of I of non-zero principal fractional k[C]-ideals

(which we write as (α) for α ∈ k(C)∗), C = I/H the ideal class group of

k(C), and h′ = |C| the ideal class number of k(C). There is a natural

isomorphism

Φ : DS → I, DS 7→ {α ∈ k(C)∗ | div(α)S ≥ DS} (3.4)

with inverse

Φ−1 : I → DS

f 7→ DS =
∑

p 6∈S

mpp where mp = min{νp(α) | α ∈ f non-zero} .

The conjugate f of a fractional ideal f is the image of f under the conjugation

map. If f is non-zero, then the norm N(f) of f is simply N(Φ−1(f)), the norm

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

211

of the finite divisor corresponding to f under Φ−1, with Φ given by Eq. (3.4).

Note that ff is the principal fractional ideal generated by N(f).

The isomorphism Φ extends to an isomorphism from the factor group

DS/PS onto the ideal class group C (see p. 401 of [4] and Theorem 14.5,

p. 247, of [12]). Thus, we have h = Rh′/f by Eq. (3.3). The Hasse-Weil

bounds (
√

q − 1)2g ≤ h ≤ (
√

q + 1)2g imply h ∼ qg, and for real curves, we

generally expect that h′ is small and hence R ≈ h. The isomorphism Φ in

Eq. (3.4) can further be extended to the group D0, or a subgroup thereof,

as follows.

3.1. Imaginary Curves

Since deg(∞) = 1 in this case, every degree 0 divisor of k(C) can be written

uniquely in the form D = DS − deg(DS)∞. Hence, every degree 0 divisor

D is uniquely determined by DS , and the isomorphism in Eq. (3.4) extends

naturally to an isomorphism D0 → I.

3.2. Unusual Curves

Here, deg(∞) = 2, so every degree 0 divisor D of k(C) can be written

as D = DS − (deg(DS)/2)∞ and must have deg(DS) even. Again, every

degree 0 divisor D is uniquely determined by DS . Thus, Φ as given in

Eq. (3.4) extends to an isomorphism from D0 onto the group of fractional

ideals whose norm have even degree.

3.3. Real Curves

If C is real, then deg(∞1) = deg(∞2) = 1, so every degree 0 divisor of k(C)

can be uniquely written in the form

D = DS − deg(DS)∞2 + ν1(D)(∞1 −∞2) .

Hence, every degree 0 divisor D is uniquely determined by DS and ν1(D).

Here, Φ extends to an isomorphism from the subgroup of D0 of degree 0

divisors D with ν1(D) = 0 onto I.

We conclude this section with the observation that the choice of the

transcendental element u determines the signature at infinity (ramified,

inert, or split) and hence the set S of places lying above infinity. So the

ideal class group C, its order h′, and the regulator R depend on the model

of C (imaginary, unusual, or real), whereas the genus g, the divisor groups

D, D0 and P, as well as the degree 0 divisor class group Pic0 and its order

h are model-independent.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

212

4. Reduced Ideals and Divisors

Some of the material in this and the next section can be found in [2], [5],

and [7]. As before, let C : v2 + h(u)v = f(u) be a hyperelliptic curve

of genus g over a finite field k. The maximal order k[C] of k(C) is an

integral domain and a k[u]-module of rank 2 with k[u]-basis {1, v}. The

non-zero integral ideals in k[C] are exactly the k[u]-modules of the form

a = k[u]SQ+k[u]S(P +v) where P,Q, S ∈ k[u] and Q divides f +hP −P 2.

Here, S and Q are unique up to factors in k∗ and P is unique modulo

Q. For brevity, write a = S(Q,P). An ideal a = S(Q,P) is primitive if

S ∈ k∗, in which case we simply take S = 1 and write a = (Q,P). A

primitive ideal a is reduced if deg Q ≤ g. The basis Q,P of a primitive

ideal a = (Q,P) is adapted if deg(P) < deg(Q) and reduced if C is real and

deg(P−h−v) < deg(Q) < deg(P +v); the latter is only possible if C is real.

In practice, it is common to have reduced divisors given in adapted form for

imaginary and unusual curves and in reduced (or possibly adapted) form

for real curves.

A divisor D of k(C) is effective if D ≥ 0. An effective finite divisor DS

is semi-reduced c if there does not exist any subset U ⊆ supp(DS) such

that
∑

p∈U νp(DS)p is the divisor of a polynomial in k[u], and reduced if

in addition deg(DS) ≤ g. Under the isomorphism in Eq. (3.4), effective

finite divisors of k(C) map to integral k[C]-ideals, semi-reduced divisors

to primitive ideals, and reduced divisors to reduced ideals. Analogous to

the ideal notation, we write DS = (Q,P) for the semi-reduced divisor of

k(C) corresponding to the primitive k[C]-ideal a = (Q, P) under Φ, and

refer to the polynomials Q and P as a basis of DS ; note that N(DS) =

N(a) = sgn(Q)−1Q. It is easy to see that the conjugation map of k(C) acts

on semi-reduced and reduced divisors DS = (Q, P) via DS = (Q,−P − h).

Up to now, we have only defined the notions of reduced and semi-reduced

for finite divisors. We simply extend this notion to arbitrary degree 0 divi-

sors of k(C) by declaring a degree 0 divisor D to be (semi-)reduced if DS

is (semi-)reduced. We then say that a semi-reduced divisor D is in adapted

or reduced form if DS is given by an adapted or reduced basis, respectively.

We would like to represent degree 0 divisor classes via reduced divisors.

In the imaginary case, this is well-known, but we repeat it briefly here for

completeness; for the other two hyperelliptic curve models, it is less simple.

In particular, for the unusual case, reduced divisors need not exist in some

cFor geometric and ideal-independent definitions of the notions of semi-reduced and

reduced divisors, see for example [2] or [5].

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

213

divisor classes, so we will have to allow divisors D with deg(DS) = g + 1

when representing elements in Pic0. For simplicity, we will say that a degree

0 divisor D in a given class C ∈ Pic0 has minimal norm if D is semi-reduced

and deg(N(E)) ≥ deg(N(D)) for every semi-reduced divisor E ∈ C. We will

see that if C is imaginary, unusual with g even, or real, then D will always

be reduced, otherwise (C unusual and g odd), we have deg(N(D)) ≤ g +1.

4.1. Imaginary Curves

Here, it is well-known that reduced divisors are pairwise inequivalent (see

[2]), and every degree 0 divisor class in Pic0, and hence every ideal class in

C, has exactly one reduced representative.

4.2. Unusual Curves

Again, reduced degree 0 divisors are pairwise inequivalent, and every degree

0 divisor class contains at most one reduced divisor. Those classes that do

not contain any reduced divisor contain exactly q + 1 pairwise equivalent

semi-reduced divisors D with deg(DS) = g +1 (see p. 183 of [1]). Note that

this can only occur if g is odd, so in this case, the norm of a reduced divisor

must have degree ≤ g−1. Hence if g is even, then in complete analogy to the

imaginary case, every divisor class does in fact have a unique representative.

In order to represent divisor classes without reduced divisors, i.e. with q+1

pairwise equivalent divisors of minimal norm of degree g + 1, for g odd, a

fast equivalence test or a systematic efficient way to identity a distinguished

divisor of minimal norm in a given degree 0 divisor class are required.

4.3. Real Curves

By Proposition 4.1 of [10], every degree 0 divisor class of k(C) contains a

uniqued reduced divisor D such that 0 ≤ deg(DS) + ν1(D) ≤ g, or equiva-

lently, −g ≤ ν2(D) ≤ 0. Using these reduced representatives for arithmetic

in Pic0 is somewhat slower that for imaginary curves, so we concentrate

instead on reduced divisors D = DS − deg(DS)∞2 with ν1(D) = 0. By the

Paulus-Rück result cited above, these divisors are pairwise inequivalent,

so every degree 0 divisor class of k(C) contains at most one such reduced

divisor.

dThe proposition as stated in [10] reads “0 ≤ ν1(D) ≤ g − deg(DS)”. The correct

statement is “0 ≤ deg(DS) + ν1(D) ≤ g”.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

214

Rather than examining degree 0 divisor classes, we now consider ideal

classes of k(C). Recall that the isomorphism Φ defined in Eq. (3.4) can be

extend to an isomorphism from the set {D ∈ D0 | ν1(D) = 0} onto I. For

any non-zero fractional ideal f, set D(f) = Φ−1(f) to be the divisor with no

support at ∞1 corresponding to f; note that f is reduced if and only if D(f)

is reduced. Let C be any ideal class of k(C), and define the set

RC = {D(a) | a ∈ C reduced} .

By our above remarks, all the divisors in RC are reduced and pairwise

inequivalent even though the corresponding ideals are all equivalent. Since

the basis polynomials of a reduced divisor or ideal have bounded degree,

RC is a finite set.

We now fix any reduced ideal a ∈ C; for example, if C is the principal

ideal class, then we always chose a = (1) to be the trivial ideal. Then for

every b ∈ C, there exists α ∈ k(C)∗ with b = (α)a; if a = (1), then α

is in fact a generator of b. By multiplying α with a suitable power of a

fundamental unit of k(C), or equivalently, adding a suitable multiple of

R(∞1 − ∞2) to its divisor, we may assume that −R < ν1(α) ≤ 0, or

equivalently, 0 ≤ deg(α) < R. Then we define the distance of the divisor

D(b) (with respect to D(a)) to be δ(D(b)) = deg(α). It follows that the set

RC is ordered by distance, and if we set D1 = D(a) and rC = |RC|, then

we can write

RC = {D1, D2, . . . , DrC}

and δi = δ(Di), with 0 = δ1 < δ2 < · · · < δrC < R. The set RC is called

the infrastructure of C; we will motivate this term later on. Note that if C

is the principal class and b ∈ C, D(b) and D(b) both belong to RC, and

δ(D(b)) = R + deg(D(b)S) − δ(D(b)) if b is nontrivial.

5. Reduction and Baby Steps

We continue to assume that we have a hyperelliptic curve C given by

Eq. (3.1). Our goal is to develop a unified framework for reduction on all

hyperelliptic curves. We begin with the standard approach for reduction on

imaginary curves — which we however apply to any hyperelliptic curve —

and then link this technique to the traditional continued fractions method

for real curves.

Starting with polynomials R0, S0 such that deg(R0) < deg(S0) and S0

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

215

dividing f + hR0 − R2
0, deg(S0) even if C is unusual, the recursion

Si+1 =
f + hRi − R2

i

Si
, Ri+1 = h − Ri +

⌊

Ri − h

Si+1

⌋

Si+1 , (5.1)

produces a sequence of semi-reduced, pairwise equivalent divisors Ei =

(Si−1, Ri−1), i ∈ N. To avoid the costly full division in the expression for

Si+1, we can rewrite Eq. (5.1) as follows. Given S0 and R0, generate S1 and

R1 using Eq. (5.1) and s1 = b(R0 − h)/S1c. Then for i ∈ N:

Si+1 = Si−1 + si(Ri−1 − Ri) , si+1 =

⌊

Ri − h

Si+1

⌋

,

Ri+1 = h − Ri + si+1Si+1 ≡ h − Ri (mod Si+1) .

(5.2)

Note that si+1 and Ri+1 are simply obtained by applying the division al-

gorithm, i.e. Ri − h = si+1Si+1 + (−Ri+1) and deg(−Ri+1) < deg(Si+1).

Similar to [2] and [15], we derive the following properties.

Lemma 5.1.

(a) deg(Ri) < deg(Si) for all i ≥ 0, so all the Ei are in adapted form.

(b) If deg(Si) ≥ g + 2, then deg(Si+1) ≤ deg(Si) − 2.

(c) If deg(Si) = g + 1, then deg(Si+1) ≤ g if C is imaginary and

deg(Si+1) = g + 1 if C is unusual or real. Hence, unless C is real,

Ei+2 has minimal norm.

(d) There is a minimal index j such that deg(Sj) ≤ deg(v) < deg(Sj−1), so

unless C is real, Ej+1 is the first of divisor of minimal norm. We have

j ≤ d(deg(S0) − g)/2e if deg(Sj) ≤ g and j ≤ d(deg(S0) − g − 1)/2e if

deg(Sj) = g + 1.

(e) If C is unusual, then deg(Si) is even for all i ≥ 0.

Proof. (a) is obvious from Eq. (5.1). Since deg(h) ≤ g + 1, Eq. (5.1) and

(a) imply

deg(Si+1) = deg(f + hRi − R2
i) − deg(Si) (5.3)

≤ max{deg(f), deg(Si) + g, 2 deg(Si) − 2} − deg(Si) ,

yielding (b) and (c). Now (d) can easily be derived from (b) and (c). To

see (e), note that if deg(Ri) ≥ g + 1, then deg(Si) ≥ g + 2, so by Eq. (5.3),

deg(Si+1) = 2 deg(Ri) − deg(Si) (note that by the assumptions on sgn(f),

there can never be cancellation in the numerator of Si+1 in the case where

deg(Ri) = g + 1), and if deg(Ri) ≤ g, then deg(Si+1) = 2g + 2 − deg(Si).

In either case, deg(Si+1) has the same parity as deg(Si), so (e) is obtained

by induction, since deg(S0) was assumed to be even if C is unusual.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

216

Suppose deg(Sj) ≤ deg(v) < deg(Sj−1) as in part (d) of Lemma 5.1. If

C is imaginary, or C is unusual with deg(Sj) ≤ g, then Ej+1 is the unique

reduced divisor in the class of D1. If C is unusual and deg(Sj) = g + 1,

(g odd), then the other q semi-reduced divisors equivalent to Ej+1 whose

norm have degree g + 1 can be obtained from Ej+1 as follows (see also [1]

for the case where q is odd).

Proposition 5.1. Let C given by Eq. (3.1) be unusual of odd genus g and

E = (S, R) a semi-reduced divisor with deg(R) ≤ deg(S) = g + 1. Then the

q + 1 divisors in the divisor class of E whose norm have degree g + 1 are

given by E and Ea = (Sa, Ra) for a ∈ Fq where

Ra = h − R + aS, Sa =
f + hRa − R2

a

S
. (5.4)

Proof. Since Ea = E+div((Ra+v)/S) for all a ∈ Fq, all Ea are equivalent

to E. Furthermore, deg(Ra) ≤ g + 1 and hence deg(Sa) = g + 1, since the

conditions on sgn(f) prevent cancellation of leading terms in the numerator

of Sa. So it only remains to show that E and and all the Ea are pairwise

distinct. To that end, we prove that equality among any two of these q + 1

divisors leads to a sequence of divisibility conditions that yield a singular

point on C.

So fix a ∈ Fq and suppose that Ea = E or Ea = Eb for some b ∈ Fq\{a}.
We first claim that

Sa and S differ by a constant factor in Fq . (5.5)

This is clear if Ea = E, so suppose Ea = Eb with b ∈ Fq, b 6= a. Then Sa

and Sb differ by a constant factor, and Ra ≡ Rb (mod Sa). By Eq. (5.4),

Ra ≡ Rb (mod S), so since deg(Ra − Rb) = deg(Sa) = deg(S) = g + 1, we

see that Sa and S must also differ by a constant factor in Fq.

Next, we claim that

S divides 2R − h . (5.6)

If Ea = E, then R ≡ Ra (mod S). On the other hand, Ra ≡ h−R (mod S)

by Eq. (5.4), so R ≡ h − R (mod S), proving Eq. (5.6). Suppose now that

Ea = Eb for some b ∈ Fq distinct from a. Then Sa and Sb differ by a

constant factor, so by Eq. (5.5), both differ from S by a constant factor.

Now a simple calculation yields Sa −Sb = (a− b)(2R−h− (a+ b)S). Since

a 6= b and S divides the left hand side of this equality, S must again divide

2R − h.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

217

Our next assertion is that

S2 divides f + hR − R2 . (5.7)

By Eq. (5.4) and Eq. (5.6), Ra ≡ h−R ≡ R (mod S). Since deg(Ra−R) ≤
g + 1 = deg(S), there exists ca ∈ Fq with Ra = R + caS. Substituting into

Eq. (5.4) yields SSa = f + hR − R2 + caS(h − 2R − caS). By Eq. (5.5),

S2 divides the left hand side of this equality. Invoking Eq. (5.6), we obtain

Eq. (5.7).

Our fourth and final claim is that

S divides f ′ + hR′ , (5.8)

where f ′ denotes the derivative of f with respect to u; similarly for R′.

To prove this claim, we simply observe that taking derivatives in Eq. (5.7)

implies that S divides f ′ + h′R + hR′ − 2RR′ = f ′ + hR′ + R′(h − 2R), so

Eq. (5.8) now follows from Eq. (5.6).

Now let r be a root of S in some algebraic closure of k. Then Eq. (5.6)–

Eq. (5.8) easily imply that (r,−R(r)) is a singular point on C, a contra-

diction. So no two among the divisors E and Ea (a ∈ Fq) can be be equal,

proving the proposition.

We now relate Eq. (5.1) to a regular continued fraction expansion, which

is the usual approach to reduction on real curves. Let P,Q ∈ k[u] with Q

non-zero and Q dividing f + hP − P 2, and let s0, s1, . . . be a sequence of

polynomials in k[u]. Set P0 = P, Q0 = Q, and

Pi+1 = h − Pi + siQi, Qi+1 =
f + hPi+1 − P 2

i+1

Qi
, (5.9)

for i ≥ 0. If we set φi = (Pi + v)/Qi, then φi+1 = (φi − si)
−1, so

φ0 = [s0, s1, . . . , si, φi+1] for all i ≥ 0. Thus, Eq. (5.9) determines a con-

tinued fraction expansion of φ0 in the completion k(C)S . It is clear that

Eq. (5.9) defines a sequence Di = (Qi−1, Pi−1) of semi-reduced divisors with

corresponding primitive ideals ai. The operation Di → Di+1 is referred to

as a baby or reduction stepe.

Set θ1 = 1 and θi =
∏i−1

j=1 φ−1
j for i ≥ 2. Since φiφi = −Qi−1/Qi, it is

easy to see that Q0θiθi = (−1)i−1Qi−1. Thus

θi =
i−1
∏

j=1

φ
−1

j = (−1)i−1 Qi−1

Q0θi
= (−1)i−1 Qi−1

Q0

i−1
∏

j=1

φj . (5.10)

eNote that Eq. (5.4) is a special case of Eq. (5.9), with si = a ∈ Fq . However, in this

case, the recursion only alternates between E and Ea.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

218

Then ai+1 = (φ
−1

i)ai and hence ai = (θi)a1, for i ∈ N. Therefore, the ideals

ai are all equivalent, so baby steps preserve ideal equivalence.

If we choose si in Eq. (5.9) to be si = qi = bφic, i.e. the quotient in

the regular continued fraction expansion of φ0 in k(C)S , then we have the

baby steps

qi =

⌊

Pi + v

Qi

⌋

, Pi+1 = h−Pi + qiQi, Qi+1 =
f + hPi+1 − P 2

i+1

Qi
. (5.11)

If deg(Qi) > deg(v), then qi = bPi/Qic. It is now easy to deduce that if j

is as in part (d) of Lemma 5.1 and Si, Ri are defined as in Eq. (5.1), then

qi = bPi/Qic ∈ k[u], Pi+1 = h − Ri, Qi+1 = Si+1 , (5.12)

for 0 ≤ i < j. Therefore, for this range of indices, Eq. (5.11) is equivalent to

Eq. (5.1) and hence produces the same sequence of divisors. For imaginary

and unusual curves, we will only consider baby steps as in Eq. (5.11) in the

range 0 ≤ i < j. For C real, baby steps as in Eq. (5.11) can be performed

beyond that range as well. However, for i ≥ j, qj 6= bPj/Qjc, so Eq. (5.12)

is false. Here, if we use Eq. (5.11) to compute the sequence Di+1 = (Qi, Pi),

starting with i = j, then Di+1 is reduced for i > j. We have deg(Pj+1 −
h − v) ≤ g, deg(Pj+1 + v) = g + 1, and for i ≥ j + 2, Di+1 = (Qi, Pi) is in

reduced form.

We now see that for all hyperelliptic curves, there exists an index l ≥
0 such that Eq. (5.11) repeatedly applied to D1 = (Q0, P0) produces a

reduced divisor Dl+1, if one exists, after l ≤ d(deg(Q0) − g)/2e steps. If

C is unusual, g is odd, and the class of D1 contains no reduced divisor,

then Eq. (5.11) produces a divisor Dl+1 whose norm has degree g + 1 after

l ≤ d(deg(Q0)−g−1)/2e steps. In the imaginary and unusual scenarios, we

have l = j with j as in part (d) of Lemma 5.1; for C real, we have l = j +1.

For 0 ≤ i < l, Eq. (5.11) is equivalent to

qi =

⌊

Pi + eiv

Qi

⌋

, ei =

{

1 if C real, deg(Qi) = g + 1,

0 otherwise,

Pi+1 = h − Pi + qiQi, Qi+1 =
f + hPi+1 − P 2

i+1

Qi
.

(5.13)

Again, the recursion in Eq. (5.13) can be made more efficient for i ≥ 1, i.e.

for all but the first baby step. Given Q0 and P0, we compute Q1 and P1

using Eq. (5.13). Then for i ∈ N:

qi =

⌊

Pi + beivc
Qi

⌋

, ri ≡ Pi + beivc (mod Qi) ,

Pi+1 = h + beivc − ri , Qi+1 = Qi−1 + qi(ri − ri−1) .

(5.14)

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

219

As before, the first line in Eq. (5.14) is equivalent to applying the division

algorithm in order to compute polynomials qi and ri such that Pi +beivc =

qiQi + ri and deg(ri) < deg(Qi).

Suppose now that C is real. If we repeatedly apply Eq. (5.11), or

equivalently, Eq. (5.14), starting with a reduced divisor D1 = D(a) for

some reduced ideal a of k(C), then we can generate the entire infrastruc-

ture RC = {Di | 1 ≤ i ≤ rC} of the ideal class C containing a. Here,

Di = D(ai) where ai = (θi)a with θi as in Eq. (5.10), so the distance of Di

is δi = deg(θi). In particular, θrC is a fundamental unit of k(C) of positive

degree, and deg(θrC) = R is the regulator of k(C).

We conclude this section by showing how to compute the distances

δi = δ(Di). By Eq. (5.10), the distance satisfies

δi = deg(θi) = deg(Qi−1) − deg(Q0) +
i−1
∑

j=1

deg(qj) (5.15)

for i ∈ N. Since φi = (Pi − h − v)/Qi = −Qi−1/(Pi + v) and δi+1 − δi =

−deg(φi) = deg(Pi + v) − deg(Qi−1) = g + 1 − deg(Qi−1) by Eq. (5.10),

we have 1 ≤ δi+1 − δi ≤ g if Di is non-zero, and δi+1 = g + 1 if Di = 0, in

which case C is the principal class.

6. Giant Steps and the Idea of NUCOMP

As before, let C be given by Eq. (3.1), and let D′ = (Q′, P ′), D” = (Q′′, P ′′)

be two semi-reduced divisors of k(C). Then it is well-known that there exists

a semi-reduced divisor D = (Q,P) in the divisor class of the sum D′ + D′′

that can be computed as follows.

S = gcd(Q′, Q′′, P ′ + P ′′ − h) = V Q′ + WQ′′ + X(P ′ + P ′′ − h) ,

Q =
Q′Q′′

S2
, (6.1)

P = P ′′ + U
Q′′

S
with U ≡ W (P ′ − P ′′) + XR′′ (mod Q′/S) ,

where U, V,W,X ∈ k[u], deg(U) < deg(Q′/S), and R′′ = (f + hP ′′ −
P ′′2)/Q′′. Note that D is in adapted form if deg(P ′′) < deg(Q).

Since S tends to have very small degree (usually S = 1), we expect

deg Q ≈ deg Q′ + deg Q′′; in particular, even if D′ and D′′ have minimal

norm, then D will generally not have minimal norm. We now apply repeated

baby steps as in Eq. (5.14) to P0 = P and Q0 = Q until we obtain a divisor

of minimal norm. The first divisor thus obtained is defined to be D′ ⊕D′′.

The operation (D′, D′′) → D′ ⊕D′′ is called a giant step.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

220

6.1. Imaginary Curves

Here, D′ ⊕D′′ is the unique reduced divisor in the class of D′ + D′′, and

the algorithm above is Cantor’s algorithm [2]. Thus, the group operation

on Pic0 can be performed efficiently via reduced representatives.

6.2. Unusual Curves

In this case, if g is even, then everything is completely analogous to the

imaginary setting. However, if g is odd, then D′ ⊕D′′ may or may not

be reduced, so the set of reduced divisors is no longer closed under the

operation ⊕ . However, as mentioned earlier, if we could either perform

fast equivalence testing, or efficiently and systematically identify a distin-

guished divisor D with deg(DS) = g +1 in every divisor class that contains

no reduced divisor, then we could perform arithmetic in Pic0 via these

distinguished representatives plus reduced representatives if they exist.

6.3. Real Curves

Suppose D′ and D′′ are reduced, and D′ ∈ RC′ , D′′ ∈ RC′′ for suitable

ideal classes C′,C′′ of k(C). Then D′ ⊕D′′ ∈ RC′C′′ . In particular, if C′′

is the principal ideal class, then D′ ⊕D′′ ∈ RC′ , and we have

δ(D′ ⊕D′′) = δ(D′) + δ(D′′) − δ with 0 ≤ δ ≤ 2g . (6.2)

Here, distances in the principal class are taken with respect to D1 = 0, and

distances in C′ with respect to some some suitable first divisor. The “error

term” δ in Eq. (6.2) is linear in g and hence very small compared to the two

distances δ(D′) and δ(D′′). The quantity δ in Eq. (6.2) can be efficiently

computed as part of the giant step.

Suppose now that D′ = (Q′, P ′) and D′′ = (Q′′, P ′′) are two divisors of

minimal norm. A giant step as described above finds the divisor D′ ⊕D′′

in two steps. First set D1 = (Q, P) with P and Q given by Eq. (6.1); Q

and P have degree approximately 2g, i.e. double size. Then apply repeated

baby steps as in Eq. (5.14) to D1 until the first divisor Dl+1 = D′ ⊕D′′ of

minimal norm is obtained; by Lemma 5.1, we have l ≤ dg/2e for all three

curve models, so this takes at most dg/2e such steps. The reduction process

produces a sequence of semi-reduced divisors Di+1 = (Qi, Pi), 0 ≤ i ≤ l, via

the continued fraction expansion of φ = (P +v)/Q = [q0, q1, . . . , ql, φl+1]. It

slowly shrinks the degrees of the Qi and Pi again to original size, reducing

them by about 2 in each step by Lemma 5.1. The obvious disadvantage

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

221

of this method is that the polynomials Qi, Pi have large degree while i is

small, and are costly to compute.

NUCOMP is an algorithm for computing D′ ⊕D′′ that eliminates these

costly baby steps on large operands. The idea of NUCOMP is to perform

arithmetic on polynomials of much smaller degree. Instead of computing Q

as well as the Qi and Pi explicitly via the continued fraction expansion of

φ, one computes sequences of polynomials ai, bi, ci, and di such that

Qi = (−1)i(bi−1ci−1 − ai−1di−1)

Pi = (−1)i(bi−2ci−1 − ai−1di−2) + P ′′ .

Only two basis coefficients Qn+2 and Pn+2 are evaluated at the end in order

to obtain a divisor Dn+3. Here, the value of n is determined by the property

that an, bn, cn, and dn have approximately equal degree of about g/2. More

exactly, we will have l = n + 2 or n + 3, i.e. D′ ⊕D′′ = Dn+3 or Dn+4.

The key observation is that φ̂ = U/(Q′/S), with U as given in Eq. (6.1),

is a very good rational approximation of φ = (P+v)/Q, and that the contin-

ued fraction expansion of φ̂
−1

is given by Q′/(SU) = [q1, q2, . . . , qn+1, . . .].

Note that deg(U) < deg(Q′/S) ≤ g (or possibly g + 1), so all quantities in-

volved are of small degree. The polynomials ai, bi, ci, and di are computed

recursively along with the continued fraction expansion of Q′/(SU) which

is basically the extended Euclidean algorithm applied to Q′/S and U ; in

fact, the bi are the remainders obtained in this Euclidean division process.

Alternatively, only the ai and bi are computed recursively, and cn−1, dn−1,

and dn are then obtained from these two sequences; this approach turns

out to employ polynomials of smaller degree (as c0 and d0 have large de-

gree), but requires an extra full division by Q′/S. We describe the details

of NUCOMP in the next two sections.

7. NUCOMP

Let D′ = (Q′, P ′) and D′′ = (Q′′, P ′′) be two divisors of minimal norm,

and let P,Q, S, U be defined as in Eq. (6.1). We assume that

deg(P ′′) ≤ g + 1 < deg(Q) . (7.1)

The first inequality in Eq. (7.1) is equivalent to deg(P ′′ + v) ≤ g + 1,

and holds if D′′ is given in adapted or reduced form. While it can always

be achieved by reducing P modulo Q, for example, we will see that this

will generally not be necessary, i.e. usually NUCOMP outputs a divisor

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

222

D̂ = (Q̂, P̂) that again satisfiesf deg(P̂) ≤ g + 1.

The second inequality in Eq. (7.1) is no great restriction, since if

deg(Q) ≤ g + 1, then D = (Q, P) is at most one baby step away from

having minimal norm, so one would simply compute D′ ⊕D′′ using one of

the recursions in Section 5 and not use NUCOMP in this case. We now

define

M = max{g , deg(P ′′ + v)} ∈ 1

2
Z . (7.2)

Note that M ∈ {g +1/2, g +1} if C is imaginary, M = deg(P ′′ + v) = g +1

if C is unusual (since sgn(P ′′) ∈ k and sgn(v) /∈ k can never cancel each

other), and M ∈ {g, g + 1} if C is real. Furthermore, if D′′ is given in

adapted or reduced form, then M = deg(P ′′ + v).

The quantity

N =
1

2
(deg(Q′) − deg(Q′′) + M) ∈ 1

4
Z (7.3)

will play a crucial role in our discussion. Since D′′ is of minimal norm, we

have deg(Q′′) ≤ M for all hyperelliptic curve models, so N ≥ deg(Q′)/2 >

0. Furthermore, N < deg(Q′/S) by the second inequality in Eq. (7.1), so

N < g + 1. Usually, we expect N to be of magnitude g/2.

Let Q′/SU = [q̂0, q̂1, . . . , q̂m] be the regular continued fraction expan-

sion of Q′/SU, where as usual, m ≥ 0 is minimal. Setting E = Q′/S and

F = U, Eq. (2.5) defines sequences ai, bi for −1 ≤ i ≤ m, i.e.

b−1 = Q′/S , b0 = U , bi+1 = bi−1 − q̂ibi ,

a−1 = 0 , a0 = −1 , ai+1 = ai−1 − q̂iai .
(7.4)

If we put b−2 = U and q̂−1 = 0, then for i ≥ −1, the remainder sequence

of the Euclidean algorithm applied to φ̂ = SU/Q′ is the same as the one

applied to φ̂
−1

= Q′/SU since deg(U) < deg(Q′/S). The first step then

simply reads U = b−2 = 0 · b−1 + b0. Since Q′/SU = [q̂0, q̂1, . . . , q̂m], we

then see that the continued fraction expansion of φ̂ is φ̂ = [0, q̂0, q̂1, . . . , q̂m].

Set P̂ 0 = P, Q̂0 = Q, and recall that q̂−1 = 0. We investigate the

sequence of semi-reduced divisors D̂i = (Q̂i−1, P̂ i−1), 1 ≤ i ≤ m + 3,

obtained by choosing si = q̂i−1 in Eq. (5.9). That is

P̂ i+1 = h − P̂ i + q̂i−1Q̂i, Q̂i+1 =
f + hP̂ i+1 − P̂

2

i+1

Q̂i

, (7.5)

fIf C is unusual, g is odd, and deg(Q̂) = g +1, then we expect deg(P̂) ≤ g +2. However,
in this situation, it suffices to assume deg(P ′′) ≤ g + 2 as well. In order to avoid having

to distinguish between too many different cases, we will henceforth ignore this scenario.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

223

for 0 ≤ i ≤ m+1. To facilitate the computation of P̂ i, Q̂i, we proceed as in

[8] and introduce two more sequences of polynomials ci, di, −1 ≤ i ≤ m+1

as follows.

c−1 =
Q′′

S
, c0 =

P − P ′

b−1
, ci+1 = ci−1 − q̂ici,

d−1 = P ′ + P ′′ − h, d0 =
d−1b0 − SR′′

b−1
, di+1 = di−1 − q̂idi,

(7.6)

for 0 ≤ i ≤ m. We point out an interesting symmetry between the sequences

bi and ci, −1 ≤ i ≤ m + 1; namely, reversing the roles of D′ and D′′ in

Eq. (6.1) results in a swap of these two sequences. An easy induction yields

ci =
1

b−1

(

bi
Q′′

S
+ ai(P

′ − P ′′)

)

, (7.7)

di =
1

b−1
(bi(P

′ + P ′′ − h) + aiSR′′) , (7.8)

for −1 ≤ i ≤ m + 1. Using induction simultaneously on both formulas, we

obtain

Q̂i = (−1)i(bi−1ci−1 − ai−1di−1) , (7.9)

P̂ i = (−1)i(bi−2ci−1 − ai−1di−2) + P ′′ , (7.10)

for 0 ≤ i ≤ m + 2.

As outlined above, we wish to determine a point up to which the divisors

Di+1 = (Qi, Pi) with P0 = P , Q0 = Q, and Pi, Qi given by Eq. (5.13)

or equivalently, by Eq. (5.11) or Eq. (5.14) are identical to the divisors

D̂i+1 = (Q̂i, P̂ i) with P̂ i, Q̂i given by Eq. (7.5) or equivalently, by Eq. (7.9)

and Eq. (7.10). Clearly, D̂1 = D1 by definition, so our goal is to find a

maximal index n ≥ −1 that guarantees Qi = Q̂i and Pi = P̂ i, and hence

Di+1 = D̂i+1, for 0 ≤ i ≤ n + 2 (see Theorem 7.1). Such an index will have

to satisfy n ≤ m to ensure that the polynomials Q̂i, P̂ i as given in Eq. (7.5)

are in fact defined. Our next task will then be to see how many baby steps

if any we need to apply to the last divisor Dn+3 = (Qn+2, Pn+2) to obtain

the divisor D′ ⊕D′′.

Theorem 7.1. Let D′ = (Q′, P ′), D′′ = (Q′′, P ′′) be two divisors, and let

P and Q be given by Eq. (6.1). Set P0 = P̂ 0 = P, Q0 = Q̂0 = Q, and define

Pi, Qi (i ∈ N) by Eq. (5.11), P̂ i, Q̂i (1 ≤ i ≤ m + 2) by Eq. (7.5), and bi

(−1 ≤ i ≤ m+1) by Eq. (7.4). Then there exists n ∈ Z, −1 ≤ n ≤ m, such

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

224

that deg(bn) > N, with N as in Eq. (7.3). Furthermore,

qi = q̂i−1 (0 ≤ i ≤ n + 1) ,

Pi = P̂ i (0 ≤ i ≤ n + 2) ,

Qi = Q̂i (0 ≤ i ≤ n + 2) .

Proof. We already observed that deg(b−1) = deg(Q′/S) > N, so since

deg(bi) decreases as i increases, there must exist n ≥ −1 with deg(bn) > N.

Since deg(bm+1) = −∞ < N, we must have n ≤ m. So n as specified above

exists and all the quantities q̂i−1, P̂ i, Q̂i above are in fact well-defined.

Set φ = (P + v)/Q and φ̂ = SU/Q′. Then φ = [q0, q1, . . .] with qi =

(Pi + v)/Qi is the continued fraction expansion of φ in a suitable field of

Puiseux series; also, recall that φ̂ = [q̂−1, q̂0, . . . , q̂m] where q̂−1 = 0. We

wish to applyg Theorem 2.1 to φ and φ̂. Since φ − φ̂ = (P ′′ + v)/Q, we

have b2
−1(φ − φ̂) = Q′(P ′′ + v)/Q′′. The definition of N implies 2N ≥

deg(Q′(P ′′ + v)/Q′′), so

2 deg(bn) > 2N ≥ deg
(

b2
−1(φ − φ̂)

)

. (7.11)

Seth r̂−2 = U, r̂−1 = Q′/S, and r̂i = r̂i−2−q̂i−1r̂i−1 for 0 ≤ i ≤ m+1. Then

r̂i = bi for −1 ≤ i ≤ m+1, so the r̂i are the remainders when applying the

Euclidean algorithm to E = U and F = Q′/S. By Theorem 2.1, Eq. (7.11)

implies that qi = q̂i−1 for 0 ≤ i ≤ n + 1. Now P0 = P̂ 0, Q0 = Q̂0, and

inductively by Eq. (5.11) and Eq. (7.5),

Pi+1 = h − Pi + qiQi = h − P̂ i + q̂i−1Q̂i = P̂ i+1 ,

Qi+1 =
f + hPi+1 − P 2

i+1

Qi
=

f + hP̂ i+1 − P̂
2

i+1

Q̂i

= Q̂i+1 ,

for 0 ≤ i ≤ n + 1.

Corollary 7.1. With the notation of Theorem 7.1, we have Di = D̂i for

1 ≤ i ≤ n + 3.

gAlthough the degrees in Theorem 2.1 are taken with respect to u1/2 if C is imaginary,

the statement still holds if degrees are taken with respect to u as is done here, since this

only changes both sides of the degree inequality in Theorem 2.1 by a factor of 2.
hNote that the indices of the partial quotients q̂i in the definition of the r̂i are offset

by 1 compared to the proof of Theorem 2.1 because here, the continued fraction in

question is φ̂ = [q̂
−1, q̂0, q̂1, . . . , q̂m] (with q̂

−1 = 0), whereas in Theorem 2.1, it is

φ̂ = [q̂0, q̂1, . . . , q̂m].

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

225

Since deg(bi) is a decreasing sequence for −1 ≤ i ≤ m + 1, there exists

a unique index n with −1 ≤ n ≤ m such that

deg(bn) > N ≥ deg(bn+1) , (7.12)

with N as in Eq. (7.3). By Corollary 7.1, Di = D̂i for 1 ≤ i ≤ n + 3.

8. Giant Steps With NUCOMP

We now show that Dn+3 is at most one baby step away from being reduced

if C is imaginary or real, and always has minimal norm if C is unusual.

Furthermore, Dn+2 never has minimal norm. Note that this implies that if

Dn+3 actually has minimal norm, then Dn+3 = D′ ⊕D′′.

Substituting Eq. (7.7) and Eq. (7.8) into Eq. (7.9) yields

Q̂i =
(−1)i

b−1

(

Q′′

S
b2
i−1 + (h − 2P ′′)ai−1bi−1 − SR′′a2

i−1

)

(8.1)

for 0 ≤ i ≤ m+2. For brevity, we define sequences of rational functions ui,

vi, wi via

ui =
Q′′

b−1S
b2
i , vi =

h − 2P ′′

b−1
aibi , wi =

SR′′

b−1
a2

i , (8.2)

for −1 ≤ i ≤ m + 1, where as before, R′′ = (f + hP ′′ − P ′′2)/Q′′. Then

(−1)i+1Q̂i+1 = ui + vi + wi (1 ≤ i ≤ m + 1) . (8.3)

Note that ui decreases and wi increases in degree as i increases. Further-

more, ui, vi, wi satisfy the following properties:

Lemma 8.1. Let N and n be given by Eq. (7.3) and Eq. (7.12), respec-

tively, and define

L = deg(Q′′R′′) = deg(f + hP ′′ − P ′′2)

= deg(P ′′ + v) + deg(P ′′ − h − v) .
(8.4)

Then we have the following:

(a) deg(vi) ≤ g for −1 ≤ i ≤ m + 1.

(b) deg(wi) = L − deg(ui−1) for 0 ≤ i ≤ m + 1.

(c) deg(un+1) ≤ M < deg(ui) for −1 ≤ i ≤ n.

(d) deg(wi) ≤ deg(P ′′ − h − v) − 1 ≤ g for −1 ≤ i ≤ n + 1.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

226

Proof. Since deg(h − 2P ′′) ≤ g + 1, (a) can be derived using Lemma 2.2

(e) and (b), since

deg(vi) = deg(ai) + deg(bi) + deg(h − 2P ′′) − deg(b−1)

= deg(ai) − deg(ai+1) + deg(h − 2P ′′) ≤ −1 + (g + 1) = g

for 0 ≤ i ≤ m + 1. The definition of ui−1 as well as Eq. (8.4) and part (e)

of Lemma 2.2 imply

deg(wi) = 2 deg(ai) + deg(S) + deg(R′′) − deg(b−1)

= deg(b−1) − 2 deg(bi−1) + deg(S) + L − deg(Q′′)

= L − deg(ui−1)

for 0 ≤ i ≤ m + 1, whence follows (b). For (c), we note that

deg(ui) = 2 deg(bi) + deg(Q′′/S) − deg(b−1)

= deg(Q′′/Q′) + 2 deg(bi)

= M − 2N + 2 deg(bi)

for −1 ≤ i ≤ m+1. We then see from Eq. (7.2) and Eq. (7.3) that deg(ui) ≤
M if and only if deg(bi) ≤ N. Part (c) now follows from Eq. (7.12). For

(d), we note that deg(w−1) = −∞, and for 0 ≤ i ≤ n + 1, by Eq. (8.4),

Eq. (7.2), and parts (b) and (c),

deg(wi) = L − deg(ui−1) < L − M

≤ L − deg(P ′′ + v) = deg(P ′′ − h − v) .

Corollary 8.1. Let N and n be given by Eq. (7.3) and Eq. (7.12), respec-

tively. Then the following holds.

(a) deg(Qi+1) = deg(ui) ≥ g + 2 for −1 ≤ i ≤ n.

(b) deg(Qn+2) ≤ M + 1 ≤ g + 1.

(c) deg(Qn+2) ≤ g if and only if deg(bn+1) < N or M < g + 1.

Proof. Parts (a) and (b) immediately follow from Eq. (8.3) as well as

parts (a), (c), and (d) of Lemma 8.1. For part (c) of the Corollary, note

that deg(un+1) = M − 2(N − deg(bn+1)), so deg(Qn+2) = g + 1 if and only

if deg(un+1) = g + 1, which in turn holds if and only if deg(bn+1) = N and

M = g + 1.

We now determine how to obtain the divisor D′ ⊕D′′ using NUCOMP.

First, we recall that Eq. (7.5), or equivalently, Eq. (7.10) and Eq. (7.9),

define a sequence of divisors D̂i+1 = (Q̂i, P̂ i) for 0 ≤ i ≤ n + 2. If C

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

227

is imaginary or real and deg(Q̂n+2) = g + 1, then we define the divisor

Dn+4 = (Qn+3, Pn+3) where

qn+2 =

⌊

P̂n+2 + en+2v

Q̂n+2

⌋

with en+2 =

{

1 if C is real ,

0 if C is imaginary ,

Pn+3 = h − P̂n+2 + qn+2Q̂n+2, Qn+3 =
f + hPn+3 − P 2

n+3

Q̂n+2

.

(8.5)

so Pn+3 and Qn+3 are obtained by applying Eq. (5.13) to Pn+2 = P̂n+2

and Qn+2 = Q̂n+2. For brevity, we define the integer

K = deg(Q′′) + deg(Q′) − g . (8.6)

Then we can determine D′ ⊕D′′ as follows.

Proposition 8.1. Let N, n, and K be given by Eq. (7.3), Eq. (7.12), and

Eq. (8.6), respectively. Then the following holds.

(a) If C is unusual, then D′ ⊕D′′ = Dn+3.

(b) If C is imaginary or real and deg(P ′′+v) < g+1, then D′ ⊕D′′ = D̂n+3.

(c) If C is imaginary or real and deg(P ′′ + v) = g + 1, then D′ ⊕D′′ =

D̂n+3 if K is even. If K is odd, then D′ ⊕D′′ = Dn+3 and only if

deg(Qn+2) ≤ g, or equivalently, deg(bn+1) < N, otherwise D′ ⊕D′′ =

Dn+4.

Proof. Note that deg(P ′′+v) < g+1 if and only if M < g+1, and deg(P ′′+

v) = g+1 if and only if M = g+1. We now use the definition of D′ ⊕D′′ and

invoke Corollary 7.1. Then parts (a) and (b) follow immediately from parts

(a) and (c) of Corollary 8.1, respectively. For part (c) of the Proposition,

we have M = deg(P ′′ + v) = g + 1, so D′ ⊕D′′ = Dn+3 if and only if

deg(Qn+2) ≤ g, which by part (c) of Corollary 8.1 holds if and only if

deg(bn+1) < N. Now if K is even, then 2N = K + 1 + 2(g − deg(Q′′)) is an

integer and odd, and 2 deg(bn) is even, so we must have deg(bn+1) < N. If

K is odd and deg(Qn+2) = g + 1, then Dn+3 is not reduced, so it suffices

to prove that Dn+4 is reduced.

To that end, note that by Eq. (8.5), deg(Pn+3 − h − en+2v) <

deg(Qn+2) = g + 1. If C is imaginary, then this implies deg(Pn+3) ≤ g,

whereas if C is real, then deg(Pn+3−h−v) ≤ g. In either case, deg(Qn+3) ≤
2g + 1 − deg(Qn+2) = g by Eq. (8.5), so Dn+4 is reduced.

Remark 8.1. We note that if C is imaginary or real, deg(P ′′ + v) =

g + 1, and K as given in Eq. (8.6) is odd, then we will almost always have

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

228

D′ ⊕D′′ = Dn+4, i.e. it is very unlikely that Dn+3 is reduced. In fact,

under these conditions, if Dn+3 is reduced, then it is easy to show that

deg(bn+1) ≤ N − 1 and deg(bn) ≥ N + 1, so

deg(bn) − deg(bn+1) ≥ 2 . (8.7)

If bn+1 = 0, then bn = gcd(Q′/S, U), so Eq. (8.7) would imply that Q′/S

and U have a non-trivial common factor which is highly unlikely. If bn+1 6=
0, then Eq. (8.7) implies deg(q̂n+1) ≥ 2. But all but the first partial quotient

in a regular continued fraction expansion are expected to have degree 1 with

very high probability.

To compute the relative distance δ = δ(D′)+ δ(D′′)− δ(D′ ⊕D′′) using

NUCOMP in the case where C is real, let a, a′, a′′ be the reduced ideals

corresponding to the divisors D′ ⊕D′′, D′, D′′, respectively. Then a =

(S/θ)a′a′′ where θ = θi with a1 = a′a′′, ai = a, and i = n + 3 or n + 4 by

Proposition 8.1. Setting d = deg(S) − deg(θn+3), we obtain by Eq. (5.10),

Eq. (6.1), and Theorem 7.1,

d = deg(S) −



deg(Qn+2) − deg(Q0) +
n+2
∑

j=1

deg(qj)





= deg(Q′) + deg(Q′′) − deg(S) − deg(Q̂n+2) −
n
∑

j=0

deg(q̂j) − deg(qn+2) .

If D′ ⊕D′′ = Dn+3, then δ = d, and if D′ ⊕D′′ = Dn+4, then δ =

d − deg(qn+3) with qn+3 = b(Pn+3 + v)/Qn+3c, so deg(qn+3) = g + 1 −
deg(Qn+3).

We now give upper bounds on the index n of Eq. (7.12).

Theorem 8.1. Let N, n and K be defined by Eq. (7.3), Eq. (7.12) and

Eq. (8.6), respectively. Then the following holds:

(a) If K is even, then n ≤ (K − 4)/2 and D′ ⊕D′′ = Dn+3 is reduced.

(b) If K is odd, then we have the following:

(a) If C is unusual, then n ≤ (K − 5)/2 and D′ ⊕D′′ = Dn+3.

(b) If C is imaginary or real and deg(P ′′ + v) < g + 1, then n ≤
(K − 3)/2 and D′ ⊕D′′ = Dn+3.

(c) If C is imaginary or real and deg(P ′′ + v) = g + 1, then

n ≤ (K − 5)/2, and D′ ⊕D′′ = Dn+3 if and only if deg(bn+1) <

N, otherwise D′ ⊕D′′ = Dn+4.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

229

Proof. From Lemma 2.2 (c), Eq. (7.3), Eq. (7.12), and Eq. (8.6), we obtain

n ≤ deg(b−1) − deg(bn) − 1 < deg(Q′) − N − 1 =
1

2
(K − M + g) − 1 .

If K is even, then as before, deg(bn+1) < N, which holds if and only if

deg(Qn+2) < M, or equivalently, deg(Qn+2) ≤ g. Thus, Dn+3 is reduced,

and we simply use M ≥ g to obtain n < K/2− 1 and hence n ≤ (K − 4)/2.

Suppose now that K is odd. Then all the claims in Theorem 8.1 except

for the bounds on n follow from Proposition 8.1. If deg(P ′′ + v) < g + 1,

then we again use M ≥ g to obtain n ≤ (K − 3)/2. If deg(P ′′ + v) = g + 1

then M = g+1, yielding n ≤ (K−5)/2. Note that this includes the unusual

scenario.

Remark 8.2. The bounds in Theorem (8.1) can also be derived as follows.

If D′ ⊕D′′ = Dl+1, then by our remarks just before Eq. (5.13), l ≤ dK/2e
if deg(Ql) ≤ g, and l ≤ d(K − 1)/2e if deg(Ql) = g + 1 for C unusual and

g odd. Now distinguish between the cases l = n + 2 and l = n + 3 using

Proposition 8.1.

In lieu of Remark 8.1, we see that in the imaginary and real cases,

D′ ⊕D′′ can usually be found in (K − 4)/2 “NUCOMP steps” if K is even

and in either (K−3)/2 NUCOMP steps or (K−5)/2 NUCOMP steps plus

one reduction step if K is odd. Furthermore, if D′ and D′′ have minimal

norm, then we expect that deg(Q′) = deg(Q′′). This degree will generally

be equal to g if C is imaginary, unusual with g even, or real, and tends to be

equal to g + 1 if C is unusual and g odd. In the latter case, we expect that

the norm of D′ ⊕D′′ again has degree g + 1. We thus obtain the following

Corollary:

Corollary 8.2. Let N, n and K be defined by Eq. (7.3), Eq. (7.12) and

Eq. (8.6), respectively, and assume that

• M = deg(P ′′ + v) = g + 1.

• deg(Q′) = deg(Q′′) = g if C is imaginary, unusual with g even, or real.

• deg(Q′) = deg(Q′′) = g + 1 if C is unusual and g odd.

• deg(bn) − deg(bn+1) = 1.

Then the following holds:

(a) If g is even, then D′ ⊕D′′ = Dn+3 is reduced and n ≤ (g − 4)/2.

(b) If g is odd and C is unusual, then D′ ⊕D′′ = Dn+3 and n ≤ (g − 3)/2.

(c) If g is odd and C is imaginary or real, then D′ ⊕D′′ = Dn+4 and

n ≤ (g − 5)/2.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

230

Proof. Since deg(Q′) = deg(Q′′), g has the same parity as K. If g is even,

or g is odd and C is imaginary or real, then deg(Q′) = deg(Q′′) = g, so

K = g. The bounds on n for these cases now again follow immediately from

Theorem 8.1. If g is odd and C is unusual, then K = 2(g + 1) − g = g + 2,

so (K − 5)/2 = (g − 3)/2.

In all three cases of Corollary 8.2, as pointed out in Sec. 6, D′ ⊕D′′ is

reached after at most dg/2e steps; these are all NUCOMP steps except in

case (c), where all but the last step are NUCOMP steps and the last step

is a baby step.

Finally, recall our assumption Eq. (7.1) that deg(P ′′ + v) ≤ g + 1.

We argue that if D′ ⊕D′′ = (Q̂, P̂), then we generally have deg(P̂) ≤
g + 1 as well if C is imaginary or real. If P̂ = Pn+3, then we saw that

deg(Pn+3 −h−v) ≤ g, so deg(P̂) ≤ g if C is imaginary and deg(P̂) ≤ g +1

if C is real. Suppose now that P̂ = P̂n+2, so deg(Qn+2) ≤ g, implying

deg(un+1) ≤ g by Eq. (8.3) and Lemma 8.1. Since gcd(Q′/S, U) is very

likely to have small degree (usually the gcd is 1), it is highly improbable

that bn+1 = 0. Therefore, q̂n+1 is defined, and from part (a) of Lemma 2.2

and the definition of ui, we see that

deg(Qn+1) = deg(un) = 2 deg(q̂n+1) + deg(un+1) ≤ 2 deg(q̂n+1) + g .

It follows from Eq. (5.13) and part (a) of Corollary 8.1 that Pn+2 = h −
Pn+1 +bPn+1/Qn+1cQn+1, so deg(Pn+2) ≤ deg(Qn+1)−1 ≤ 2 deg(q̂n+1)+

g − 1. Since q̂n+1, as the partial quotient of a continued fraction expan-

sion, is expected to have degree 1, we obtain deg(Pn+2) ≤ g + 1 with high

probability.

Note that if C is unusual, then we may have deg(Pn+2) ≤ g + 2, but all

the proofs in Sec. 8 can be easily adjusted to work for this case under the

assumption deg(P ′′) ≤ g + 2. We omit the details of this reasoning.

If we impose stronger conditions than Eq. (7.1) on P ′′, then P̂ need not

satisfy the same conditions. For example, if D′′ is given in adapted form,

then D′⊕D′′ will usually not be in adapted form. Similarly, if C is real and

D′′ is in reduced form, then D′ ⊕D′′ will generally not be in reduced form.

In this case, if the application requires the basis Q̂, P̂ to be of a particular

form, then a suitable multiple of Q̂ will need to be added to P̂ . However, we

point out that in many applications, the above question does not even play

a role. For example, if we apply NUCOMP repeatedly to a starting divisor

D′′ = (Q′′, P ′′), say to generate a “scalar product” D′′ ⊕D′′ ⊕ · · · ⊕D′′

computed as part of a cryptographic protocol, then it is sufficient to ensure

that deg(P ′′) ≤ g + 1 once at the beginning of the computation.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

231

9. NUCOMP Algorithms

The basic strategy of the NUCOMP algorithm is as follows. Suppose we

are given two divisors D′ = (Q′, P ′) and D′′ = (Q′′, P ′′) of minimal norm

with deg(P ′′) ≤ g + 1; for reasons of efficiency, we will also input the

polynomials R′ = (f +hP ′−P ′2)/Q′ and R′′ = (f +hP ′′−P ′′2)/Q′′. Begin

by computing S, U as in Eq. (6.1). If deg(Q′)+deg(Q′′)−2 deg(S) ≤ g +1,

then the divisor D = (Q,P) defined in Eq. (6.1) is at most one step away

from having minimal norm, so simply compute Q and P as in Eq. (6.1)

and, if necessary, apply one reduction step — Eq. (5.2) if C is imaginary

or Eq. (5.14) otherwise — to D = (Q,P) to obtain D′ ⊕D′′.

Suppose now that deg(Q′) + deg(Q′′) − 2 deg(S) ≥ g + 2. Then we

simultaneously compute the sequences bi, ai, ci, di for −1 ≤ i ≤ n + 1; this

is what we referred to as“NUCOMP steps” in the previous section. Finally,

recover Pn+2 and Qn+2 using Eq. (7.10) and Eq. (7.9) and, if necessary,

apply one iteration of Eq. (5.14) to Pn+2, Qn+2 to obtain D′ ⊕D′′. We

describe this method in algorithmic form below.

Algorithm 9.1. NUCOMP (original)

Input: (Q′, P ′, R′), (Q′′, P ′′, R′′) with Q′R′ = f + hP ′ − P ′2 and Q′′R′′ =

f + hP ′′ −P ′′2, representing two semi-reduced divisors D′ and D′′ of minimal

norm.

Output: (Q̂, P̂ , R̂) representing D′ ⊕D′′ with Q̂R̂ = f + hP̂ − P̂
2
.

(1) // Compute D′ + D′′

(a) Compute S1,W1 ∈ F[u] such that S1 = gcd(Q′, Q′′) = V1Q
′+W1Q

′′.

(b) IF S1 = 1 THEN S := S1 = 1, X := 0, W := W1, GOTO (d).

(c) Compute S, W2, X ∈ F[u] such that S = gcd(S1, P
′ + P ′′ − h) =

W2S1 + X(P ′ + P ′′ − h). Put W := W1W2.

(d) Put b−1 := Q′/S and U :≡ W (P ′ − P ′′) + XR′′ (mod b−1).

(2) IF deg(Q′) + deg(Q′′) − 2 deg(S) ≤ g + 1 THEN // at most one baby

step

(a) Put

Q̂ :=
Q′Q′′

S2
, P̂ := P ′′ + U

Q′′

S
(mod Q), R̂ :=

f + hP − P 2

Q
.

(b) IF deg(Q̂) = g + 1 AND C is imaginary THEN

Q̂ := R̂ , P̂ := h − P̂ (mod Q̂) , R̂ :=
f + hP̂ − P̂

2

Q̂
.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

232

(c) IF deg(Q̂) = g + 1 AND C is real THEN

(i) Put P̃ := P̂ , Q̃ := Q̂

(ii) q̃ := b(P̃ + v)/Q̃c.
(iii) P̂ := h − P̃ + q̃Q̃.

(iv) Q̂ := R̂ + q̃(P̃ − P̂), R̂ := Q̃.

(d) RETURN(Q,P,R)

(3) // Now apply NUCOMP

(a) b0 := U, a−1 := 0, a0 := 1.

(b) c−1 := Q′′/S, P = P ′′ + UQ′′/S, c0 := (P − P ′)/b−1.

(c) d−1 := P ′ + P ′′ − h, d0 := (d−1b0 − SR′′)/b−1.

(d) i := 0, N := (deg(Q′) − deg(Q′′) + max{g,deg(P ′′ + v)})/2.

(4) While deg(bi) > N do

(a) q̂i := bbi−1/bic, bi+1 := bi−1 (mod bi). // Division with remainder

(b) ai+1 := ai−1 − q̂iai.

(c) ci+1 := ci−1 − q̂ici.

(d) di+1 := di−1 − q̂idi.

(e) i := i + 1.

(5) // Now i = n + 1, so deg(bn+1) ≤ N < deg(bn).

(a) Qi+1 := (−1)i+1(bici − aidi) // Qi+1 = Qn+2.

(b) Pi+1 := (−1)i+1(bi−1ci − aidi−1) + P ′′ // Pi+1 = Pn+2.

(c) Ri+1 := (−1)i−1(ai−1di−1 − bi−1ci−1) // Ri+1 = Rn+2 = Qn+1

(d) IF C is imaginary or real and deg(Qi+1) = g + 1 THEN

i. IF C is imaginary, qi+1 := bPi+1/Qi+1c
ELSE qi+1 := b(Pi+1 + v)/Qi+1c

ii. Pi+2 := h − Pi+1 + qi+1Qi+1.

iii. Qi+2 := Ri+1 + qi+1(Pi+1 − Pi+2).

iv. Ri+2 := Qi+1.

v. i := i + 1.

(e) put Q̂ := Qi+1, P̂ := Pi+1, R̂ := Ri+1.

(f) RETURN(Q̂, P̂ , R̂).

There is an alternative version of this algorithm that is aimed at keeping

the size of the intermediate operands low. In the context of binary quadratic

forms, this idea is originally due to Atkin. Instead of computing all four

sequences, we only compute bi, ai for −1 ≤ i ≤ n + 1. Then compute cn+1,

dn and dn+1 using Eq. (7.7) and Eq. (7.8), and finally, Pn+2 and Qn+2

using Eq. (7.10) and Eq. (7.9). Since N ≈ g/2, we expect bn and bn+1

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

233

to have approximate degree g/2. By Lemma 2.2 (e), we thus also expect

deg(an+1) ≈ g/2, and Eq. (7.7) and Eq. (7.8) show that cn+1, dn and dn+1

also have approximate degree g/2. So all operands have very small degree;

only the numerators in Eq. (7.7) for i = n + 1 and Eq. (7.8) for i = n

and i = n + 1 have degree ≈ 3g/2. These degrees are much smaller than

those of the numerators of c0 and d0 which are roughly 2g. On the other

hand, the computation of cn+1, dn and dn+1 requires three divisions by b−1,

compared to only two such divisions required for computing c0 and d0. We

again present this technique algorithmically below.

Algorithm 9.2. NUCOMP (small operands)

Input: (Q′, P ′, R′), (Q′′, P ′′, R′′) with Q′R′ = f + hP ′ − P ′2 and Q′′R′′ =

f + hP ′′ −P ′′2, representing two semi-reduced divisors D′ and D′′ of minimal

norm.

Output: (Q̂, P̂ , R̂) representing D′ ⊕D′′ with Q̂R̂ = f + hP̂ − P̂
2
.

(1) // Compute D′ + D′′

(a) Compute S1,W1 ∈ F[u] such that S1 = gcd(Q′, Q′′) = V1Q
′+W1Q

′′.

(b) IF S1 = 1 THEN S := S1 = 1, X := 0, W := W1, GOTO (d).

(c) Compute S, W2, X ∈ F[u] such that S = gcd(S1, P
′ + P ′′ − h) =

W2S1 + X(P ′ + P ′′ − h). Put W := W1W2.

(d) Put b−1 := Q′/S and U :≡ W (P ′ − P ′′) + XR′′ (mod b−1).

(2) IF deg(Q′) + deg(Q′′) − 2 deg(S) ≤ g + 1 THEN // at most one baby

step

(a) Put

Q̂ :=
Q′Q′′

S2
, P̂ := P ′′ + U

Q′′

S
(mod Q), R̂ :=

f + hP − P 2

Q
.

(b) IF deg(Q̂) = g + 1 AND C is imaginary THEN

Q̂ := R̂ , P̂ := h − P̂ (mod Q̂) , R̂ :=
f + hP̂ − P̂

2

Q̂
.

(c) IF deg(Q̂) = g + 1 AND C is real THEN

(i) Put P̃ := P̂ , Q̃ := Q̂

(ii) q̃ := b(P̃ + v)/Q̃c.
(iii) P̂ := h − P̃ + q̃Q̃.

(iv) Q̂ := R̂ + q̃(P̃ − P), R̂ := Q̃.

(d) RETURN(Q̂, P̂ , R̂)

(3) // Now apply NUCOMP

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

234

(a) b0 := U, a−1 := 0, a0 := 1.

(b) i := 0, N := (deg(Q′) − deg(Q′′) + max{g,deg(P ′′ + v)})/2.

(4) While deg(bi) > N do

(a) q̂i := bbi−1/bic, bi+1 := bi−1 (mod bi). // Division with remainder

(b) ai+1 := ai−1 − q̂iai.

(c) i := i + 1.

(5) // Now i = n + 1, so deg(bn+1) ≤ N < deg(bn).

(a) ci := (biQ
′′/S + ai(P

′ − P ′′))/b−1.

(b) di−1 := (bi−1(P
′ + P ′′ − h) + ai−1SR′′)/b−1.

(c) X1 := bi−1ci, ci−1 := (X1 + (−1)i(P ′ − P ′′))/bi.

(d) X2 := (−1)i−1aidi−1, di := ((P ′ + P ′′ − h) − X2)/(−1)i−2ai−1.

(e) Qi+1 := (−1)i+1(bici − aidi) // Qi+1 = Qn+2.

(f) Pi+1 := (−1)i+1(X2 − X1) + P ′′ // Pi+1 = Pn+2.

(g) Ri+1 := (−1)i−1(ai−1di−1 − bi−1ci−1) // Ri+1 = Rn+2 = Qn+1

(h) IF C is imaginary or real and deg(Qi+1) = g + 1 THEN

i. IF C is imaginary, qi+1 := bPi+1/Qi+1c
ELSE qi+1 := b(Pi+1 + v)/Qi+1c

ii. Pi+2 := h − Pi+1 + qi+1Qi+1.

iii. Qi+2 := Ri+1 + qi+1(Pi+1 − Pi+2).

iv. Ri+2 := Qi+1.

v. i := i + 1.

(i) put Q̂ := Qi+1, P̂ := Pi+1, R̂ := Ri+1.

(j) RETURN(Q̂, P̂ , R̂).

10. An Extra Reduced Divisor

For real curves, if Dn+3 is not reduced, then one can compute an alternative

reduced divisor different from Dn+4 under certain circumstances. Let C

be a real hyperelliptic curve, and deg(P ′′ − h − v) ≤ g; this is the case,

for example, if D′′ is given in reduced form. If L is as in Eq. (8.4), then

L ≤ 2g+1, and L ≤ g if D′′ is in reduced form. Furthermore, deg(P ′′+v) =

M = g + 1, so by Proposition 8.1 (c), D′ ⊕D′′ = Dn+4 if and only if K

as given in Eq. (8.6) is odd and deg(bn+1) = N ; note that in this case,

bn+1 6= 0, so q̂n+1 and bn+2 are defined. So suppose that this is the case,

and define a new divisor D̂n+4 = (Q̂n+3, P̂n+3) as follows:

P̂n+3 = h − P̂n+2 + q̂n+1Q̂n+2, Q̂n+3 =
f + hP̂n+3 − P̂

2

n+3

Q̂i

, (10.1)

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

235

i.e. D̂n+4 is obtained by applying Eq. (7.5) to D̂n+3 = (Q̂n+2, P̂n+2) (or

alternatively, by using Eq. (7.10) and Eq. (7.9) with i = n + 3). We prove

D̂n+4 is a reduced divisor that is almost always different from Dn+4.

Proposition 10.1. Let C be real, deg(P ′′−h− v) ≤ g, D̂n+3 not reduced,

and D̂n+4 = (Q̂n+3, P̂n+3) be given by Eq. (10.1). Then D̂n+4 is reduced.

Proof. We have deg(Q̂n+2) = deg(un+1) = g + 1. Then deg(un+2) ≤
deg(un+1)−2 = g−1 by Lemma 2.2 (a), deg(vn+2) ≤ g by Lemma 8.1 (a),

and deg(wn+2) = L − deg(un+1) ≤ g by Lemma 8.1 (b), since L ≤ 2g + 1.

Thus, deg(Q̂n+3) ≤ g by Eq. (8.3), so D̂n+4 is reduced.

Before we can prove that D̂n+4 6= Dn+4 almost always, we first require

a lemma.

Lemma 10.1. Under the assumptions of Proposition 10.1, we have

deg(P̂n+3 + v) ≤ g .

Proof. Analogous to Eq. (8.1), we can derive

(−1)i+1(P̂ i+1 + P ′′ − h) = u′
i + v′i + w′

i

where

u′
i =

Q′′

b−1S
bi−1bi , v′i =

h − 2P ′′

b−1
ai−1bi , w′

i =
SR′′

b−1
ai−1ai ,

for 0 ≤ i ≤ m + 1. Using Lemmas 2.2 and 8.1, we obtain

deg(u′
n+2) ≤ deg(un+1) − 1 = (g + 1) − 1 = g ,

deg(v′n+2) ≤ deg(vn+1) − 1 ≤ g − 1 ,

deg(w′
n+2) ≤ deg(wn+2) − 1 = L − deg(un+1) − 1 = g − 1 .

It follows that

deg(P̂n+3 + v) = deg
(

(P̂n+3 + P ′′ − h) − (P ′′ − h − v)
)

≤ g .

Proposition 10.2. Under the assumptions of Proposition 10.1, and with

Dn+4 given by Eq. (8.5), we have D̂n+4 6= Dn+4, provided Dn+4 6= 0.

Proof. Recall that Eq. (8.5) yielded deg(Pn+3 − h − v) ≤ g, so

deg(Pn+3 + v) = g + 1. Thus, by Lemma 10.1, deg(P̂n+3 + v) ≤ g <

deg(Pn+3 + v). It follows that deg(Pn+3) = deg(P̂n+3) = g + 1 and

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

236

P̂n+3 6= Pn+3. Now P̂n+3 − Pn+3 = sQ̂n+2 with s = q̂n+1 − qn+2. Since

deg(Q̂n+2) = g + 1, we must have s ∈ F
∗
q .

By way of contradiction, assume that D̂n+4 = Dn+4 6= 0. Then Qn+3

and Q̂n+3 differ by a factor in k∗, and Qn+3 divides P̂n+3−Pn+3 = sQ̂n+2.

Since s ∈ F
∗
q , we see that Qn+3 divides Q̂n+2. By Eq. (8.5) and Eq. (10.1),

we have

Q̂n+2(Q̂n+3 − Qn+3) = (f + hP̂n+3 − P̂
2

n+3) − (f + hPn+3 − P 2
n+3)

= (P̂n+3 − Pn+3)(h − P̂n+3 − Pn+3)

= sQ̂n+2(h − 2Pn+3 − sQ̂n+2) ,

so Qn+3 divides h−2Pn+3. Now Dn+4 6= 0 forces Qn+3 to be non-constant.

Let r be a root of Qn+3 in some algebraic closure of k. Then we can use rea-

soning analogous to the proof of Proposition 5.1 to infer that (r,−Pn+3(r))

is a singular point on C, a contradiction.

Remark 10.1. Let ân+3, an+4 and ân+4 be the reduced ideals corre-

sponding to D̂n+3, Dn+4, and D̂n+4, respectively. Then (Q̂n+2)an+4 =

(Pn+3 + v)ân+3 and (Q̂n+2)ân+4 = (P̂n+3 + v)ân+3. If we now take dis-

tances with respect to some starting divisor and set δn+4 = δ(Dn+4) and

δ̂n+4 = δ(D̂n+4), then we have δn+4 = δ̂n+4 + δ with

δ = deg(Pn+3 + v) − deg(P̂n+3 + v) .

Since deg(Pn+3 +v) = g +1 > deg(P̂n+3 +v), we have δ ≥ 1. Furthermore,

since deg(Pn+3 + v) = deg(P̂n+3 − h − v) = g + 1,

Pn+3 + v

P̂n+3 + v
=

(Pn+3 + v)(P̂n+3 − h − v)

Q̂n+2Qn+3

,

and deg(Qn+3) ≥ 1, we have δ ≤ 2(g+1)−(g+1)−1 = g. In summary, 1 ≤
δ ≤ g, so Dn+4 and D̂n+4 are not far from each other in the infrastructure

of the appropriate ideal class. In general, we expect deg(Qn+3) = g and

hence δ = 1, so Dn+4 and D̂n+4 are neighbors.

11. Numerical Results

The following numerical experiments were performed on a Pentium IV 2.4

GHz computer running Linux. We used the computer algebra library NTL

[14] for finite field and polynomial arithmetic and the GNU C++ compiler

version 3.4.3.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

237

11.1. Binary Exponentiation

In order to test the efficiency of our versions of NUCOMP, we implemented

routines for binary exponentiation using Cantor’s algorithm in Eq. (6.1),

NUCOMP (Algorithm 9.1), and NUCOMP with small operands (Algo-

rithm 9.2). All three algorithms were implemented using real, imaginary,

and unusual curves defined over prime finite fields Fp and characteristic 2

finite fields F2n .

Table 11.1-11.5 contain the ratio of runtimes for binary exponentiation

using Algorithm 9.1 (NUCOMP using recurrences to compute ci and di)

divided by the runtime using Algorithm 9.2 (NUCOMP using formulas

to compute the final values of ci and di). For each genus and field size

listed, 1000 binary exponentiations were performed with random 100-bit

exponents. The same 1000 exponents were used for both algorithms and

for all genera and finite field sizes. The divisors produced by NUCOMP

were normalized; adapted basis was used for imaginary and unusual curves

and reduced basis was used for real curves [5]. The data clearly show that

Algorithm 9.1 is more efficient that Algorithm 9.2 for g < 10 approximately,

but that Algorithm 9.2 is ultimately more efficient as g grows.

Table 11.1. Exponentiation ratios (Alg 9.1 / Alg 9.2) over Fp, imaginary.

log2 p

g 2 4 8 16 32 64 128 256 512

2 0.9839 0.9012 0.8983 0.9037 0.9038 0.8909 0.9110 0.9140 0.8976
3 0.8703 0.9471 0.9289 0.8934 0.9523 0.9659 0.9503 0.9568 0.9591
4 0.9619 0.9342 0.9266 0.9662 0.9503 0.9514 0.9634 0.9644 0.9672
5 0.9693 0.9550 0.9518 0.9576 0.9567 0.9474 0.9327 0.9341 0.9318
6 0.9754 0.9548 0.9631 0.9624 0.9378 0.9467 0.9413 0.9442 0.9434
7 0.9407 0.9530 0.9608 0.9561 0.9518 0.9532 0.9559 0.9592 0.9613
8 0.9726 0.9663 0.9666 0.9600 0.9576 0.9668 0.9785 0.9641 0.9671
9 0.9751 0.9764 0.9840 0.9776 0.9645 0.9760 0.9947 0.9710 0.9784
10 0.9793 0.9708 0.9817 0.9724 0.9629 0.9746 0.9976 0.9775 0.9864
11 0.9853 0.9792 0.9854 0.9877 0.9705 0.9839 1.0067 0.9875 0.9974
12 0.9983 0.9969 0.9971 0.9875 0.9777 0.9907 0.9924 0.9917 1.0023
13 0.9851 1.0084 1.0000 0.9963 0.9874 0.9993 0.9986 1.0024 1.0102
14 1.0126 1.0039 1.0049 0.9988 0.9845 1.0010 1.0003 1.0038 1.0130
15 1.0143 1.0085 1.0102 1.0097 0.9913 1.0079 1.0076 1.0103 1.0204
20 1.0823 1.1033 1.1029 1.1017 1.0670 1.1102 1.0568 1.0710 1.0866
25 1.1003 1.1185 1.1137 1.1203 1.1103 1.1187 1.0718 1.0988 1.0896
30 1.0872 1.0908 1.0927 1.0895 1.1152 1.1107 1.0839 1.0946 1.1129

Table 11.6–11.10 contain the ratio of runtimes for binary exponenti-

ation using Cantor’s algorithm as compared to that using the faster of

Algorithm 9.1 or Algorithm 9.2. Again, for each genus and field size listed,

1000 binary exponentiations were performed with random 100-bit expo-

nents. The same 1000 exponents were used for both algorithms and for all

genera and finite field sizes. The data clearly show that NUCOMP out-

performs Cantor’s algorithm except for very small genera and finite field

sizes, and that its relative performance improves as both the genus and

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

238

Table 11.2. Exponentiation ratios (Alg 9.1 / Alg 9.2) over Fp, real.

log2 p

g 2 4 8 16 32 64 128 256 512

2 0.8661 0.8743 0.9368 0.9557 0.8414 0.8766 0.8830 0.8859 0.8761
3 0.8579 0.9149 0.9163 0.9216 0.8967 0.8996 0.8924 0.8761 0.8851
4 0.9395 0.9647 0.9485 0.9582 0.9533 0.9545 0.9633 0.9648 0.9694
5 0.9294 0.9209 0.9335 0.9489 0.9629 0.9661 0.9652 0.9695 0.9726
6 0.9477 0.9397 0.9595 0.9523 0.9636 0.9566 0.9499 0.9535 0.9570
7 0.8635 0.9431 0.9466 0.9370 0.9644 0.9606 0.9580 0.9586 0.9595
8 0.9349 0.9667 0.9684 0.9860 0.9869 0.9793 1.0003 0.9783 0.9781
9 0.9549 0.9723 0.9683 0.9561 0.9859 0.9818 0.9997 0.9774 0.9788
10 0.9522 0.9963 0.9913 0.9820 0.9968 0.9942 1.0116 0.9857 0.9962
11 0.9540 0.9645 0.9854 0.9874 0.9966 0.9975 0.9957 0.9902 0.9992
12 0.9726 0.9872 0.9960 0.9809 1.0166 1.0098 1.0058 1.0011 1.0130
13 0.9806 0.9948 0.9926 0.9941 1.0191 1.0148 1.0078 1.0018 1.0105
14 0.9883 1.0135 1.0023 0.9989 1.0239 1.0197 1.0171 1.0139 1.0237
15 0.9807 0.9989 1.0117 1.0071 1.0229 1.0226 1.0168 1.0127 1.0209
20 1.0995 1.1180 1.1156 1.1109 1.1063 1.1291 1.0692 1.0856 1.0932
25 1.0968 1.1090 1.1164 1.1060 1.0847 1.1100 1.0745 1.0784 1.0989
30 1.0981 1.1088 1.1149 1.1068 1.0980 1.1066 1.0863 1.0979 1.1258

Table 11.3. Exponentiation ratios (Alg 9.1 / Alg 9.2) over Fp, unusual.

log2 p

g 2 4 8 16 32 64 128 256 512

2 0.9108 0.8800 0.8571 0.8910 0.8969 0.8896 0.9069 0.9082 0.9019
3 0.9175 1.0081 1.0161 1.0109 0.9715 0.9466 0.9658 0.9583 0.9649
4 0.9504 1.0290 1.0311 0.9967 0.9552 0.9542 0.9614 0.9603 0.9660
5 0.9684 0.9690 0.9853 0.9844 0.9730 0.9486 0.9475 0.9439 0.9491
6 0.9649 0.9626 0.9862 0.9731 0.9584 0.9471 0.9418 0.9368 0.9389
7 0.9816 1.0212 1.0139 0.9620 0.9854 0.9705 0.9868 0.9672 0.9724
8 0.9929 0.9867 0.9911 0.9980 0.9775 0.9666 0.9782 0.9590 0.9629
9 0.9938 0.9981 1.0131 0.9832 1.0047 0.9870 1.0063 0.9792 0.9899
10 1.0000 0.9982 0.9964 1.0017 0.9959 0.9834 0.9993 0.9729 0.9854
11 1.0000 1.0235 1.0103 1.0072 1.0228 1.0015 1.0012 0.9924 1.0058
12 1.0048 1.0046 1.0085 1.0014 1.0163 0.9956 0.9953 0.9851 0.9975
13 1.0000 1.0077 1.0243 1.0024 1.0362 0.9985 1.0101 1.0058 1.0184
14 0.9960 1.0245 1.0037 1.0070 1.0313 1.0101 1.0034 0.9958 1.0099
15 1.0094 1.0301 1.0370 1.0321 1.0448 1.0145 1.0176 1.0184 1.0264
20 1.1394 1.1789 1.1526 1.1262 1.1024 1.1000 1.0621 1.0671 1.0884
25 1.1014 1.1103 1.1209 1.1168 1.0860 1.1069 1.0716 1.0799 1.0981
30 1.0932 1.1047 1.1064 1.1018 1.0939 1.1108 1.0799 1.0885 1.1068

Table 11.4. Exponentiation ratios (Alg 9.1 / Alg 9.2) over F2n , imaginary.

log2 p

g 2 4 8 16 32 64 128 256 512

2 0.9308 0.9002 0.8891 0.8889 0.8976 0.8744 0.9006 0.8880 0.8871
3 0.9622 0.9511 0.9547 0.9514 0.9446 0.9440 0.9600 0.9571 0.9585
4 0.9507 0.9395 0.9480 0.9507 0.9528 0.9592 0.9663 0.9613 0.9610
5 0.9682 0.9436 0.9396 0.9557 0.9443 0.9440 0.9396 0.9356 0.9343
6 0.9661 0.9544 0.9468 0.9528 0.9519 0.9530 0.9469 0.9474 0.9458
7 0.9819 0.9620 0.9674 0.9662 0.9681 0.9669 0.9611 0.9644 0.9622
8 0.9881 0.9663 0.9653 0.9693 0.9725 0.9780 0.9693 0.9691 0.9688
9 1.0071 0.9929 0.9868 0.9853 0.9920 0.9890 0.9807 0.9830 0.9820
10 1.0026 1.0011 0.9864 0.9917 0.9918 0.9891 0.9872 0.9878 0.9876
11 1.0205 0.9981 1.0046 1.0010 0.9947 0.9960 0.9960 0.9986 0.9964
12 1.0272 1.0124 1.0193 1.0137 1.0019 0.9984 1.0016 1.0042 1.0022
13 1.0341 1.0191 1.0311 1.0249 1.0116 1.0092 1.0118 1.0060 1.0148
14 1.0441 1.0311 1.0322 1.0242 1.0145 1.0081 1.0148 1.0181 1.0187
15 1.0504 1.0311 1.0415 1.0324 1.0208 1.0133 1.0190 1.0221 1.0216
20 1.1072 1.1263 1.1350 1.1218 1.1051 1.0890 1.0923 1.0893 1.0885
25 1.1624 1.1662 1.1724 1.1556 1.1337 1.1104 1.1119 1.1203 1.1146
30 1.1869 1.1797 1.1930 1.1826 1.1419 1.1375 1.1335 1.1337 1.1309

finite field size increase. The findings are consistent with those presented

in [6], but our improved versions of NUCOMP presented here out-perform

Cantor’s algorithm for even smaller genera and finite field sizes than in [6].

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

239

Table 11.5. Exponentiation ratios (Alg 9.1 / Alg 9.2) over F2n , real

log2 p

g 2 4 8 16 32 64 128 256 512

2 0.9249 0.8800 0.8630 0.8604 0.8649 0.8603 0.8816 0.8737 0.8725
3 0.8406 0.8562 0.8682 0.8670 0.8710 0.8910 0.8613 0.8745 0.8723
4 0.9331 0.9424 0.9480 0.9561 0.9524 0.9526 0.9561 0.9614 0.9618
5 0.9217 0.9480 0.9562 0.9596 0.9600 0.9526 0.9614 0.9668 0.9665
6 0.9471 0.9655 0.9548 0.9628 0.9574 0.9711 0.9444 0.9503 0.9504
7 0.9557 0.9580 0.9531 0.9511 0.9588 0.9574 0.9462 0.9512 0.9506
8 0.9765 0.9776 0.9781 0.9750 0.9819 0.9800 0.9711 0.9737 0.9759
9 0.9761 0.9709 0.9752 0.9799 0.9729 0.9705 0.9701 0.9701 0.9676
10 0.9891 1.0057 1.0019 0.9996 0.9970 0.9857 0.9868 0.9892 0.9952
11 0.9810 0.9962 1.0070 0.9997 0.9920 0.9849 0.9866 0.9905 0.9910
12 1.0080 1.0064 1.0220 1.0158 1.0081 0.9958 1.0006 1.0082 1.0085
13 1.0029 1.0162 1.0208 1.0120 1.0041 0.9845 1.0009 1.0093 1.0082
14 1.0243 1.0326 1.0379 1.0284 1.0162 0.9981 1.0093 1.0214 1.0215
15 1.0228 1.0329 1.0327 1.0270 1.0175 1.0016 1.0111 1.0182 1.0176
20 1.1270 1.1450 1.1401 1.1737 1.1256 1.0984 1.0998 1.0968 1.0937
25 1.1456 1.1565 1.1748 1.1471 1.0596 1.1021 1.1083 1.1207 1.1049
30 1.1672 1.1757 1.1822 1.1820 1.1477 1.1239 1.1288 1.1374 1.1328

Table 11.6. Exponentiation ratios (NUCOMP / Cantor) over Fp, imaginary.

log2 p

g 2 4 8 16 32 64 128 256 512

2 1.0991 1.0504 1.0743 1.0432 0.9308 0.9141 0.9242 0.8847 0.8447
3 1.0662 1.0707 1.0609 1.0140 0.9523 0.9419 0.9008 0.8865 0.8652
4 1.0632 1.0607 1.0390 1.0158 0.9309 0.9286 0.9068 0.8582 0.8540
5 1.0766 1.0376 1.0350 1.0194 0.9120 0.9046 0.8865 0.8571 0.8642
6 1.0931 1.0462 1.0150 1.0056 0.8888 0.8963 0.8452 0.8594 0.8573
7 1.0235 0.9865 0.9679 0.9583 0.8692 0.8755 0.8310 0.8558 0.8586
8 0.9924 0.9349 0.9414 0.9268 0.8532 0.8697 0.8237 0.8500 0.8424
9 0.9557 0.9212 0.9212 0.9273 0.8405 0.8588 0.8144 0.8472 0.8420
10 0.9423 0.8975 0.8961 0.8910 0.8275 0.8451 0.8078 0.8402 0.8334
11 0.9538 0.8968 0.8981 0.9046 0.8128 0.8407 0.7921 0.8371 0.8333
12 0.9441 0.9043 0.8991 0.8918 0.8075 0.8332 0.8047 0.8278 0.8235
13 0.9361 0.9320 0.9035 0.9063 0.8060 0.7857 0.7995 0.8184 0.8148
14 0.9308 0.9038 0.8971 0.8981 0.7926 0.7821 0.8035 0.8184 0.8071
15 0.9135 0.8747 0.8704 0.8694 0.7851 0.7715 0.8043 0.8130 0.8059
20 0.8255 0.7956 0.7861 0.7989 0.7536 0.7242 0.7910 0.7843 0.7769
25 0.7949 0.7662 0.7693 0.7727 0.7208 0.7398 0.7854 0.7943 0.7759
30 0.7921 0.7714 0.7730 0.7716 0.7157 0.7372 0.7743 0.7616 0.7588

Table 11.7. Exponentiation ratios (NUCOMP / Cantor) over Fp, real.

log2 p

g 2 4 8 16 32 64 128 256 512

2 0.8943 1.1268 1.2192 1.2763 1.0659 1.0987 1.0872 1.0731 1.0835
3 1.0449 1.1497 1.1165 1.1330 1.0503 1.0515 1.0434 1.0376 1.0500
4 1.0745 1.1081 1.0932 1.0784 1.0169 1.0137 1.0150 0.9847 1.0060
5 1.0549 1.0659 1.0300 1.0570 0.9635 0.9771 0.9650 0.9664 0.9787
6 1.0507 1.0124 1.0350 1.0327 0.9444 0.9555 0.9243 0.9540 0.9569
7 0.9705 0.9525 0.9231 0.9209 0.9144 0.9309 0.8950 0.9289 0.9512
8 0.9724 0.9539 0.9426 0.9338 0.9094 0.9195 0.8816 0.9244 0.9254
9 0.9591 0.9179 0.9028 0.9023 0.8726 0.8876 0.8608 0.8913 0.9013
10 0.9105 0.9056 0.8818 0.8877 0.8625 0.8879 0.8642 0.8933 0.8955
11 0.9396 0.9043 0.9159 0.9145 0.8402 0.8596 0.8415 0.8836 0.8862
12 0.9668 0.9341 0.9149 0.9135 0.8356 0.8536 0.8512 0.8832 0.8745
13 0.9581 0.9128 0.8856 0.8942 0.8047 0.7877 0.8201 0.8637 0.8560
14 0.9596 0.9098 0.8782 0.8912 0.8051 0.7874 0.8205 0.8502 0.8471
15 0.9356 0.8696 0.8640 0.8670 0.7789 0.7656 0.8037 0.8425 0.8387
20 0.8065 0.7549 0.7519 0.7638 0.7463 0.7275 0.8110 0.8108 0.8008
25 0.7717 0.7303 0.7215 0.7186 0.6996 0.7124 0.7818 0.7842 0.7723
30 0.7651 0.7337 0.7270 0.7392 0.6873 0.7212 0.7687 0.7749 0.7801

11.2. Key Exchange

We also ran numerous examples of the key exchange protocols described

in [7], again using both real and imaginary curves and Fp (p prime) and F2n

as base fields. The genus of our curves ranged from 2 to 6 and the underlying

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

240

Table 11.8. Exponentiation ratios (NUCOMP / Cantor) over Fp, unusual.

log2 p

g 2 4 8 16 32 64 128 256 512

2 1.0438 1.1079 1.0435 1.0444 0.9607 0.9345 0.9257 0.8955 0.8749
3 1.0500 1.0649 1.0506 1.0377 0.9102 0.8970 0.8815 0.8443 0.8417
4 1.1220 1.0905 1.0576 1.0565 0.9182 0.9301 0.9102 0.8782 0.8698
5 1.0824 1.0539 1.0030 1.0216 0.8861 0.8631 0.8382 0.8535 0.8465
6 1.1224 1.0404 1.0259 1.0419 0.9115 0.8951 0.8580 0.8769 0.8744
7 1.0081 0.9179 0.9309 0.9179 0.8604 0.8461 0.8158 0.8424 0.8312
8 0.9882 0.9695 0.9654 0.9900 0.8668 0.8647 0.8342 0.8627 0.8526
9 0.9340 0.8902 0.8883 0.8784 0.8286 0.8274 0.7986 0.8336 0.8274
10 0.9245 0.9151 0.9224 0.9308 0.8523 0.8396 0.8182 0.8484 0.8424
11 0.9641 0.9075 0.8642 0.8858 0.8033 0.8117 0.8016 0.8177 0.8164
12 0.9570 0.8997 0.8892 0.9055 0.8215 0.8265 0.8166 0.8258 0.8338
13 0.9615 0.8977 0.8662 0.8828 0.7821 0.7650 0.7964 0.8115 0.8026
14 0.9448 0.8719 0.8652 0.8858 0.7839 0.7699 0.8104 0.8328 0.8251
15 0.8945 0.8203 0.8111 0.8306 0.7663 0.7389 0.7822 0.7945 0.7858
20 0.8458 0.8234 0.8108 0.8250 0.7220 0.7456 0.8074 0.7927 0.7996
25 0.7964 0.7660 0.7606 0.7656 0.7252 0.7429 0.7942 0.7901 0.7822
30 0.7781 0.7591 0.7575 0.7622 0.7055 0.7307 0.7769 0.7766 0.7682

Table 11.9. Exponentiation ratios (NUCOMP / Cantor) over F2n , imaginary.

log2 p

g 2 4 8 16 32 64 128 256 512

2 1.0068 0.9696 0.9498 0.9257 0.9185 0.8919 0.8824 0.8433 0.8205
3 0.9857 0.9757 0.9401 0.9244 0.9244 0.9251 0.8789 0.8951 0.8855
4 0.9725 0.9638 0.9448 0.9301 0.9056 0.9204 0.9285 0.9102 0.9110
5 0.9916 0.9705 0.9404 0.9360 0.9115 0.9153 0.9192 0.9035 0.9008
6 0.9632 0.9479 0.9248 0.9155 0.8915 0.9025 0.9132 0.9045 0.9035
7 0.9688 0.9248 0.9083 0.9050 0.8855 0.8761 0.9181 0.9161 0.9158
8 0.9305 0.9110 0.8928 0.8903 0.8866 0.9096 0.9263 0.9237 0.9247
9 0.9245 0.8985 0.8799 0.8902 0.8766 0.8926 0.9061 0.9079 0.9098
10 0.8890 0.8843 0.8809 0.8907 0.8715 0.8823 0.8937 0.8971 0.8996
11 0.8932 0.8695 0.8777 0.8780 0.8640 0.8776 0.8865 0.8938 0.8955
12 0.8744 0.8581 0.8621 0.8593 0.8666 0.8798 0.8811 0.8852 0.8905
13 0.8551 0.8623 0.8401 0.8469 0.8537 0.8696 0.8678 0.8759 0.8778
14 0.8407 0.8298 0.8202 0.8332 0.8492 0.8669 0.8676 0.8751 0.8802
15 0.8220 0.8171 0.8041 0.8173 0.8430 0.8609 0.8649 0.8750 0.8805
20 0.7449 0.7362 0.7399 0.7625 0.7950 0.8106 0.8316 0.8481 0.8536
25 0.7015 0.7089 0.7146 0.7263 0.7585 0.7847 0.8059 0.8174 0.8270
30 0.6744 0.7118 0.6993 0.7078 0.7419 0.7632 0.7839 0.7996 0.8131

Table 11.10. Exponentiation ratios (NUCOMP / Cantor) over F2n , real.

log2 p

g 2 4 8 16 32 64 128 256 512

2 0.9277 1.0896 1.0930 1.0854 1.1152 1.0998 1.0653 1.0787 1.0661
3 0.8948 0.9597 0.9860 0.9622 0.9695 0.9791 0.9640 0.9824 0.9814
4 1.0213 1.0360 1.0375 1.0274 1.0267 1.0252 1.0289 1.0421 1.0440
5 0.9587 0.9672 0.9630 0.9505 0.9372 0.9295 0.9499 0.9516 0.9491
6 0.9989 0.9776 0.9743 0.9838 0.9718 0.9715 0.9689 0.9777 0.9790
7 0.9370 0.9193 0.9025 0.9126 0.8990 0.9041 0.9311 0.9413 0.9424
8 0.9534 0.9439 0.9222 0.9379 0.9365 0.9476 0.9650 0.9785 0.9842
9 0.9008 0.8771 0.8685 0.8928 0.8707 0.8727 0.8891 0.8954 0.8963
10 0.9053 0.8863 0.8854 0.9142 0.9098 0.9115 0.9252 0.9384 0.9491
11 0.8601 0.8518 0.8504 0.8713 0.8624 0.8595 0.8755 0.8838 0.8870
12 0.8878 0.8679 0.8589 0.8705 0.8938 0.9006 0.9154 0.9220 0.9301
13 0.8377 0.8230 0.8171 0.8281 0.8478 0.8476 0.8675 0.8729 0.8770
14 0.8393 0.8258 0.8206 0.8384 0.8659 0.8783 0.8863 0.8957 0.9031
15 0.7970 0.7775 0.7800 0.7942 0.8204 0.8423 0.8548 0.8594 0.8659
20 0.7221 0.7313 0.7312 0.7552 0.7968 0.8291 0.8311 0.8548 0.8638
25 0.6565 0.6298 0.6678 0.6954 0.7907 0.7356 0.7520 0.7756 0.8010
30 0.6576 0.6649 0.6722 0.6936 0.7353 0.7663 0.7823 0.8043 0.8187

finite field was chosen so that the size of the Jacobian (approximately qg

where the finite field has q elements) was roughly 2160, 2224, 2256, 2384,

and 2512. Assuming only generic attacks with square root complexity, these

curves offer 80, 112, 128, 192, and 256 bits of security for cryptographic

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

241

protocols based on the corresponding discrete logarithm problem. NIST [9]

currently recommends these five levels of security for key establishment in

U.S. Government applications. Although the use of curves with genus 3 and

larger for cryptographic purposes is questionable, we nevertheless included

times for higher genus as our main goal is to provide a relative comparison

between our formulation of NUCOMP with Cantor’s algorithm.

For curves defined over Fp, we chose a random prime p of appropriate

length such that pg had the required bit length, and for curves over F2n

we chose the minimal value of n with gn greater than or equal to the re-

quired bit length. For each genus and finite field, we randomly selected 2000

curves and executed Diffie–Hellman key exchange twice for each curve, once

using Cantor’s algorithm and once using our version of NUCOMP (Algo-

rithm 9.1). We used Algorithm 9.1 as opposed to Algorithm 9.2, because

our previous experiments indicated that it is more efficient for low genus

curves. The random exponents used had 160, 224, 256, 384, and 512 bits,

respectively, ensuring that the number of bits of security corresponds to

the five levels recommended by NIST (again, considering only generic at-

tacks). In order to provide a fair comparison, the same sequence of random

exponents was used for each run of the key exchange protocol.

Table 11.11 contains the average CPU time in seconds for each version of

the protocol using real and imaginary curves over Fp and F2n . The columns

labeled “Cantor” contain the runtimes when using Cantor’s algorithm, and

those labeled “NC” the runtimes when using NUCOMP. The times for any

precomputations, as described in [7], are not included. We also give the

ratios of the average time spent for key exchange using NUCOMP versus

that using Cantor’s algorithm in Table 11.12. Clearly, in almost all cases,

NUCOMP offers a fairly significant performance improvement as opposed

to Cantor’s algorithm, even for genus as low as 2.

12. Conclusions

Our results indicate that NUCOMP does provide an improvement for di-

visor arithmetic in hyperelliptic curves except for the smallest examples in

terms of genus and finite field size. They also show that both versions of

NUCOMP, Algorithm 9.1 and Algorithm 9.2, are useful. Nevertheless, a

careful complexity analysis and further numerical experiments are required

to compare NUCOMP and Cantor’s algorithm more precisely.

There are a number of possible improvements to NUCOMP that need

to be investigated. For example, our remarks at the end of Sec. 8 indicate

that basis normalization need not be done when NUCOMP is used as a

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

242

Table 11.11. Key exchange timings over Fp and F2n (in seconds).

Security Fp F2n

level Imaginary Real Imaginary Real
(in bits) g Cantor NC Cantor NC Cantor NC Cantor NC

2 0.0322 0.0290 0.0324 0.0306 0.0320 0.0282 0.0282 0.0291
3 0.0382 0.0350 0.0390 0.0363 0.0342 0.0320 0.0322 0.0317

80 4 0.0492 0.0438 0.0487 0.0438 0.0443 0.0404 0.0403 0.0382
5 0.0466 0.0435 0.0483 0.0444 0.0611 0.0601 0.0560 0.0563
6 0.0124 0.0124 0.0123 0.0122 0.0737 0.0705 0.0667 0.0658

2 0.0562 0.0498 0.0554 0.0520 0.0585 0.0505 0.0511 0.0522
3 0.0737 0.0649 0.0707 0.0660 0.0692 0.0627 0.0624 0.0636

112 4 0.0723 0.0651 0.0730 0.0648 0.0691 0.0630 0.0622 0.0598
5 0.0938 0.0875 0.0937 0.0867 0.0846 0.0822 0.0776 0.0781
6 0.1182 0.1076 0.1171 0.1048 0.1032 0.0977 0.0946 0.0919

2 0.0667 0.0593 0.0663 0.0625 0.0692 0.0594 0.0598 0.0611
3 0.0870 0.0771 0.0847 0.0790 0.0807 0.0732 0.0730 0.0734

128 4 0.0904 0.0806 0.0906 0.0806 0.0791 0.0723 0.0697 0.0667
5 0.1129 0.1044 0.1124 0.1037 0.0989 0.0957 0.0899 0.0909
6 0.1354 0.1224 0.1318 0.1181 0.1192 0.1129 0.1090 0.1063

2 0.1439 0.1235 0.1375 0.1290 0.1620 0.1348 0.1369 0.1395
3 0.1617 0.1436 0.1577 0.1480 0.1652 0.1484 0.1472 0.1486

192 4 0.1832 0.1609 0.1793 0.1615 0.1743 0.1642 0.1537 0.1505
5 0.2313 0.2114 0.2210 0.2069 0.2190 0.2147 0.1964 0.1985
6 0.2247 0.2053 0.2242 0.2019 0.1912 0.1795 0.1726 0.1677

2 0.2517 0.2127 0.2303 0.2182 0.3037 0.2556 0.2540 0.2593
3 0.2920 0.2538 0.2825 0.2633 0.3417 0.3129 0.3025 0.3106

256 4 0.2875 0.2537 0.2771 0.2505 0.3015 0.2815 0.2664 0.2622
5 0.3662 0.3375 0.3557 0.3341 0.3693 0.3599 0.3338 0.3344
6 0.3968 0.3577 0.3792 0.3446 0.3555 0.3456 0.3185 0.3120

Table 11.12. Key exchange ratios over Fp and F2n .

Security level
g 80 112 128 192 256

2 0.8999 0.8869 0.8890 0.8585 0.8454
3 0.9153 0.8804 0.8866 0.8882 0.8693

Fp 4 0.8916 0.9004 0.8919 0.8781 0.8825
imaginary 5 0.9329 0.9332 0.9242 0.9140 0.9214

6 0.9984 0.9102 0.9038 0.9135 0.9015

2 0.9435 0.9383 0.9429 0.9383 0.9477
3 0.9305 0.9342 0.9323 0.9384 0.9321

Fp 4 0.9000 0.8867 0.8895 0.9008 0.9041
real 5 0.9197 0.9255 0.9229 0.9363 0.9391

6 0.9905 0.8947 0.8961 0.9007 0.9088

2 0.8800 0.8621 0.8579 0.8320 0.8417
3 0.9364 0.9066 0.9074 0.8984 0.9157

F2n 4 0.9132 0.9125 0.9144 0.9420 0.9336
imaginary 5 0.9829 0.9718 0.9677 0.9803 0.9744

6 0.9558 0.9467 0.9475 0.9388 0.9722

2 1.0334 1.0222 1.0225 1.0190 1.0206
3 0.9855 1.0181 1.0067 1.0097 1.0270

F2n 4 0.9493 0.9616 0.9567 0.9796 0.9840
real 5 1.0046 1.0065 1.0112 1.0106 1.0016

6 0.9870 0.9707 0.9753 0.9717 0.9796

component for binary exponentiation, because the degree of P̂ will generally

be at most g + 1 at the end of NUCOMP. Not performing normalization

saves one division with remainder at the cost of the inputs to subsequent

applications of NUCOMP having slightly larger degrees. In addition, the

results in Sec. 10 indicate that in some cases, it is possible to perform one

extra NUCOMP step to guarantee that the output of NUCOMP is reduced

without having to perform a continued fraction step. Further investigation

and analysis is required to determine which of these options is the most

efficient in practice.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

243

Our data also indicate that using NUCOMP is more efficient than Can-

tor’s algorithm for cryptographic key exchange using low genus hyperellip-

tic curves, for both imaginary and real models, However, explicit formulas

based on Cantor’s algorithm have been developed for divisor arithmetic on

curves of genus 2, 3, and 4 (see [5] for a partial survey and references). NU-

COMP, as presented in this paper, is generic in the sense that it works for

any genus and as such does not compete in terms of performance with these

explicit formulas. Given that NUCOMP out-performs Cantor’s algorithm,

it is conceivable that some of the ideas used in NUCOMP can be applied to

improve the explicit formulas. This, as well as the open problems mentioned

above, is the subject of on-going research.

References

[1] E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen. Math.

Zeitschr. 19 (1924), 153–206.
[2] D. G. Cantor, Computing in the Jacobian of a hyperelliptic curve, Math.

Comp. 48 (1987), 95–101.
[3] A. Enge, How to distinguish hyperelliptic curves in even characteristic.

Public-Key Cryptography and Computational Number Theory. De Gruyter
(Berlin), 2001, 49–58.

[4] H. Hasse, Algebraic Number Theory, Springer, Berlin 2002.
[5] M. J. Jacobson, Jr., A. J. Menezes, and A. Stein, Hyperelliptic curves and

cryptography, in High Primes and Misdemeanors: Lectures in Honour of the

60th Birthday of Hugh Cowie Williams, Fields Inst. Comm. 41, American
Mathematical Society, 2004, 255–282.

[6] M. J. Jacobson., Jr. and A. J. van der Poorten, Computational aspects of
NUCOMP, Proc. ANTS-V, Lect. Notes Comp. Sci. 2369, Springer (New
York), 2002, 120–133.

[7] M. J. Jacobson, Jr., R. Scheidler, and A. Stein, Cryptographic protocols
on real and imaginary hyperelliptic curves, submitted to Advances Math.

Comm., 2006.
[8] M. J. Jacobson, Jr., R. Scheidler and H. C. Williams, An improved real

quadratic field based key exchange procedure. J. Cryptology 19 (2006), 211–
239.

[9] National Institute of Standards and Technology (NIST), Recommendation

on key establishment schemes, NIST Special Publication 800-56, January
2003.

[10] S. Paulus and H.-G. Rück, Real and imaginary quadratic representations of
hyperelliptic function fields, Math. Comp. 68 (1999), 1233–1241.

[11] A. J. van der Poorten, A note on NUCOMP. Math. Comp. 72 (2003), 1935–
1946.

[12] M. Rosen, Number Theory in Function Fields, Springer, New York 2002.
[13] D. Shanks, On Gauss and composition I, II. In Proc. NATO ASI on Number

Theory and Applications, Kluwer Academic Press 1989, 163–204.

April 16, 2007 22:45 WSPC - Proceedings Trim Size: 9in x 6in ws-procs9x6

244

[14] V. Shoup, NTL: A library for doing number theory. Software, 2001. Available
at http://www.shoup.net.ntl.

[15] A. Stein. Sharp upper bounds for arithmetics in hyperelliptic function fields.
J. Ramanujan Math. Soc. 16 (2001), 1–86.

[16] A. Stein and H. C. Williams, Some methods for evaluating the regulator of
a real quadratic function field. Experiment. Math. 8 (1999), 119–133.

[17] H. Stichtenoth, Algebraic Function Fields and Codes. Springer, Berlin 1993.

